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Abstract 

Statistical learning has two primary goals: ensuring high prediction accuracy and discovering 

relevant predictive variables. Variable selection is crucial when the representation of the true 

underlying model is sparse. Finding important predictors will improve the fitted model's ability to 

forecast. Numerous methods for selecting variables are discussed in the literature, but different 

methods select a different subset of variables and also vary their performance under distinct 

circumstances. We can evaluate their relative performance by comparing them. This study 

compares Autometrics and machine learning techniques, including Minimax Concave Penalty 

(MCP), Elastic Smoothly Clipped Absolute Deviation (E-SCAD), and Adaptive Elastic Net 

(AEnet). For simulation experiments, three kinds of scenarios are considered by allowing 

multicollinearity, heteroscedasticity, and autocorrelation conditions with varying sample sizes and 

a varied number of covariates. First, we evaluate the performance under huge big data. In the 

presence of low and moderate cases of multicollinearity and autocorrelation, the considered 

methods retain all relevant variables, but MCP and E-SCAD over-specify the true data generating 

process (DGP). In the presence of extreme multicollinearity and Autocorrelation cases, the AEnet 

showed better performance comparatively. In case of heteroscedasticity, the AEnet specifies the 

true DGP very efficiently. Similarly, the forecasting performance of these methods, including 

factor models, is evaluated under the same conditions. The MCP produced more accurate forecasts 

than the rival methods, excluding a few cases where the proposed factor model and E-SCAD 

outperformed the competitors. While considering the fat big data, E-SCAD remains very effective 

in contrast to competing approaches in terms of variable selection. Under the forecasting exercises, 

the Autometrics remained quite successful. Complementing the simulation exercise, we have 

carried out an empirical application on a popular macroeconomic and financial dataset in Pakistan. 

The empirical results supported the results of the simulation experiments. 
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Chapter 1 

Introduction 

Regression analysis is a well known statistical approach that is used in a wide range of areas, from 

finance to the social sciences. The prime focus of regression analysis to model the impact of one 

or more regressors on response variable. The ordinary least squares (OLS) method is commonly 

used to estimate the unknown parameters of a regression model (Filzmoser and Nordhausen, 

2021). The estimates of OLS are obtained by minimizing the residuals squared errors. It is very 

popular approach because it is easily interpretable and produces best estimates if the underlying 

assumptions are satistfied (Gujarati et al., 2012).  

In the era of big data, the format of data sets has evolved. In the past, the number of observations, 

n, often much larger than the number of explanatory variables, p, but nowadays, n ≈ p or even n 

< p is common, which is referred to as high-dimensional data. This kind of vast data sets offered 

new challenges including degrees of freedom, multicollinearity, heteroscdasticity etc, which make 

the classical linear regression models inefficient. In other words, traditional econometric models 

do not yield sparse models and therefore may exhibit inefficient behavior when n < p. Advanced 

regression techniques are therefore required for large data sets, also refers to big data (Kim and 

Swanson, 2013). 

1.1. Big Data and its Significance  

The era of big data presents an appealing prospect for new economic and econometric 

advancements. In economics research, the amount of data observed and used in practice is 

expanding at a rapid rate, and it is widely acknowledged that big data has the potential to 

significantly impact both economic study and economic policy (Eisenstein and Lodish, 2002).  



2 
 

 

Thus, economic data is important capital that can be used to make decisions about the economy 

and the social and economic state of society (competitive intelligence, strategic intelligence, and 

others), with a particular emphasis on big data (Robles et al., 2019). However, the term "big data" 

has multiple definitions. In the context of regression, big data was categorized into three types by 

Doornik and Hendry (2015): tall big data; huge big data; and fat big data. Each category can be 

described as: 

 Tall big data: more observations and several covariates 

 Huge big data: more observations and more covariates (observations exceed covariates). 

 Fat Big data: Fever observations and more covariates. 

Figure 1.1 is a graphical representation of the Big Data kinds. Now the question is, how to cope 

such Big data. In the next subsection, the suitable methodologies are briefly discussed. 

 

 

 

 

 

Figure 1.1: Types of Big Data 

Numerous fields, including environmental economics, monetary policy research, and 

macroeconomics, rely heavily on accurate predictions of macroeconomic variables. An increase 

in the forecasting accuracy lead to a greater understanding of economic dynamics (Bai and Ng, 
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2008), more effective monetary policies (Bernanke et al. 2005), and improved portfolio 

management and hedging methods (Rapach et al. 2010). Many macroeconomic statistics are 

tracked by economists and decision-makers in today's data-rich environment. 

1.2. Tools for Big Data 

It is  supposed that dealing with big data is not an easy task, and to date, there are limited 

methodologies in the literature that can be used to improve least squares estimates in a data-rich 

environment. A data-rich environment and big data are used interchangeably in our study. All 

commonly used approaches and their modified versions are depicted in Figure 1.2, which are  often 

highly appropriate to overcome big data. 

 

 

 

 

 

 

 

 

Figure 1.2: Advanced Statistical and Penalized Regression Methods 
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ordinary least squares regression (OLS). The modified form of OLS can be written mathematically 

as follows: 

              ∑ (𝑦𝑐 − 𝛼0 − ∑ 𝛼𝑑𝑥𝑐𝑑
𝑚
𝑑=1 )𝑛

𝑐=1
2
+ 𝑘 ∗ 𝜗∑ |𝛼𝑑|

𝑚
𝑑=1  + 𝑘 ∗ (1 − 𝜗)∑ 𝛼𝑑

2𝑚
𝑑=1                         (1.1) 

In Equ. (1.1), 𝑦𝑐 and 𝑥𝑐𝑑 are the output and input variables respectively, 𝛼𝑑 (d=0, 1, 2, …, m) 

indicates the unknown parameters to be estimated from the data at hand. Like in classical 

regression, the first component is the sum of squared residuals and the remaining part represents 

the shrinkage penalty. Here ‘𝑘’ refers to the tuning parameter and is often selected by cross-

validation. The other parameter is 𝜗, and by altering its value, we get different models. More 

specifically, equating 𝜗 = 0, results in the ridge regression model, if 𝜗 = 1 is taken as there is in 

Lasso regression, and for the value of 𝜗 between zero and one, we get the model for elastic net 

(James et al., 2013). As their name suggests, penalized least square methods are based on some 

constraints or penalties. A good penalty consists of the following three oracle properties: 

unbiasedness, continuity, and sparsity (Algamal and Lee, 2015). Several methods belonging to the 

family of penalized regression like Ridge, Lasso, and Elastic Net do not satisfy all the 

aforementioned oracle properties (Fan and Li, 2001; Zou, 2006). Although in literature, some 

modified methods from the family of penalized regression satisfy the required oracle properties 

including Smoothly Clipped Absolute Deviation (SCAD) and Adaptive Least Absolute Shrinkage 

and Selection Operator (ALasso). Despite satisfying the oracle properties, both the SCAD and 

ALasso selects only one variable from a group of correlated covariates and ignores other variables. 

The selected variables may or may not be theoretically important. The SCAD was modified by 

adding another property to its penalty, which spurs a set of highly correlated covariates to be in or 

out of the model at the same time. In other words, the new version of SCAD is capable of selecting 

a group of correlated variables instead of a single one. Similarly, the elastic net is modified in the 
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form of an adaptive elastic net (AEnet), which achieves an oracle property. The AEnet is capable 

of including or excluding a set of features simultaneously. In 2010, Zhang developed another 

penalty model known as the Minimax Concave Penalty (MCP). The method also enjoys an oracle 

property. To summarize the whole discussion related to penalized regression tools, adaptive elastic 

net, MCP, and elastic SCAD are the updated forms, primarily used for variable selection and 

forecasting, and will be elaborately explored in the next sections. 

Another approach for automatic model selection was proposed by (Hoover et al., 1999; Krolzig 

and Hendry, 2001), known as PcGets. This method is based on the idea of general to specific (gets) 

modeling. It starts with a general unrestricted model that captures the key attributes of the 

underlying dataset. Their standard testing approaches are utilized to decrease its complexity by 

removing statistically insignificant variables and inspecting the validity of the reductions at every 

stage to ensure the congruence of the selected model. They studied PcGets' probabilities of 

recovering the data generating process (DGP) through Monte Carlo experiments and got reliable 

results. The consistency of the PcGets procedure was established by (Campos et al. 2003). 

The new version of the PcGets algorithm was proposed by Doornik (2009b), as Autometrics. This 

version is based on the same principles as PcGets. Autometrics utilizes a tree-path search to 

identify and knock out statistically insignificant covariates. Although if the relevant covariate is 

eliminated by chance, the algorithm works and does not get stuck even in a single route, containing 

other covariates as proxies (like in stepwise regression). The beauty of this algorithm is that it 

works well even if the number of covariates exceeds the number of observations (Castle et al. 

2021). 
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In the literature, several simulation studies have investigated the performance of variable selection 

procedures in the presence of multicollinearity (moderate and severe cases) and high variance of 

the error term, but, on the application side, they often apply them to cross-sectional data. For 

instance, SCAD was assessed against several tools, including Lasso and ridge regression, in case 

of moderate multicollinearity. It was noted that Lasso produces good results when the sample size 

is small and the variance is high. As the variance was reduced, SCAD performance improved, as 

shown by (Fan and Li, 2001). Increasing the sample and decreasing the variance (moderate level 

of multicollinearity) makes the problem of feature selection easier for adaptive Lasso. It was shown 

by Zou (2006). Similarly, in cases of large sample size and moderate correlation among the 

explanatory variables, SCAD and adaptive elastic net provide outstanding results. Increasing the 

correlation level among the explanatory variables adversely influences the performance of SCAD, 

as shown by (Zou and Zhang, 2009). They also showed, using different levels of multicollinearity 

and sample sizes, that the adaptive elastic net is more robust than Lasso and adaptive Lasso. Zeng 

and Xie (2014) revealed that errors increase with increasing variance. They showed that group 

feature selection procedures are more powerful than single feature selection procedures. In the 

severe case of multicollinearity, the elastic net is more robust in contrast to ridge regression and 

Lasso (Zou and Hastie, 2005). Muhammadullah et al. (2022) evaluated the performance of 

weighted lag adaptive Lasso (WLALasso) with Autometrics in terms of feature selection and 

forecasting. The simulation experiments demonstrate that in presence of strong linear dependency 

amidst covariates, the WLALasso outperformed the Autometrics and adaptive Lasso.  

When forecasting financial or economic variables, it is often essential to include a piece of 

information from a large set of potential independent variables in the forecasting model. It is more 

probable to face the problem of multicollinearity in presence of such a huge set of covariates, and 
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the construction of factor models circumvents the problem of multicollinearity without losing 

important information. Most traditional macro-econometric prediction techniques, albeit, are 

incapable dealing with this, either because it is inefficient or impossible to include a large number 

of features in a single forecasting model and estimate them utilizing standard statistical tools. One 

of the alternatives to this problem is factor-based regression models, which have gained 

prominence. An influential application in Stock and Watson (2002b), is where a limited number 

of principal components are extracted from a large data set and added to a standard linear 

regression model, which is utilized to forecast key macroeconomic variables. Stock and Watson 

(2002a) and Bai (2003b) came up with the asymptotic theory that makes it possible to use principal 

components to find common factors in large data sets. 

In econometrics, researchers has spent considerable effort on developing tests and selection criteria 

to discover the number of factors that delineate the best dynamics in a massive set of predictors. 

A paramount contribution was made by Bai and Ng (2002), who developed a range of consistent 

information criteria that can be used to determine the common factor space underlying a large 

panel of covariates. The number of factors that are selected in such a way yields an upper bound 

for the number of factors that should enter the forecasting model for a certain variable. There is no 

theoretical ground to allow all factors to enter into the forecasting regression. Hence, it is of great 

importance that a form of factor selection is carried out that is tailored to determining a factor-

based forecasting model for a specific variable. 

Recent studies have shown that factor models (FM) may provide a parsimonious way to include 

incoming information about a wide variety of economic activities (Gavin and Kliesen, 2006). 

These models use a large dataset to extract a few common factors. Many researchers, including 
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Stock and Watson (1999, 2002a), Bernanke and Boivin (2003), Bernanke et al., (2005), Giannone 

et al., (2005), Bai and Ng (2006b, 2008), and Castle et al., (2013), have promoted the idea that 

factor models can be used to enhance macro-econometric models' predictive ability. Diffusion 

indices and factor models are now quite widely used for economic forecasting (Forni et al., 2000; 

Peña and Poncela, 2004; Schumacher and Breitung, 2008). 

1.3. Objectives of the Study 

First objective seeks to find the best variable selection technique under a variety of simulated 

scenarios including sample size, candidate variables, multicollinearity, heteroscedasticity and 

autocorrelation. The simulated scenarios are altered in order to thoroughly investigate the 

procedures under consideration. The second objective consist of proposing the novel factor model: 

its forecasting performance is compared with existing models. The comparison is made under 

different scenarios including sample size, candidate variables, multicollinearity, heteroscedasticity 

and autocorrelation. Different simulated scenarios are considered to examine the techniques in 

depth. Complementing the simulation exercises, the performance of variable selection techniques 

is evaluated using macroeconomic and financial datasets in third objective. In the fourth objective, 

the performance of proposed factor model is evaluated against existing techniques using 

macroeconomic and financial datasets.  

1.4. Significance of the Study 

In recent years, econometricians and statisticians have paid a significant amount of attention to the 

big data environment, variable selection, and data mining methodologies. Increasing independent 

variables present a number of problems for the econometric model, such as multicollinearity, 

degrees of freedom, and heteroscedasticity. Consequently, most traditional time series models, 

such as vector auto-regression (VAR) and vector error correction model (VECM) do not perform 
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well. These methods adjust no more than ten covariates, as more covariates generate major 

problems that render the results invalid (Stock and Watson, 2002). In contrast, macroeconomic 

variables such as inflation, economic growth, and remittances inflow are derived from a large 

number of candidate features (covariates). Now the question is raised here: which subset of 

features statistically influences the response variable? This is a challenging task for all feature 

selection techniques. 

This work employs several advanced statistical and machine learning techniques to address the 

aforementioned issues and produce reliable results. The techniques will be compared under 

simulated scenarios for multicollinearity, heteroscedasticity, and autocorrelation before being 

applied to macroeconomic and financial datasets to provide conclusive answers regarding the 

predictability and validity of distinct theoretical scenarios simultaneously. The key goal of our 

research is to come up with a better way to help policymakers. This better tool can be used with 

any macroeconomic and financial time series datasets in a rich data environment, not just workers' 

remittances, stock market, and inflation data.  

1.5. Organization of the Thesis 

The remaining part of the thesis is organized as follows.  

In section 2, we discuss past studies regarding theoretical and empirical aspects of variable 

selection and predictive modeling tools.  

In Section 3, we discuss the big data techniques including the classical approach (Autometrics), 

shrinkage methods, and factor models. In addition, we discuss the data generating process under 

different simulation scenarios like multicollinearity, heteroscedasticity and autocorrelation.  
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Section 4 deals with the variable selection procedures, in which we have two main subsections. In 

both subsections, Monte Carlo evidence on the comparative performance of several variable 

selection techniques is discussed separately.  

Section 5 deals with the forecasting comparison, in which we have two main subsections. In both 

subsections, we evaluate the predictive power of the proposed factor model against existing 

techniques through simulation exercises.  

Section 6 deals with real data analysis, in which there are four key subsections. The first two 

subsections cover the comparison of variable selection techniques, and the last two subsections 

explore the predictive power of the proposed factor model against existing techniques.  

Section 7 provides a detailed discussion of simulation findings. Also, it delineates the real 

application of our study. The limitations and future directions for research are also given in this 

section.  
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Chapter 2 

Literature Review 

Regression is a fundamental statistical component that is most commonly used to construct a 

prediction model. In regression analysis, the goal is to create a model that is accurate in both the 

selection of important features and prediction. Various regression approaches are used to develop 

models in numerous domains, including biology, business, and other social sciences. A traditional 

linear regression model is one of them, and it is most often used to build a model linearly due to 

its ease of mathematical calculation and simple understanding. However, there are various 

scenarios in which the typical linear regression model does not perform well and sometimes even 

produces inaccurate results, particularly when dealing with large amounts of data (more 

covariates). Consider the following issues in a rich data environment: 

i) Multicollinearity 

ii) Degrees of freedom 

iii) Large variability 

A list of methods has been suggested by researchers in past studies to handle these issues. 

Literature on this topic started with stepwise regression (Breaux, 1967) and Ridge regression 

(Hoerl & Kennard, 1970). Moving to more advanced methods, non-negative garrote (Breiman, 

1995), the least absolute shrinkage and selection operator (Tibshirani, 1996), Elastic net (Zou & 

Hastie, 2005), Adaptive Lasso (Zou, 2006), Adaptive elastic net (Zou and Zhang, 2009), Smoothly 

Clipped Absolute deviation (Fan and Li, 2001), Autometrics (Doornik, 2009b), Minimax Concave 

penalty (Zhang, 2010), Elastic SCAD (Zeng and Xie, 2014) and factor models (Stock and Watson, 

2002a). 
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A literature review is divided into three subsections. Section 2.1 provides a comprehensive review 

of the theoretical and empirical implications of variable selection methods, followed by forecasting 

tools in Section 2.2. Section 2.3 elaborately delineates the past studies related to inflation, workers’ 

remittance and the stock market, and the last section demonstrates the rationale of the study. 

2.1. Literature Review Related to Variable Selection Methods 

Feature selection has become a crucial area in time series analysis in the recent era. In general, a 

huge set of covariates is often utilized at the initial stage of analysis to mitigate possible modelling 

biases. Here, we discuss the past studies related to two different approaches (i.e., shrinkage 

methods and Autometrics) to variable selection. 

2.1.1. Shrinkage Methods  

The literature on subset selection started with stepwise regression (Breaux, 1967). The subset 

selection procedure is a discrete process, where either the variable is dropped or retained according 

to statistical significance. It produces an interpretable model but can be highly variable. The minor 

variations in the data induce considerably different results to be selected, and this can attenuate 

their predictive power. 

The subset selection procedure yields an interpretable model but can be extremely variable because 

it is a discrete process, which means, that either the variable is dropped or retained in the 

underlying model. Small changes in data result in very different models being selected, and this 

can vary their forecasting accuracy. The subset selection methods suffer from high variability 

(Tibshirani, 1996), and neglect the stochastic error when selecting the subset from a large set of 

variables. Thus, it is somewhat hard to understand their theoretical properties (Fan and Li, 2001). 
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Ridge regression was developed by Hoerl and Kennard (1970), which imposes 𝐿2 penalty and is 

more stable due to forcing the coefficients towards zero. Unlike the advanced variable selection 

approaches, it tends the variables towards zero exactly, and thereby, the model is not easily 

interpretable (Zou and Hastie, 2005; James et al., 2013).  

Breiman (1995) performed a simulation experiment in which the proposed method, which is non-

negative garrote (nn-garrote), was compared with existing methods, namely subset selection and 

ridge regression. According to findings, the method of subset selection is not stable, but in contrast, 

the ridge regression ensures stability, and the nn-garrote is moderately stable. Consequently, the 

prediction accuracy of nn-garrote is reduced compared to ridge regression due to the slight 

instability it produces. He showed that in variable selection, the nn-garrote method usually beats 

rival tools, including ridge regression and subset regression. 

Cantoni et al., (2009) extended a model selection procedure based on nn-garrote in a non-

parametric way and compared it with other rival procedures. The predictive power and correct 

variable selection have remained good for the proposed approach. Similarly, another feature was 

included in the nn-garrote method to make it robust against leverage points and vertical outliers. 

The proposed approach is assessed through a simulation exercise in comparison with several other 

approaches. The proposed version often beats the existing tools, which are also supported by 

applications on real data (Gijbels and Vrinssen, 2014). 

A promising procedure is “so-called” the least absolute shrinkage and selection operator (Lasso) 

was first proposed by Tibshirani (1996). Basically, the Lasso belongs to the regularized least-

squares family and imposes an 𝐿1-penalty on the estimated coefficients. Due to its 𝐿1-penalty 

nature, the Lasso performs both automatic variable selection and continuous shrinkage 

simultaneously. Owing to this, Lasso produced the output in such a way that several coefficients 
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are exactly zero (sparsity) and hence provide an interpretable model. In general, a penalty term is 

considered good if it satisfies the oracle properties, namely sparsity, unbiasedness, and continuity. 

The properties of the good penalty function proposed by (Fan and Li, 2001) are listed below. 

 The resultant estimator promotes sparsity by setting redundant variables to zero in 

order to simplify the model. 

 Unbiasedness: When the true parameter is unknown, the resultant estimator is assumed 

to be unbiased. 

 Continuity: In order to reduce the instability in model prediction, the resultant estimator 

must be continuous. 

Through simulation and real data experiments, Tibshirani (1996) compared Lasso with subset 

selection and ridge regression and found that Lasso is considerably better than the other two 

procedures. Fan and Li (2001) argued that the Lasso estimator is inconsistent, in that it penalizes 

all the estimated coefficients uniformly, and consequently, irrelevant variables are over-penalized 

in the form of biased estimators. 

One of the main reasons for the Lasso not being consistent, i.e., lacking the oracle property (Fan 

and Li, 2001) is that it equally penalizes all the coefficients, which over-penalizes the irrelevant 

variables, leading it to be a biased estimator. Related to this drawback of Lasso, a new version of 

Lasso was proposed by Zou (2006), named Adaptive Lasso (ALasso). The ALasso penalizes 

different coefficients in the 𝐿1-norm using adaptive weights, with small weights assigned to large 

estimates and vice versa. Consequently, the selection bias tends to zero, and we attain unbiased 

and consistent estimates. Apart from this, the ALasso solution is continuous as well, which enables 
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it to fulfil the oracle properties. As shown by Zou, ALasso is more robust in terms of variable 

selection in contrast to Lasso, Ridge, and a few other techniques. 

The 𝐿1-penalty methods can have very poor performance when the correlation among the 

covariates set is sufficiently large (Zou and Zhang, 2009). The problem of multicollinearity is more 

likely to arise in the case of high-dimensional data analysis. More specifically, if the predictors are 

highly correlated to each other, then the performance of Lasso considerably deteriorates, and its 

path is also unstable, as shown in Zou and Hastie (2005). On the other hand, if there is no 

association among the features but the features’ dimension is high, the maximum sample 

association could be large (Fan and Lv, 2008). 

The penalties 𝐿1 and 𝐿2 were combined, and we called it elastic net (Enet). Owing to 𝐿1-norm and 

𝐿2-norm, Enet performs automatic variable selection and stabilizes the solution paths, respectively, 

and thus enhances the forecasting accuracy (Zou and Hastie, 2005). In presence of orthogonal 

design, the Lasso yields efficient output, as shown by Donoho et al. (1995), and the performance 

of Enet tends to the Lasso. The high correlation among the features significantly improves the 

forecasting performance of the Enet against Lasso. They carried out some simulation experiments 

under different scenarios and found that the elastic net is more robust in terms of variable selection 

than individual penalties.  

From the aforementioned discussion, we can conclude that Enet and adaptive Lasso boost the 

lasso’s performance in two distinct ways. The Enet overcomes the collinearity and adaptive Lasso 

gains the oracle properties.  

Although, following the arguments in (Zou and Hastie, 2005; Zou, 2006), it can be observed that 

the adaptive Lasso suffers from instability under high-dimensional data and the Enet does not 
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achieve an oracle property. Thus, to handle the last dual limitation, Fan and Zhang (2009) proposed 

an adaptive elastic net (AEnet) by combining the two tools, adaptive Lasso and Enet. Through a 

simulation study, they showed that the AEnet method solves the problem of collinearity better than 

other methods, leading to better performance for finite samples. 

A new method was proposed for feature selection known as smoothly clipped absolute deviation 

(SCAD), which selects a set of correct features and estimates their coefficients simultaneously and 

thus providing the confidence intervals for the estimated coefficients. This approach is 

differentiated from competitive tools in the following ways: The penalty function is symmetric, 

non-convex on (0, ∞), and has singularities at origin to yield sparse solutions. Moreover, the 

penalty function is restricted by a constant to alleviate bias and meet specific conditions to provide 

a continuous solution. Through the simulation experiments, it was shown that SCAD outperforms 

the existing methods, including Lasso and ridge regression, in variable selection and reduces the 

bias significantly. On the other hand, a high correlation among predictors deteriorates its 

performance (Fan and Li, 2001). Because of this drawback, the SCAD was extended by adding 𝐿2 

penalty: a penalty function that spurs a set of highly associated covariates to be in or out of the 

model simultaneously. By virtue of this property, the new version of SCAD allows one to select a 

group of correlated variables. The modified form is so-called elastic-SCAD (E-SCAD). Another 

approach refers to the minimax concave penalty (MCP) proposed by Zhang (2010), which attains 

an oracle property under some regularity conditions. Recently, fruitful insight has also been 

achieved via a theoretical analysis of the global solution (Kim and Kwon, 2012). Algamal and Lee 

(2015) compared the performance of a few penalization techniques using high-dimensional data. 

They found that an adjusted adaptive elastic net is considerably more consistent in selecting genes 

than the other three rival methods. 
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2.1.2. General Unrestricted Model (GUM) and Autometrics  

Big data has enough benefits for statistical modeling, but it also has problems, such as mistaking 

correlations for causes, too many false positives, ignoring sampling biases, and using the wrong 

tools (Doornik and Hendry, 2015). 

In advanced macroeconometrics, data must be analysed in a high-dimensional setting, which is 

also called "fat big data" (Doornik and Hendry, 2015). This is because the typical Local Data 

Generating Process (LDGP) is very complicated. In such circumstances, even highly expert data 

analysts and researchers are not able to overcome all the probable search paths. Luckily, 

advancements in programming software and computational capacity mean that complex models 

are no longer a limitation on the choice of modeling strategy. Instead, it is based on the valuable 

properties of the resulting model. Even though many past studies (Leamer, 1978, 1983; Lovell, 

1983; Faust and Whiteman, 1997) say that a general-to-specific (gets) search approach is not a 

good way to find empirical models, it has been shown to work. 

The Gets approach in autometrics utilises a multi-path searching method that can blend contracting 

and expanding searches, which enables it to adjust more predictors than the data points (Doornik, 

2009b). This characteristic of Gets is specifically useful for modeling unit root processes. It is also 

admirable because it chooses a set of covariates instead of the whole model. This makes it more 

adaptable and open to new ideas. 

The Autometrics were assessed against Lasso under a variety of conditions, which required data-

based association utilising huge datasets. In the first experiment, all variables were orthogonal and 

irrelevant (null model). Autometrics selected the null model accurately. Including irrelevant lags, 

the same method again specified the model correctly. In the second experiment, when 10 out of 20 
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variables were relevant, Autometrics predicted a 60% chance of keeping the covariate with the 

smallest coefficient (alpha = 0.0001). They revealed that difficulty arises when the covariates are 

associated with each other. In the presence of high correlation (multicollinearity) among features, 

the static form of Lasso was shown to have better performance in potency but worse in the form 

of high gauge (Doornik and Hendry, 2015). Later, the Autometrics performance was compared to 

statistical learning methods such as Lasso and adaptive Lasso over simulation and real-world 

datasets. Concerning the parameter estimation, Autometrics generated the least average variance 

and bias, as anticipated by the definition of the least-squares estimation approach when the right 

features are chosen. Concerning the feature selection, adaptive Lasso does better than Autometrics 

in most of the simulated schemes.  

2.2. Literature Review Related to Macroeconomic Forecasting 

There are many related studies on macroeconomic forecasting based on factor models, machine 

learning techniques, and Autometrics. Under the massive features environment, the factor-based 

models, constructed from principal component analysis developed by Stock and Watson (1999, 

2002) have been applied in numerous applications, including those of Artis et al. (2005); Bai and 

Ng (2002, 2006); Boivin and Ng (2006); Kim and Swanson (2014a, 2018); Castle et al., (2013). 

The PCA approach provides the factors very consistently for the estimation of a DFM model, as 

shown by (Stock and Watson, 2002b; and Bai and Ng, 2002). As shown by Stock and Watson 

(2002b) factor models based on PCA outperformed the univariate auto-regressions and vector 

auto-regressions in simulation forecasting exercises. The large set of predictors is summarized 

using a few estimated factors constructed by the PCA approach. Recent statistical studies have 
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shown (Stock and Watson, 1999) that using a large number of covariates can improve forecasts of 

key macroeconomic variables by a large amount. 

This framework allows the inclusion of data at different frequencies, at different vintages, and at 

different time spans, thereby yielding a specified and statistically rigorous but economical 

framework for the use of multiple data sets. PCA-based factor model yields a framework that 

permits us to remain agnostic regarding the structure of an economy by applying huge amounts of 

information in the formulation of forecasting experiments. This framework allows the inclusion of 

data at different frequencies, at different vintages, and at different periods. The new framework is 

economical and statistically rigorous for the utility of multiple datasets (Bernanke and Boivin, 

2003). Factor-based forecasts often beat the standard time series methods (Artis et al., 2005). 

For further improvement in forecasting, Bai and Ng (2008) used a factor model based on quadratic 

principal component analysis to capture non-linearity and yield a more accurate prediction than 

the existing factor model. Armah and Swanson (2010) argued that the use of suitable proxies in 

the form of observable economic variables for unobserved factors can be utilized as an alternative 

to factors in the construction of diffusion index for forecasting. If observable economic variables 

are indeed good proxies of the unobserved factors, then these proxies could be used in place of 

factors in the diffusion index model for prediction. 

Factor models are more appropriate for short-horizon forecasting, and their forecasting 

performance deteriorates with an expanding forecast window. To get more accuracy in forecasting, 

robustness, intercept correction, or differencing strategies are required in case of location shifts, as 

shown by (Castle et al., 2013). They also described the dataset generated by observable features 

or hidden factors that can be discovered from the dataset using variable selection tools, depending 
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on the situation being studied. Whatever the nature of the model, whether it is based on variables 

or factors, it can be utilized for prediction. Also, real-world evidence has shown how important it 

is to make the prediction more stable and robust when the location changes. 

To gain more improvements in forecasting accuracy, the factor models are combined with robust 

machine learning tools, namely ridge regression, boosting, bagging, the non-negative garotte, the 

elastic net, and least angle regression. The combination of forecasting models (hybrids) often 

outperforms the benchmark and PCA-based factor models (Kim and Swanson, 2014). Including 

combining approaches, the predictive power can be enhanced by adopting recursively updating 

and averaging (Castle et al., 2015). As stated by (Bai and Ng, 2008, 2009; Stock and Watson, 

2012) factor models, if combined with regularization methods, lead to an improvement in the 

forecast. As shown by Stock and Watson (2012) empirically, in the case of multiple series under 

consideration, the dynamic factor model (DFM) often beats the included shrinkage methods 

forecast. 

2.2.1. Fresh Insights from Experiments and Implications 

Kim and Swanson (2018) focused on the inspection of several factor estimation techniques, 

namely independent component analysis (ICA), principal component analysis (PCA), and sparse 

principal component analysis (SPCA), in conjunction with predictive models, where hybridization 

is assessed. Using these factor estimation techniques together with several types of penalization 

and pure machine learning tools, including elastic net, least angle regression, nonnegative garrote, 

bagging, and boosting. They came to the conclusion that combining these techniques with 

penalization and machine learning (ML) techniques makes for good forecasts of macroeconomic 

variables. 
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Swanson and Xiong (2018a,b) reported some important points regarding the construction of the 

diffusion index, as it is crucially dependent on whether the data under consideration is real-time or 

not. In practice, when they estimate the weights for diffusion indexes using real-time big data, rare 

big data models are found to be superior in contrast to simpler Dynamic Siegal-Nelson (DNS) 

models after 2010. In addition, in the presence of highly volatile interest rate regimes, ML and 

other related statistical tools are preferred, whatever the type of data to be used for model 

construction (Pederson and Swanson, 2019). 

Machine learning algorithms provide better forecasts than benchmark and factor models 

(Richardson et al., 2019). The combined forecast from the factor-based approaches and ML 

algorithms, including artificial neural networks (ANNs), outperforms the individual factor-based 

approaches and machine learning, and the application of ML algorithms to common factors is 

effective in the composite prediction (Maehashi and Shintani, 2020). 

Smeekes and Wijler (2018) showed theoretically that lasso type estimators are more robust in 

forecasting than factor type models and argued that factor type models are not always well suited 

for macroeconomic forecasting. Using the Lasso technique can lead to a more parsimonious factor 

model, which can yield better prediction compared to the traditional PCA approach (Kristensen, 

2015). 

Diebold and Shin (2019) proposed and investigated direct subset-averaging methods based on the 

partially-egalitarian Lasso structure. After analysis, they learned from the study that, unlike Lasso, 

the new methods do not require the choice of a hyperparameter. The proposed method beats the 

simple average as well as median forecasts. Kim and Co (2020) employed partial least square 

(PLS) on real data along with PCA for factor extraction from a large data set and showed that PLS-
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based forecasting models outperformed the benchmark models. As shown by Epprecht et al., 

(2019), Lasso and adaptive Lasso are more robust in forecasting as compared to Autometrics. Syed 

and Lee (2021) conducted a time series experiment, in which the dynamic factor model (DFM) 

was compared with Bayesian machine learning tools and other benchmark models in forecasting 

the core macroeconomic variables. They concluded that Bayesian machine learning tools are more 

robust compared to others. As Li and Chen (2014) encountered some interesting findings, forecast 

combination is deemed another way to boost DFM utilizing penalized estimation. When economic 

data is noisy, chaotic, and has a lot of dimensions, these highly integrated prediction methods make 

useful tools for economists. 

Castle et al. (2020) assessed the potential of PCA to identify the cointegrating relations in a 

simulation experiment using a single-equation. In such circumstances, the study explored some 

issues related to the factor model. In some particular circumstances, the long horizon relationship 

can be discovered precisely, but the design of the data matrix (both its dimension and correlation 

structure) influences which PC discovers the long horizon relationship and the precision with 

which it does so. The PCA approach is unable to identify long-term relations when the variance-

covariance matrix is contaminated by irrelevant variables (i.e., big data settings). 

Muhammadullah et al. (2022) evaluated the performance of weighted lag adaptive Lasso 

(WLALasso) with Autometrics in terms of feature selection and forecasting. The simulation 

experiments demonstrate that in the presence of strong linear dependency amidst covariates, the 

WLALasso outperformed the Autometrics and regularization tools. Two types of significance 

levels are considered, which are 1 percent and 5 percent. At a 5 percent significance level, 

Autometrics retains more irrelevant features, which in turn tends to enhance the root mean square 
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error relative to the 1 percent significance level. Similarly, Guerard et al. (2020) compared the 

forecasting performance of Autometrics with some traditional models using macroeconomic 

series. The study produced a substantive improvement in forecasting accuracy in contrast to 

traditional models. 

As argued by Desboulets (2018), sure independence screening is considered a robust method for 

linear models, but non-linearities in data distort its performance. Moreover, there is a lack of 

literature to find a conclusive tool. On the other hand, Khan et al. (2021) argued that a long list of 

tools exist in the available literature, but unfortunately, there is still no such tool available to the 

researcher that is dominant in every circumstance. More specifically, a massive body of literature 

ends up being inconclusive. A substantive development in the past literature can only be gained 

by devising an ultimate predictive model, which unluckily does not exist. So, we can assume that 

each procedure works better in certain situations (depending on how the data is generated). 

Kock and Terasvirta (2014) conducted an empirical study in which Autometrics is compared with 

linear and nonlinear models. The tools implied monthly unemployment series and industrial 

production from the four Scandinavian and G7 countries, and focused on prediction during the 

economic crisis from 2007 to 2009. The performances of these models are compared by looking 

at the forecasted models’ accuracy. The non-parametric models, namely the artificial network, 

often outperforms the linear model. Cunha et al. (2019) studied the usefulness of Autometrics and 

machine learning (ML) algorithms against benchmark models. They failed to gain any 

improvement in separate Autometrics and ML models against benchmark models. But after 

weighted combinations, these models achieve substantive improvements in forecasts and beat the 

benchmark models.  
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Westerlund et al. (2014) proposed forecast combination (FC) as an alternative to the neural 

network (NN) and linear regression (LR), the most frequent air quality predictive models. They 

performed Monte Carlo simulation experiments to evaluate the proposed method against NN and 

LR. The key findings of the study are that, unless one is lucky enough to select the right model, 

FC generally beats the LR and NN. The results were supported by the empirical findings. Mansor 

et al. (2014) performed the simulation exercise and compared the fuzzy approach with the 

automatic model (Autometrics). They inferred that fuzzy produces accurate results when there are 

fewer rules and fewer input variables. 

Ahumada and Cornejo (2016) analyzed the commodities data to determine, whether considering 

the cross-dependence improves the forecasting accuracy of individual models. The post-sample 

forecast period was reasonably unstable, and thereby dual strategies for the forecast were 

implemented, namely recursive estimations and robust approaches, in order to overcome the 

adverse impacts of potential breaks. As a result, forecast accuracy was achieved by allowing the 

interactions of the prices, i.e., joint EqCMs and DVARs. Rocha and Pereira (2019) forecast 

Brazilian industrial production one step ahead by using Autometrics and the Autoregressive model 

(AR) as benchmarks. The Autometrics chose the lags based on the saturation of the impulse 

indicator, which led to a better forecast than the AR model. 

Darne and Charles (2020) proposed bridge models to forecast the quarterly gross domestic product 

(GDP) growth rate for France. The proposed form allows for economic interpretations and is 

specified by utilizing a statistical approach based on an automatic model selection (general-to-

specific approach) and machine learning algorithm, that is, Lasso. These tools are capable of 

selecting a subset of covariates from a general model. To evaluate their forecasting performance, 
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a recursive forecast is performed. The bridge models are built through the dual model selection 

tools and provide better post-sample forecasts against the benchmark models. Finally, the 

combined forecasts of these tools disclose a remarkable forecasting performance. 

Wahid et al. (2017) proposed a Robust Adaptive Lasso (RAL) procedure that utilises the Pearson 

residuals weighting scheme approach. The weight function assigns fewer weights to such data 

points, which is inconsistent with the assumed model. It was seen that the RAL estimator retains 

the relevant variables and produces their estimates as well, in presence of outliers and 

multicollinearity. They also shed light on the oracle property of model selection and the 

consistency of the RAL approach. Based on simulation experiments and analysis of real data, it is 

clear that the proposed method is better than the other shrinkage approaches. 

2.3. Literature on Remittances, Stock Markets, and Inflation 

This subsection sheds light on the determinants of working remittance, the stock market, and 

inflation one by one. 

2.3.1. Studies Related to Workers’ Remittance 

Lianos (1997) investigated the influence of family income, migrant income, the rate of inflation, 

the rate of interest, the rate of unemployment, the exchange rate, and the number of migrants on 

remittance inflow. The interest rate and the rate of inflation have turned out to be core factors in 

remittance inflow. El-Sakka and McNabb (1999) implemented the ordinary least squares (OLS) 

approach to determine the impact of wage, level of domestic income, interest rate, and exchange 

rate on remittances inflow. They came to the conclusion that interest rates and exchange rates are 

the most important factors influencing remittance inflows. Arun and Ulka (2010) found that some 

standard variables like employment, income, and education drive the remittance inflow.  



26 
 

Ahmed et al. (2020) examined a set of variables, including gross domestic product, the transaction 

cost of sending money, stock of migrants, exchange rate stability, distance, colony, institution, and 

border on remittances inflow, and found transaction cost to be the core predictor of remittances 

inflow. Adams (2009) assessed the nexus between skill composition of migrants, poverty, interest 

and exchange rates and remittances. He found that the skill composition of migrants has a 

significant impact on remittances. In 2016, Ahmed and Zarzoso found that the remittance flow is 

adversely affected by transaction costs; revealing that there is the possibility that high costs 

become a hurdle for migrants and stop sending money to their homes or adopt the informal way 

of sending money. Silwa and Huang (2005) conducted a study to examine the factors affecting 

workers' remittances. They found that FFR, unemployment, CPI, money supply are good 

indicators. 

Mustafa and Ali (2018) employed the gravity model for examining the bilateral remittance 

indicators in case of Pakistan. The list of indicators includes GDP (Home), GDP (source), 

geographical distance, migrant stock, common official language, colonial linkages, 

unemployment, and inflation. After analysis, GDP (Home), distance, migration, common official 

language, and colonial linkages are found to be important indicators for workers' remittances. 

Similarly, Ahmed and Zarzoso (2014) used GDP (Home), GDP (recipient), geographical 

remittance, common language, transaction costs, exchange rate, domestic credit to the private 

sector, interest rate differential, unemployment rate, population density, migrant stock and political 

stability for bilateral remittances. Excluding the Unemployment rate, exchange rate, and GDP 

(source), the rest of the variables are driving bilateral remittances. Hina and Ullah (2021) 

conducted an experiment to explore the determinants of workers’ remittances in case of Pakistan. 

They used 27 variables as predictors and applied Lasso to discover the important variables that 
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affected remittance inflow. Following that, the autoregressive distributed lag model was applied 

to the variables chosen by Lasso, and short and long-horizon associations between remittance 

inflow and its true determinants were discovered.  

Aydas et al. (2005) conducted a study for Turkey in order to trace the determinants of workers’ 

remittances using a list of different predictors. They found that black market premium, interest rate 

differential, inflation rate, growth, home, and host country income levels, and periods of military 

administration are significant indicators. Laniran and Adeniyi (2015) conducted a study to find out 

the factors affecting workers’ remittances in Nigeria. They discovered that income per capita, 

inflation, domestic credit, deposit rate, exchange rate, financial deepening, interest rate differential, 

secondary school enrollment, and openness all play a significant role in remittances. Ullah et al. 

(2015) examined the determinants of workers’ remittances using VECM in context of Pakistan. 

The impact of GDP, terrorism index, and trade openness turned out to be significant. A list of 

variables’ influence is evaluated by Abbas et al. (2017), including real gross domestic product, 

interest rate differential, inflation rate, real effective exchange rate, secondary school enrollment, 

the number of migrant workers, the financial liberalization index, democracy, internal and external 

conflicts, D911 in the form of a dummy variable, law and order situation, government stability, 

corruption, and foreign debts on workers’ remittances. Using the generalised method of moments 

(GMM), it was found that almost all of the predictor variables have a substantial effect on workers' 

remittances. 

Ricketts (2011) investigated the factors that influence worker remittances and concluded that 

interest rate, inflation, unemployment, exchange rate, and GDP are all good incentives for 

remittances. Lueth and Ruiz-Arranz (2007) analyzed the nexus between workers’ remittances and 
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GDP, oil prices, the exchange rate, and CPI. They used the VEC model and concluded that the 

only factors that improve worker remittances are GDP and exchange rate. Gupta (2005) examined 

the nexus of workers’ remittances with drought, LIBOR, change in LIBOR, return on Nasdaq, the 

Asian crisis, oil prices, S11 dummy, return on Bombay Stock Exchange (BSE), exchange rate 

change, political uncertainty, geo-political tensions, rating changes, and the issuance of RIB, IMD 

bonds. After the time series analysis, we arrive at the conclusion that macroeconomic variables 

considerably promote the workers’ remittances. 

Akçay and Karasoy (2019) empirically examined the influence of macroeconomic and financial 

indicators on remittance. They employed the ARDL model and inferred that domestic credit to the 

private sector, macroeconomic instability, the official exchange rate, macroeconomic instability, 

the average GDP annual growth rate of OECD countries, and oil prices were related to remittance. 

Akcay (2021) analyzed the influence of some variables, namely GDP, oil prices, inflation, and 

foreign direct investment (FDI) on remittances outflows in Saudi Arabia. In the long run, the 

reaction of remittances outflows to oil prices is asymmetric. Similarly, Abbas (2020) seeks to 

discover the drivers of remittance. He applied the non-linear panel Pooled Mean Group (PMG) 

model and came to the conclusion that oil prices, trade openness, FDI, GDP, exchange rate, and 

financial development significantly contribute to remittances. 

2.3.2. Studies Related to Inflation 

A study was conducted by Mohanty and John (2015) to establish the relationship between inflation 

and other predictor variables, namely crude oil prices, output gap, fiscal deficit, and policy rate. 

The study applied structural vector autoregression (SVAR) to identify the relationships and 

inferred that inflation dynamics are significantly explained by all the predictors. 
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Ahmad et al., (2013) seek to estimate the nexus between inflation and several factors using a panel 

data set including low and high inflation countries. They used the ARDL model and empirical 

results postulated that imports and GDP are the main drivers of inflation in the case of low inflation 

countries, while in contrast, national expenditure and money supply are the core factors of 

inflation. 

Shah et al. (2014) assessed the relationship between the consumer price index and a set of 

covariates such as Producer price index, Gasoline, Imports, Unemployment, Electricity, 

Employment, Money Supply, Durable Goods, Farm Products, Natural Gas, Steel Mills Product, 

Crude Petroleum, Oil Production, Agriculture Products Export, Exchange Rate, Capital Goods 

Import, Food Export, Food import and Government Sector Borrowing for Pakistan. A stepwise 

regression approach was employed to capture the relevant covariates. It was found that electricity, 

food import, steel mills product, durable goods, capital goods export, government sector 

borrowing, and natural gas have an effect on inflation in Pakistan. 

Khan and Schimmelpfennig (2006) observed the factors that affect inflation in case of Pakistan. 

They applied the VECM model and found that monetary variables drive inflation in Pakistan, and 

are good leading factors for future inflation. Jiranyakul (2019) applied linear and nonlinear 

cointegration tests along with a two-step procedure and found the long run association between oil 

prices, industrial production, and inflation. 

Qayyum (2006) investigated the relationship between the price level and the factors that determine 

it. From the analysis, it emerged that the money supply enhances inflation in Pakistan. Similarly, 

Okoye et al., (2019) evaluated the nexus amid inflation and the major factors causing it in Nigeria. 

For empirical analysis, advanced statistical techniques were adopted and yielded some interesting 



30 
 

findings, namely that economic growth, external debt, money supply, exchange rate, and fiscal 

deficits are the key contributors to inflation. 

Chiaraah and Nkegbe (2014) evaluated the influence of the exchange rate along with other factors 

on inflation in Ghana. For this purpose, the error correction model was adopted and concluded that 

only GDP growth and money supply are the factors that contribute to inflation. Imimole and 

Enoma (2011) highlighted the exchange rate along with other factors and inflation nexus using the 

ARDL approach. From the empirical analysis, it is inferred that money supply, exchange rate 

depreciation, and real gross domestic product are the major factors of inflation in Nigeria. A study 

was conducted by Mbongo et al. (2014) on inflation in Tanzania. A few time series models are 

used, and the significant influence of money supply and exchange rate on inflation is discovered.  

A study was conducted by Njoku and Nwaimo (2019) to examine the impact of the exchange rate 

on inflation using the VECM approach. Findings ensured the existence of a long-term relationship 

between exchange rate and inflation in Nigeria. Furthermore, Non-oil export and money supply 

fail to drive inflation. Kayamo (2021) seeks to capture the asymmetric association between 

inflation and exchange rate in Ethiopia by using an advanced tool, referred to the non-linear ARDL 

model. The empirical findings showed that import and exchange rate are the good determinants of 

inflation. Moreover, the gross fiscal deficit of the central government, money supply, and real GDP 

growth have remained ineffective.  

Liu and Chen., (2017) assessed the association between import price index, producer’s price index, 

nominal effective exchange rate, money supply, domestic demand, foreign supply and consumer 

price index in context of China. To trace the cointegration and causality, Johansen and VECM 
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were applied respectively. As per the study result, the key output is that the exchange rate pass-

through a limited but rising influence on domestic prices and will continue to do so.   

A study was conducted by Shahbaz (2013) to establish the association between inflation and the 

factors, namely GDP, money supply, and interest rate. The study applied the ARDL approach and 

concluded that only the money supply is significantly associated with the inflation rate. 

The study was conducted by Jaffri et al. (2014) using time series data in context of Pakistan. They 

analyzed demand-side factors and supply factors for inflation by implementing the ARDL model. 

After the analysis, they found that inflation is caused by export and population (demand side) while 

import, Government Revenue, and Electricity Generation (supply-side).  

2.3.3. Studies Related to Stock Markets 

A stock exchange market is the centre of a network of transactions where buyers and sellers of 

securities meet at a specified price. The stock market plays a key role in the mobilization of capital 

in emerging and developed countries, leading to the growth of industry and commerce in the 

country, as a consequence of liberalized and globalized policies adopted by most emerging and 

developed governments. The stock market is one of the most vital components of a free-market 

economy, as it helps to manage capital for the companies from shareholders in exchange for shares 

in ownership to the investors. Stock exchanges provide businesses with the facility to raise capital 

by selling shares to investors (Black and Gilson, 1998). 

Shrestha and Subedi (2014) empirically inspected the influence of macroeconomic indicators on 

the stock market in Nepal. The study applied the OLS approach to discover the main drivers of the 

stock market. Empirical findings revealed that inflation had been affected by GDP, broad money 

supply, treasury bill, political events and policy change dummy. Tsaurai (2018) considered a list 
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of variables that determine the stock market. Empirical findings showed that FDI, Infrastructural 

Development, Savings, Trade Openness, Exchange Rate, and banks are the key factors for the 

stock market.  

Maku and Atanda (2010) analyzed the impact of the consumer price index, broad money supply, 

treasury bill rate (a proxy for interest rate), exchange rate, and real output growth on the stock 

market. The empirical analysis displayed that the Nigerian stock market is more responsive to 

changes in the inflation rate, exchange rate, real GDP, and money supply. Aamir and Shah (2018) 

analyzed the factors of stock market co-movement amid Pakistan and Asian emerging economies. 

The findings of the study demonstrate that there is long-horizon integration between the Pakistan 

stock market and the stock markets of India, China, Korea, Indonesia, Thailand, and Malaysia.  

A study was performed by Nisa and Nishat (2011) to establish the nexus between the stock market 

and a large set of predictor variables including liquidity ratio, market to book value, capital 

structure, earning per share, dividend payout ratio, firm size, share turnover ratio, size of the stock 

market, GDP growth, interest rate, money, supply, financial depth, and inflation are all explanatory 

variables under this study. Excluding liquidity ratio, dividend payout ratio, and stock market stock 

size, all variables are significantly contributing to the stock market in Pakistan.  

Shahbaz et al. (2015) attempted to discover the relevant factors of the stock market in case of 

Pakistan. By applying advanced statistical tools, they concluded that GDP, inflation, investment, 

trade openness, and financial development are the main drivers of the stock market. Eita (2012) 

explored the macroeconomic indicators of stock market prices in Namibia. The exploration was 

performed by implementing the VECM approach and inferring that the Namibian stock market is 

determined by inflation, GDP, interest rates, exchange rates, and money supply.  
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Saeed (2017) analyzed the association between government effectiveness, corruption, and political 

stability on stock market performance by utilizing the panel VEC mechanism for South Asian 

countries. The findings manifest a strong association between government effectiveness, control 

of corruption, political stability, and stock market performance. The study explored the influence 

of inflation, the exchange rate on stock market returns in Ghana. The ARDL approach was 

implemented to determine the relevant predictors. The study recommends the strong association 

between exchange rate, stock market, and inflation.  

Asaad and Marane (2020) seek to explain how terrorism, corruption, oil prices, and political 

stability influence the Iraq stock market by using the ordinary least squares tool. The results show 

that the level of corruption, terrorism activities, political stability, and oil prices are significantly 

associated with the Iraq stock exchange. Papapetrou (2001) analyzed the influence of real stock 

prices, oil prices, interest rates, real economic activity and employment for Greece. The study 

applied VAR methodology and found that oil prices are significant in driving stock price 

movements. 

Narayan and Narayan (2020) examined the impact of crude oil prices, nominal exchange rate, the 

growth rate in the nominal exchange rate, the growth rate of crude oil price, and the growth rate of 

the stock price on stock market prices. For this aim, they implemented an error correction model 

in the study. As a result, the study showed a strong association between crude oil prices, nominal 

exchange rate, and stock prices.   

2.4. Rationale of the Study 

The above-mentioned papers consider principal component analysis, independent component 

analysis, and sparse principal component analysis for the construction of the factor model. 
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However, there is also a small and growing body of literature investigating the classical approach 

(Autometrics) in the context of macroeconomic forecasting (Castle et al., 2013; Doornik and 

Hendry, 2015; Castle et al., 2020). We failed to discover any paper to date that has investigated 

the use of PLS theoretically in our context. However, the method has been applied empirically in 

various fields. Apart from this, some papers have utilized shrinkage methods like ridge regression, 

lasso, elastic net, adaptive lasso, and non-negative garrote, but none of the papers to date have used 

the updated forms of shrinkage methods in our context. Filling the gaps, this work implements 

some updated techniques of big data to increase the literature of macroeconomic forecasting 

theoretically as well as empirically. From the dimension reduction aspect, we build factor models 

with the intention of highlighting the importance of such models for macroeconomic prediction. 

In particular, while building factor models, we employ PCA and PLS. In addition, we also assess 

the last version of the classical approach (Autometrics) and the updated version of shrinkage 

methods, including E-SCAD and MCP, in terms of feature selection as well as forecasting. We 

evaluate the performance of these techniques using different data-generating processes. 

To summarize the whole discussion, our prime contribution comes in the form of a comparison of 

Autometrics with updated shrinkage methods under the simulated scenarios having 

multicollinearity, heteroscedasticity, and autocorrelation along with their application to 

macroeconomic and financial datasets. Secondly, we compare the Autometrics and updated 

shrinkage methods with factor models under the same scenarios and real data to provide a 

conclusive solution to predictability. The study goal is to produce an improved method to help 

policymakers; the improved tool is not restricted to workers’ remittances, stock market, or inflation 

(in our case) but is valid for any macroeconomic or financial data time series. 
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Chapter 3 

Methodology 

Model selection is one of the crucial steps of empirical research across all disciplines, where an 

earlier theory does not pre-define a proper specification. Economics is definitely one of them, as 

macroeconomic processes are generally high-dimensional, non-stationary, and very complex 

(Hendry and Krolzig, 2005). Typically, various solutions have been proposed to estimate the 

models. But picking a statistical model has become a very important and common part of empirical 

economic research. 

Selection procedures such as information criteria, penalization tools, and stepwise regression are 

unavoidable. There can never be a consensus regarding which model is the best because there are 

a substantial number of criteria to evaluate the models’ performance. Fortunately, over the last few 

decades, a new revolution has existed in model building, in the form of a general-to-specific 

approach, designated as gets. It is basically contained in a computer programme named PcGive. 

Computer automation of the Gets approach has provided fresh insight on how to choose a statistical 

model. 

PcGive is a computer programme that automatically selects an econometric model. It is a 

completely new approach to formulating models and is particularly devised for handling economic 

data when the correct form of the equation under analysis is unknown. In PcGive, the automatic 

model selection job is performed by Autometrics. Hence, in the next section, we provide a detailed 

explanation of Autometrics. 
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3.1. Autometrics 

The automated Gets procedure can almost be considered a "black box": a final model is chosen 

from the model that is constructed from an initial set of candidate variables. The initial model 

refers to the general unrestricted model (GUM). Mostly, a set of terminal candidate models is 

found. In such circumstances, information criteria are utilized as the tie-breaker. There is a 

possibility that we may choose the final GUM in the block-search procedure, which is the union 

of the terminal candidate models. 

The aim of the automated gets procedure is to ensure that the GUM is well specified statistically, 

which is subjected to miss-specification testing. Hereafter, diagnostic tests guarantee that all 

underlying terminal candidate models clarify these tests as well. The simplification of GUM is 

done via path search. Such a type of search is needed to tackle the complex autocorrelation that is 

often present in macroeconomic data. A simplification is acceptable provided the expelled 

variables are insignificant and the new model is a good chopping of the GUM. This last condition 

is also called encompassing the GUM or backtesting, and it is based on the F-test of the removed 

variables in linear regression models.  

In the application of Autometrics, reduction in p-value  is the principal choice to be used for 

backtesting and individual coefficient significance. There are some tools to eschew estimating 

models (Doornik, 2009b). This method is very efficient, even though the costs of statistical 

inference cannot be circumvented and the costs of searching are substantially low. A pair of 

automatic model selection frameworks that fail to fit the model within the general to specific (gets) 

methodology are: 
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1. Stepwise regression: start with the empty model and add the most significant omitted variable 

in the model. The highly insignificant variable is removed from the model that is observed at any 

stage (hence in every iteration up to one predictor can be included, and one can be deleted) 

(Barrodale and Roberts, 1973). This method is repeated till we get all the variables in the model to 

be significant, and all omitted variables must be insignificant. 

2. Backward elimination: all predictors are entered into the initial model, then predictors are 

thrown one at a time beginning with the least significant. The process is continued until all 

predictors have a p-value of 𝑝𝑎 or small.  

There are three main differences with automated versions of the above procedure: (i) lack of 

search, (ii) no backtesting; (iii) no miss-specification testing or diagnostic tracking. Figure 3.1 

reveals how the Autometrics approach works for feature selection step by step. It starts with a 

general unrestricted model and arrives at a final model that contains all the significant variables, 

which refers to LDGP.  

3.1.1. Methodology 

Autometrics is comprised of five basic stages.  

 In the first stage, the linear model known as the “so-called” General Unrestricted Model 

(GUM) is formed. 

 In the second stage, the parameters are estimated along with the statistical significance of 

the GUM. 

 In the third stage, the pre-search process is performed. 

 The fourth stage produces the tree path-search.  

 In the last stage, the final model is selected.    
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Figure 3.1: Major points of the Autometrics approach 
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Doornik (2009b) elaborated on the entire algorithm of Autometrics whereas the steps to run 

Autometrics are as follows. Start off by considering all the candidate variables in a linear model 

(GUM) and estimating them by the least-squares method, then verifying them through diagnostic 

tests. In case of insignificant coefficients, simpler models are estimated by utilizing a tree-path 

reduction search and validated by diagnostic tests. If some terminal models are detected, 

Autometrics undertakes its own union testing. Rejected models are deleted, and the union of those 

terminal models that survived induces a new GUM for another tree-path search iteration. This 

inspection procedure continues, and the terminal models are statistically assessed against their 

union. If two or more terminal models clear the encompassing tests, then the pre-chosen 

information criterion is a gateway to a final decision. 

3.2. Shrinkage Methods 

An alternative prominent approach to dealing with many features is the family of panelized 

regression methods, which comprises many techniques, but our study adopts the following updated 

forms: elastic smoothly clipped absolute deviation (ESCAD) and minimax concave penalty. 

3.2.1. Elastic Smoothly Clipped Absolute Deviation (ESCAD) 

The SCAD is non-convex and enjoys the oracle properties of sparsity, continuity, and 

unbiasedness. This technique selects useful covariates with their magnitudes asymptotically in an 

efficient way if the underlying true model is known, i.e., the oracle properties. The SCAD function 

covers all the limitations faced by existing methods like ridge and Lasso. The penalty function of 

SCAD is defined as: 

𝑝𝑘(|𝜏|) = 𝑘 {𝐼 (𝜏 ≤ 𝑘) +
(𝛾𝑘−𝜏)

(𝛾−1)𝑘
+ 𝐼(𝜏 > 𝑘)}                                            (3.1) 
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Where 𝜏 and 𝛾 are the two unknown parameters and in practice, the best pair of the dual parameters 

can be selected through generalized cross validation (GCV) and cross validation (Lu et al., 2014). 

The unknown tuning parameter k is determined by the generalized cross-validation approach, and 

the authors assumed the value of 𝛾 is 3.7, because this value works similarly to that selected by 

GCV approach (Fan and Li, 2001). As given above, the penalty function is continuous, and the 

resulting solution is given by: 

          𝑝𝑘(|𝜏|) = {

𝑘|𝜏|                                                           |𝜏| < 𝑘

−(𝜏2 − 2𝛾𝑘|𝜏| + 𝑘2) 2(𝛾 − 1)⁄                     𝑘 < |𝜏| ≤ 𝛾𝑘

  (𝛾 + 1)𝑘2 2                                         ⁄ |𝜏| > 𝛾𝑘
                        

}                            (3.2)   

The tuning parameters can be induced by the data-driven technique. The limitation of SCAD is 

that it selects only one variable from a correlated set of predictors. Zeng and Xie (2014) extended 

the SCAD by augmenting 𝐿2 penalty and called it elastic SCAD (E-SCAD). Mathematically, it 

can be written as: 

                                       𝑝𝑒𝑛k(|𝜏|) = ∑ 𝑝k(|𝜏|)
𝐷
𝑑=1  + λ2𝑝 ∑ 𝛼𝑑

2𝑚
𝑑=1                                       (3.3)   

In Equ. 3.3, the first term shows the SCAD penalty, and the second term is basically the ridge (𝐿2) 

penalty. Due to 𝐿2 penalty, the E-SCAD achieves an additional property along with oracle 

properties, that is, the penalty function should spur highly correlated features to be in or out of the 

model simultaneously. Hence, the proposed form selects the whole group of correlated predictors 

rather than one variable. 
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3.2.2. Minimax Concave Penalty 

Zhang (2010) proposed a minimax Concave Penalty (MCP), which increases the convexity of the 

penalized loss in sparse regions considerably given specific thresholds for feature selection as well 

as unbiasedness. The MCP is described as: 

         𝑆𝑀𝐶𝑃(𝑡; 𝑘) = {

𝑘𝑡 −
𝑡2

2𝛾
                                                       𝑖𝑓 |𝑡| ≤ 𝛾𝑘

1

2
𝛾𝑘2                                                            𝑖𝑓 |𝑡| > 𝛾𝑘 

 

}                       (3.4) 

Where both 𝛾 and k are the tuning parameters, and can be selected through cross validation or 

information criteria, namely, the Akaike information criterion (AIC) or Bayesian information 

criterion (BIC) (Breheny and Huang, 2011). The tuning parameter (𝛾 > 0) diminishes the 

maximum concavity under the following restrictions like unbiasedness and selection of features: 

𝜌(𝑡; 𝑘) = 0                   ∀ 𝑡 ≥  𝛾𝑘           𝜌(0+; 𝑘) = 𝑘 

∑𝑝𝑑

𝑚

𝑑=1

(|𝛼𝑑|; 𝑘; 𝛾) 

The dual tuning parameters in concave penalty regression play a key role in terms of controlling 

the amount of regularization. Likewise, the concavity of the MCP penalty considerably evades the 

sparse convexity by diminishing the maximal concavity. In 2010, the author showed that a rise in 

regularization parameter values leads to more convexity and an almost unbiased penalties. The 

penalty function of MCP typically belongs to the quadratic spline function.  

3.2.3. Adaptive Elastic net (AEnet) 

The lasso estimator has been designed to improve the performance of the ridge estimator. It is 

certainly useful, particularly when most coefficients of the true model are zero. Albeit, ridge 
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regression performs better than lasso when a correlation between predictors is high (Zou and 

Hastie, 2005).  

To overcome the shortcomings of lasso and ridge regression, the elastic net method was proposed 

by (Zou and Hastie, 2005) and used both lasso and ridge penalties simultaneously. The penalty 

function of the elastic net (EN) is given by: 

      𝛼̂𝐸𝑁= (1 + 
𝑘2

𝑛
) argmin ∑ (𝑦𝑐 − 𝛼𝑜 − ∑ 𝛼𝑑𝑥𝑐𝑑

𝑚
𝑑=1 )𝑛

𝑐=1  + 𝑘2∑ 𝛼𝑑
2𝑚

𝑑=1  + 𝑘1∑ |𝛼𝑑|
𝑚
𝑑=1                 (3.5)   

Using a cross-validation approach, the tuning parameters 𝑘1 and 𝑘2 control the relative 

significance of 𝐿1 norm and 𝐿2 norm penalty. Both Lasso and Ridge regression, the special forms 

of the elastic net, have already been discussed in section 1.1. In this sense, the elastic net contains 

two features: shrinkage and variable selection. Besides, a detailed explanation of this 

aforementioned equation is given in section 1.1.  

To estimate 𝛼̂𝐸𝑁, (Zou and Hastie, 2005) proposed an algorithm called least angle regression 

(LAR). This is the fact that EN does not satisfy an oracle property like Adaptive Lasso, albeit it 

performs better than Adaptive Lasso (Algamal and Lee, 2015).  Later on, the ideas of the Adaptive 

Lasso and the Elastic net regularization were combined to achieve further improvement known as 

Adaptive Elastic-net (AEnet) and is defined as: 

  𝛼̂𝐴𝐸𝑛𝑒𝑡 = (1 + 
𝑘2

𝑛
) argmin ∑ (𝑦𝑐 − 𝛼𝑜 − ∑ 𝛼𝑑𝑥𝑐𝑑

𝑚
𝑑=1 )𝑛

𝑐=1  + 𝑘2∑ 𝛼2𝑑
𝑚
𝑑=1  + 𝑘1 ∑ 𝜔̂𝑑|𝛼𝑑|

𝑚
𝑑 =1       (3.6) 

𝜔̂𝑑 (d=1,2, …, m) are adaptive data-driven weights. According to Zou and Zhang (2009), initially, 

we estimate the 𝛼̂𝐸𝑁by using an EN method as given in Equ. (3.5) and then utilizing it while 

computing the weights as 𝜔̂𝑑 = |𝛼̂𝑑
𝐸𝑁|−𝜏, here 𝜏 is constant and should be positive. Thus, AEnet, 

the modified form of elastic net, attains an oracle property. 
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3.3. Factor Models 

The notion of factor models also called diffusion index entails the utility of properly extracted 

hidden common factors that have been distilled from a huge set of features as inputs in the 

identification of the parsimonious models. To be more specific, suppose X  is a N × P dimensional 

matrix of data points and define N × k dimensional matrix of latent factors.  

The forecasting tools, particularly, the factor models are delineated in depth by Stock and Watson 

(2006). In the below-detailed discussion of factor model methodology, we follow Stock and 

Watson (2002a):  

                                                           X = F 𝜑′ + 𝜀                                                                 (3.7)   

Where 𝜀 represents the random error matrix, 𝜑′ is the P × k coefficients matrix and F is a factor 

matrix of N × k dimension. 

We construct the following forecasting model based on the work of Bai and Ng (2006a), Kim and 

Swanson, (2014a) and Stock and Watson (2002a, b): 

                                                 𝑌𝑡+ℎ  = 𝐹𝑡𝛾𝐹  + 𝑒𝑡+ℎ                                                                  (3.8)   

Where 𝑌𝑡+ℎ is an outcome variable to be forecasted, h shows the forecast horizon, 𝐹𝑡 is the vector 

of factors with a dimension, distilled from F in equation (3.7). The associated coefficient 𝛾𝐹 is a 

vector of unknown parameters and 𝑒𝑡+ℎ is the random error.  

3.3.1. Principal Component Regression (PCR) 

The formulation of a factor-based model needed the following two steps.  In the first step, we estimate k 

latent factors, let’s say 𝐹̂ by using P observable covariates. To gain convenient dimension 

reduction, k is supposed to be much smaller than P (i.e., k ≪ P). In the second step, we estimate 

𝛾̂𝐹, by utilizing data at hand with 𝑌𝑡 and 𝐹̂𝑡. Subsequently, an out-of-sample forecast is constructed. 
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Kim and Swanson (2014a) utilized the PCA approach to achieve estimates of the unobserved 

factors, known as principal components (PCs). The latent PCs are uncorrelated and obtained by 

using the data projection in the direction of maximal variance, and naturally, the PCs are ordered 

based on their variance contributions. The first PC reflects the direction of the maximal variance 

in the data, the second PC reflects the direction that explains the maximal variance in the rest of 

the orthogonal subspace and so on.  

This approach is most frequently used in the literature of factor analysis because PCs are easily 

derived via the use of singular value decompositions (Stock and Watson, 2002a; Bai and Ng, 2002, 

2006b). However, the performance of the factor model is more likely to be worse in the prediction 

if the incorporated factors are dominated by excluding factors (Boivin and Ng, 2006). Similarly, 

Tu and Lee (2019) stated that PCA imposes only the factor structure for X and does not consider 

the outcome variable. It indicates, no matter what the outcome to predict. By dint of neglecting the 

outcome variable at the time of factors, extraction induces an inefficient forecast of the outcome 

variable. The solution to this problem is given in the next section. 

3.3.2. The Partial Least Squares (PLS) Method 

This study looks at another method known as partial least squares (PLS) regression developed by 

Wold (1982). This method is appropriate in a data-rich environment and may be considered as an 

alternative to PCA-based factor models. Unlike the PCA method, the PLS identifies new factors 

in a supervised way that is, it makes use of the response variable to identify new factors that not 

only approximate the old factors well but are also related to the response variable. Roughly 

speaking, the PLS approach attempts to find the directions of maximum variance that help explain 

both the response variable and explanatory variables. The PLS for an outcome variable is 

motivated by a statistical model as follows: 



45 
 

                                                           𝑌𝑡  = 𝑥𝑡𝛾𝑃  + 𝑒𝑡                                                                   (3.9)   

Where 𝑥𝑡 = [𝑥1,𝑡 , 𝑥2,𝑡 , … , 𝑥𝑛,𝑡]
′ is n × 1 vector of covariates at time t = 1, …, T, 𝛾𝑃 is n × 1 vector 

of associated coefficients, and 𝑒𝑡 is the disturbance term. Kim and Ko (2020) argued that PLS type 

models are useful especially when there are a large number of covariates. Instead of using a model 

given in (3.7), one may adopt another data dimension reduction approach through the following 

linear regression with Z × 1 vector of components 𝑠𝑡 = [𝑠1,𝑡 , 𝑠2,𝑡 , … , 𝑠𝑍,𝑡] as follows; 

                                                                   𝑌𝑡  = 𝑥𝑡𝑤𝜏 + 𝑒𝑡                                                       (3.10)  

                                                                        𝑌𝑡  = 𝑠𝑡𝜏 + 𝑒𝑡 

We define 𝑠𝑡,  

                                                                         𝑠𝑡 = 𝑤′𝑥𝑡 

Where w = [𝑥1, 𝑥2, …, 𝑥𝑍] is the n × Z matrix of each column, 𝑤𝑧 = [𝑤1,𝑧, 𝑤2,𝑧 , … , 𝑤𝑛,𝑧]
′, z = 1, 

2, …, Z, denote the vector of weights on covariates for z factors or components and 𝜏 is the Z × 1 

vector of PLS coefficients. We may use the following equation for predicting the k steps ahead 

model that is 𝑦̂𝑡+𝑘, k = 1, 2, …, m.  

                                                                    𝑦̂𝑡+𝑘  =  𝛾̂𝑘
′𝑥𝑡                                                                                                          (3.11)   

3.4. Selection of Tuning Parameter(s) 

A cross-validation strategy is frequently used to determine the tuning parameter in order to achieve 

the best prediction solution. It requires randomly dividing the input data into two halves: a training 

data set and a testing data set (or hold-out set). The training data set is used to fit the model, and 

the fitted model is used to predict answers for the validation data set. The validation set error rate, 
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which is often determined using MSE in the context of a numerical answer, is used to estimate the 

test error rate. Using a k-fold CV, the K-fold cross-validation method randomly divides data 

collection into k groups, or folds, of roughly similar size; often, k = 10 or 5. 

To achieve an accurate prediction, the cross-validation process is frequently used for the selection 

of tuning parameters, also called hyperparameters. In general, it requires the data to be partitioned 

into two parts; training dataset and testing dataset (validation set). The former part is utilized for 

model fitting and then this estimating model is utilized for prediction for the validation set. The 

test error is obtained by using validation set error rate, which is usually computed in the form of a 

mean square error (MSE). The k-fold cross validation (CV) approach involves the random splitting 

of data into k folds or categories of the same size, utilizing a k-fold CV. In this study, 10-fold 

cross-validation is executed to determine the optimal value of the tuning parameter(s). The 

remaining data is used for model fitting, with the first fold acting as a validation set, where the 

𝑀𝑆𝐸𝑖 is computed on the held out fold. This process is repeated k times, with each validation set 

involving a distinctive set of legs (observations). In this way, the test error is estimated as MSE1, 

MSE2, ..., MSEk. The k-fold CV estimate is achieved by averaging the values of 𝑀𝑆𝐸𝑖.  

                                                     𝐶𝑉(𝑘) = 
1

𝑘
∑ 𝑀𝑆𝐸𝑖
𝑘
𝑖=1                                                            (3.12) 

3.5. Simulation Study  

In statistics and econometrics, it is imperative to investigate the performance of statistical models 

theoretically and empirically. Empirically, nobody knows the true data generating process, and the 

researchers often fail to determine whether the underlying method retains the correct variables or 

not. On the other hand, the true DGP is known in the Monte Carlo simulation experiments, which 

enables us to compare different econometric techniques and arrive at correct conclusion. The one 
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that is close to the true DGP is the winner (preferenced comparatively). This study seeks to 

describe both aspects of advanced statistical and machine learning techniques. Our simulation 

experiment involves three main scenarios, namely simulations on a data generating process (DGP) 

with (i) multicollinearity, (ii) heteroscedasticity, (iii) autocorrelation. In each case, we vary the 

DGP characteristics such as the correlation structure among predictors, the level of variance of the 

error term, and the level of correlation between the current and lagged value of the error term. 

Simulation as a method of analysis has the main disadvantage of being specific to the setup. 

3.5.1. Data Generating Process 

The question we try to answer, which procedure is best in feature selection as well as forecasting 

using big data in cases of non-orthogonal structure. First, we write the model, which is general 

data generating process and later try to match it with the specific assumptions.  

                                                              Y = 𝑋𝑖𝛽 +  𝜇                                                                         (3.13)   

The set of predictors 𝑋1, 𝑋2,…, 𝑋𝑃 are generated from multivariate normal distribution as 𝑋𝑖 ~ 

N(0, ∑). The same data generating process (DGP) was used by (Wahid et al., 2017; Smeekes and 

Wijler, 2018) as mentioned in (3.13) for artificial data generation. 

In this DGP, the total number of predictors (candidate variables) is ‘P’. We have to divide the 

predictor set into two parts, i.e., relevant and irrelevant variables. The relevant variables are merely 

used to generate the DGP of Y and the coefficients of irrelevant variables are set to zero.   

In this study, we are interested using different scenarios such as multicollinearity, 

heteroscedasticity, and autocorrelation, and for each scenario, a separate procedure for DGP is 

illustrated below.  
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3.5.1.1. SCENARIO-I 

Candidate set of features are correlated 

In this scenario, we consider the DGP, where the set of features are correlated (non-orthogonal) 

with each other. In real world phenomena, inclusion of feature in the model is based on two criteria; 

(i) correlated with response variable and, (ii) correlated with the included covariate in the model. 

Considering the second condition, the correlation should be weak, but in fact, it is not always the 

case. Particularly in economics and finance, the set of predictors is often highly associated with 

each other in a rich data environment. The presence of moderate or high multicollinearity adversely 

influences the inference and prediction of the estimated coefficients (Ali et al., 2021). Thus, in a 

simulation exercise, it is important to concentrate on the different levels of correlation among 

covariates and discover the performance of the aforementioned methods to hold the true DGP. 

The procedure of DGP is same as discussed in (3.13), except, that here we generate the pairwise 

correlation between the predictors i.e., 𝑥𝑚 and 𝑥𝑛 as 𝑐𝑜𝑣(𝑥𝑚, 𝑥𝑛) =  ∑
|𝑚−𝑛|. The population 

covariance matrix is produced in the following way: 

∑𝑃 =

[
 
 
 
 
1 . . . ∑|𝑛−𝑚|

. . . . .

. . . . .

. . . . .
∑|𝑚−𝑛| . . . 1 ]

 
 
 
 

 

It is a fact that the variance-covariance matrix contains variance and covariance together. However, 

by altering the parameter ∑𝑃 we obtain different correlation structures. In our work, we assume 

values for ∑𝑃 ∈ {0.25, 0.5, 0.9} as followed by Xiao and Xu (2015).  

3.5.1.2. SCENARIO-II 

Error term is Heteroscedastic 

Like multicollinearity and autocorrelation, heteroscedasticity is also one of the main problems of 

OLS estimators. In presence of heteroscedasticity, the OLS estimators remain unbiased and 
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consistent but their efficiency (standard error) is negatively influenced. In other words, we can say 

that the OLS estimators are no longer the best linear unbiased estimators (BLUE) but remain only 

linear unbiased estimators (LUE). In such circumstances, the OLS produces invalid statistical tests 

like ‘t’ and ‘F’ i.e., we cannot achieve satisfactory results. 

In this scenario, we set the DGP in such a way that error terms are generated as heteroscedastic. 

More specifically, here we rely on the examination of heteroscedasticity i.e., that the variance of 

the error term is generated non constantly and alters across data points by σ𝑘. In the real world, it 

is not feasible to find the orthogonal structure of variables, therefore, in the same DGP, the set of 

regressors is introduced as correlated (moderate case of multicollinearity i.e., ∑𝑃 = 0.5).  

                                                         E(𝜇𝑡
2) = σ𝑘

2                                                                       (3.15) 

In equ. (3.15), we split the variance 𝛔𝟐 of the error term into two components i.e., 𝛔𝟏
𝟐 and 𝛔𝟐

𝟐. Let 

we have ‘n’ observations, and divide them into two parts as n1 and n2. We set the variance of n1 

(first part of data) as 𝛔𝟏
𝟐 and the variance of n2 (second part of data) as 𝛔𝟐

𝟐, followed the same 

procedure by Khan (2022). Our simulation experiments assume three different cases of 

heteroscedasticity as following: 

𝜋𝑖 = (𝛔𝟏/𝛔𝟐), where i = 1, 2, 3 as 𝜋𝑖 ∈ {0.1/0.3, 0.2/0.6, 0.3/0.9}. 

3.5.1.3. SCENARIO-III 

Error Term is Autocorrelated  

Under various circumstances, the researchers fail to fit the model that is specified correctly. In 

other words, it can be said that miss-specification is a very common issue, which researchers often 

face, particularly, in economics. The miss-specified model produces an issue of autocorrelation, 

which is always problematic. Moreover, measurement error is also more likely to be observed in 

the variables, which can cause the problem of autocorrelation. Using the same model (3.13), we 
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generate the correlation between current and residual lag (autocorrelation) and symbolized by 𝜌. 

Mathematically, the autocorrelation is generated as: 

                                                     𝜇𝑡 = 𝜌𝜇𝑡−1  + 𝜀𝑡                                                                 (3.16) 

Where                                                         

                                                         𝜀𝑡 ~ N(0, 1) 

Our experiments assume low, moderate, and high cases of autocorrelation such as 𝜌 ∈ {0.25, 0.5, 

0.9}. All three cases of autocorrelation are examined for different sample sizes and different sets 

of candidate variables (relevant and irrelevant). As disclosed in the recent last scenario that 

orthogonal set of regressors is not feasible for the same response variable, however in addition to 

autocorrelated errors, we introduce the moderate multicollinearity among regressors in the DGP 

(because in the real world, the set of predictor variables are often correlated each other, particularly 

in the field of economics and finance). 

3.5.2. Measures of Methods Performance 

There are a few ways to evaluate the models' performance in terms of variable selection, in which 

we are adopting the potency and gauge. Gauge is delineated as the empirical null retention 

frequency that how often irrelevant covariates are retained. The comparison of Autometrics with 

penalization methods is evaluated in the form of correct zero identification interpreted as potency 

and incorrect zero identification referred to as Gauge (Doornik and Hendry, 2015).   

Mathematically, the gauge can be expressed as: 

𝑝̂𝑖𝑟𝑟/𝑝𝑖𝑟𝑟 
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𝐸 (
𝑝̂𝑖𝑟𝑟
𝑝𝑖𝑟𝑟
) → 𝛼 

The gauge indicates the irrelevance part which corresponds to nominal significance level (α), 

where 𝑝𝑖𝑟𝑟 shows a set of irrelevant covariates in the initial model and 𝑝̂𝑖𝑟𝑟 shows the set of 

estimated irrelevant covariates (Pretis et al., 2018).  

Potency is defined as; 

𝑝̂𝑟𝑒𝑙/𝑝𝑟𝑒𝑙 

𝐸 (
𝑝̂𝑟𝑒𝑙
𝑝𝑟𝑒𝑙
) → 1 

This indicates that the relevant part 𝑝𝑟𝑒𝑙 shows the set of relevant covariates in the initial model 

and 𝑝̂𝑟𝑒𝑙 point to the set of estimated relevant covariates, so the expected potency tending towards 

the value 1 is evidence of a good model (Pretis et al., 2018). Furthermore, we repeat each 

simulation experiment 1000 times and the expected potency and gauge evaluate the best method 

relatively. For analysis, we have relied on several packages like gets, glmnet, ncvreg, pls, caret. 

forecast and Metrics under the R programming language.  

To compare the predictive abilities of all procedures, we split the data set in such a way that 80 

percent of the data is utilized for models’ training and the remaining data are utilized for models’ 

assessment. We repeat the process H = 1000 times. The average of root mean square error (RMSE) 

and mean absolute error (MAE) is calculated over ‘H’ to evaluate the predictive performance. 

Through these two criteria, we can achieve the prediction accuracy of all methods. The smaller 

values of MAE and RMSE indicate a better forecast comparatively. Their mathematical 

expressions can be illustrated as 
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                                                    MAE = mean(|𝑌𝑡 − 𝑌̂𝑡|)                                                      (3.17) 

                                                RMSE = √𝑚𝑒𝑎𝑛(𝑌𝑡 − 𝑌̂𝑡)
2
                                                    (3.18) 

In equations (3.17) and (3.18), 𝑌𝑡 and 𝑌̂𝑡 indicate the actual and forecast values respectively. 

At the end, to summarize the entire chapter, three different aspects are discussed: methods, 

simulation setup and measures of method evaluation. The next chapter consists of two main 

subsections: variable selection and out-of-sample forecasting. In the first subsection, we evaluate 

and compare the performance of machine learning/shrinkage methods with Autometrics using 

Huge Big data. For that purpose, first we perform the simulation experiments under different 

conditions, namely multicollinearity, heteroscedasticity and autocorrelation with varying sample 

sizes and sets of candidate variables (relevant and irrelevant variables) to evaluate the underlying 

methods. After completing the simulation exercises, we check their performance using real dataset 

as well. In the second subsection, we seek to assess the predictive power of the proposed factor 

model based on PLS against various existing techniques. To achieve this, we have to perform 

simulation studies under the aforementioned scenarios, and then carry out a real data analysis for 

evaluating the models.  
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Chapter 4 

Results and Discussion 

In order to achieve the first goal of the study, we divided this chapter into two major subsections. 

The first subsection provides a comprehensive analysis of the automatic model selection tools, 

including E-SCAD, MCP, AEnet and Autometrics in different DGPs using huge big data (P<N). 

We also provide their systematic comparison in terms of feature selection, the mainstream tools 

utilized in both Monte Carlo simulations as well as economics and finance. Similarly, the second 

subsection yields an extensive inspection of the earlier mentioned tools in different DGPs using 

fat big data (P>N). In practice (real world phenomena), we do not know which subset of predictors 

is important for "y" (response variable). Thus, it is hard to do this kind of practice directly with 

real data. The simulation experiments let us compare different statistical tools in different DGPs 

and find out how well they work in certain situations. 

Statistical learning has two fundamental goals: ensuring high prediction accuracy and discovering 

relevant predictive features. Selection of features selection is particularly important when the true 

underlying model has a sparse representation. Identifying significant features will raise the 

prediction power of the estimated model (Zou, 2006). 

4.1. Comparison of Feature Selection Procedures using Huge Big Data 

There is a list of tools that exist in the literature for feature selection, but the current study only 

focuses on the updated versions of these tools. In general, we compare their performance under 

different scenarios where the number of observations is more than the number of covariates. 
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4.1.1. Design of Experiments and Results 

For simulation experiments, three kinds of scenarios are considered by allowing the 

multicollinearity, heteroscedasticity, and autocorrelation conditions with varying sample sizes and 

a varied number of covariates. To be more specific, the random finite samples of sizes 80, 160, 

and 320 are drawn from the Gaussian distribution with 1,000 times replications. Moreover, we 

assume two sets of candidate variables with varying numbers of relevant (p) and irrelevant 

predictors (q) respectively, as presented in Fig. 4.1. 

 

 

 

 

 

 

Figure 4.1: Distribution of candidate variables into relevant (p) and irrelevant (q) 

We set the true parameters for P=50 and P=70, including intercept as, 

𝛽 = (3, 1, … ,1⏟  ,
15

0,… ,0⏟  
35

) 

𝛽 = (3, 1, … ,1⏟  ,
20

0,… ,0⏟  
50

) 

Here, we check the performance of variable selection procedures under two different sets of 

regressors. In the dual sets, we set the intercept to be 3, and the candidate set of regressors is halved 

into relevant and irrelevant variables. The first set contains 15 relevant variables, to which we 

assign the value 1 (to each variable) and 35 irrelevant variables, having no effect on DGP (we 

Candidate 
variables

P = 50

p = 15 q = 35

P = 70

p = 50 q = 20
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assign zero to the coefficient of each variable), whereas the second set contains 20 relevant and 50 

irrelevant variables. A detailed explanation regarding DGP is provided in the preceding chapter. 

In order to evaluate the performance of all tools, two criteria will be used, i.e., potency and gauge. 

The Monte Carlo simulation results are discussed in Tables 4.1-4.3. 

4.1.2. SCENARIO-I 

The candidate set of features is correlated  

This scenario considers the DGP with a set of correlated covariates. In real-world phenomena, very 

often, collinearity among the set of regressors is observed, whether it is weak, moderate, or strong. 

In such circumstances, it is crucial to estimate the desired effect of the unknown parameter through 

the OLS approach (Ali et al., 2021). Thus, in simulation experiments, it is of great importance to 

focus on the various levels of correlation among the set of covariates and discover the performance 

of variable selection methods to hold the true DGP. Furthermore, the details regarding the DGP 

are given in the previous chapter. 

Table 4.1 depicts the findings of simulation in the cases of low, moderate, and high 

multicollinearity for different combinations of observations (n) and covariates. The performance 

of all methods improves with increasing sample sizes. In case of low multicollinearity, the potency 

associated with all methods is one under most simulated scenarios, clearly revealing that they 

retain all the relevant variables under low multicollinearity, as depicted by Fig. 4.2(a). The MCP 

and Autometrics keep 4% of irrelevant variables, AEnet keeps 1% of irrelevant variables, and E-

SCAD keeps 12% of irrelevant variables. It means that E-SCAD substantially over-specifies the 

model by retaining a huge set of irrelevant variables. As the number of variables gets longer (p = 

70), we do not see any big changes in the models' results.  
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The moderate level of multicollinearity does not adversely influence the potency. In terms of 

gauge, it tends to improve the performance of AEnet and Autometrics in such a way that they hold 

fewer irrelevant variables, but adversely affects the MCP performance, particularly in a small 

sample. The gauge associated with E-SCAD has been considerably improved. When we take the 

number of candidate variables, i.e., p = 70, the gauge of MCP and Autometrics deteriorate under 

the small size. 

As shown in Figure 4.2(a,b), the high collinearity among the set of covariates substantially distorts 

the performance of all methods. More specifically, the gauges associated with MCP, E-SCAD and 

Autometrics have significantly deteriorated, as portrayed in Fig. 1 (see Appendix B). But as we 

increase the sample size, the E-SCAD and Autometrics become stable in terms of potency and 

gauge. In comparison, the AEnet holds more than 93 percent of the correct variables with a perfect 

gauge (zero percent). 
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Table 4.1. Variable Selection under Multicollinearity from Monte Carlo Simulation 

Models ∑ = 0.25, P = 50 ∑ = 0.25, P = 70 

n = 80/160/320 Potency Gauge Potency Gauge 

MCP 1/1/1 0.04/0.02/0.02 0.99/1/1 0.05/0.02/0.01 

E-SCAD 1/1/1 0.12/0.10/0.10 1/1/1 0.11/0.10/0.09 

AEnet 0.99/1/1 0.01/0/0 0.99/1/1 0.02/0/0 

Autometrics 0.99/1/1 0.04/0.01/0.01 0.99/1/1 0.04/0.01/0.01 

n = 80/160/320 ∑ = 0.50, P = 50 ∑ = 0.50, P = 70 

MCP 0.99/1/1 0.06/0.02/0.01 0.99/1/1 0.09/0.01/0.01 

E-SCAD 1/1/1 0.10/0.07/0.06 0.99/1/1 0.09/0.06/0.06 

AEnet 0.99/1/1 0/0/0 0.99/1/1 0/0/0 

Autometrics 0.99/1/1 0.02/0.01/0.01 0.98/1/1 0.06/0.01/0.01 

n = 80/160/320 ∑ = 0.90, P = 50 ∑ = 0.90, P = 70 

MCP 0.68/0.94/0.99 0.19/0.22/0.09 0.59/0.92/0.99 0.16/0.23/0.09 

E-SCAD 0.91/0.98/0.99 0.13/0.09/0.03 0.89/0.98/0.99 0.12/0.09/0.03 

AEnet 0.93/0.98/0.99 0/0/0 0.91/0.98/0.99 0/0/0 

Autometrics 0.63/0.89/0.99 0.06/0.02/0.02 0.61/0.87/0.99 0.17/0.03/0.01 
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                                                                           (b) 

Figure 4.2: Potency under low and high cases of multicollinearity, when n = 80 and P = 50(a) and 

P = 70(b). 
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4.1.3. SCENARIO-II 

Error Variance is Heteroscedastic 

Heteroscedasticity seriously affects the OLS estimation process. In presence of heteroscedasticity, 

the OLS estimators are consistent and unbiased but suffer from high standard errors. In other 

words, it can be inferred that the OLS estimators are solely LUE (linear unbiased estimator) and 

do not remain BLUE. In such situations, the t and F tests are unreliable and do not provide 

satisfactory results. The DGP is already elaborated in the preceding chapter. 

Table 4.2 presents the simulation results by varying heteroscedasticity along with sample size and 

a candidate set of variables (both relevant and irrelevant). 

In case of heteroscedastic errors, the potency of all included methods is one in almost all scenarios, 

which certainly manifests that they hold all the active covariates. In terms of gauge, the MCP and 

E-SCAD keep more inactive variables and thereby over-specify the model. As we increase the 

sample size, the gauge of E-SCAD dramatically decreases. Similarly, AEnet and Autometrics 

avoid irrelevant variables and very precisely identify the true model. 
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Table 4.2. Variable selection under Heteroscedasticity from Monte Carlo Simulation 

Models 𝝅𝟏 = 0.1/0.3, P = 50 𝝅𝟏 = 0.1/0.3, P = 70 

n=80/160/320 Potency Gauge Potency Gauge 

MCP 1/1/1 0.08/0.02/0.01 1/1/1 0.01/0.01/0.01 

E-SCAD 1/1/1 0.10/0.11/0.11 1/1/1 0.09/0.10/0.10 

AEnet 1/1/1 0/0/0 1/1/1 0/0/0 

Autometrics 1/1/1 0.01/0.01/0.01 1/1/1 0.04/0.01/0.01 

n=80/160/320 𝝅𝟐 = 0.2/0.6, P = 50 𝝅𝟐 = 0.2/0.6, P = 70 

MCP 1/1/1 0.02/0.01/0.02 1/1/1 0.01/0.01/0.01 

E-SCAD 1/1/1 0.10/0.10/0.12 1/1/1 0.09/0.10/0.10 

AEnet 1/1/1 0/0/0 1/1/1 0/0/0 

Autometrics 1/1/1 0.01/0.01/0.01 1/1/1 0.04/0.01/0.01 

n=80/160/320  𝝅𝟑 = 0.3/0.9, P = 50  𝝅𝟑 = 0.3/0.9, P = 70 

MCP 1/1/1 0.02/0.01/0.02 1/1/1 0.01/0.01/0.01 

E-SCAD 1/1/1 0.10/0.10/0.10 1/1/1 0.09/0.10/0.10 

AEnet 1/1/1 0/0/0 1/1/1 0/0/0 

Autometrics 1/1/1 0.01/0.01/0.01 0.99/1/1 0.04/0.01/0.01 
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4.1.4. SCENARIO-III 

The error term is Autocorrelated (moving average) 

In many cases, the researchers fail to fit the model which is accurately specified. In general, we 

can say that miss-specification is a very frequent problem that researchers often face, especially in 

the field of economics. The miss-specified model leads to the problem of autocorrelation, which 

is always problematic. Probably, the existence of measurement errors also causes the problem of 

autocorrelation. 

Table 4.3 portrays the simulation’s output by varying Autocorrelation, sample size, and several 

covariates (both active and inactive). Low (0.25), moderate (0.5) and high (0.9) autocorrelation 

levels are considered here. In case of low and moderate Autocorrelation, the methods have often 

found all the right variables, but E-SCAD and MCP retain a huge set of irrelevant variables and 

thereby over-specify the model. In contrast, the AEnet and Autometrics provide the best results 

under almost all combinations of n and p. In other words, AEnet and Autometrics avoid the 

irrelevant variables and correctly specify the true model. By increasing the length of covariates, 

the E-SCAD gauge is slightly improved but adversely affects the gauge of Autometrics and AEnet. 

In the same way, it has a negative impact on the MCP gauge, particularly if there is a low 

autocorrelation case. 

In the case of high Autocorrelation, the potency of E-SCAD is close to one and shows satisfactory 

performance, but the potency of the competitive methods is far away from one, which 

demonstrates that they miss the important variables. The same method i.e., E-SCAD collapsed 

under gauge. As shown in Fig 4.3(a, b), Autometrics and AEnet performed better in gauge and 

frequently held less than 5% of inactive variables. Expanding the covariates' window adversely 
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affects AEnet and Autometrics performance in terms of gauge, but has a positive influence on E-

SCAD and MCP.  

Table 4.3. Variable selection under Autocorrelation from Monte Carlo Simulation 

Models 𝝆 = 0.25, P = 50 𝝆 = 0.25, P = 70 

n=80/160/320 Potency Gauge Potency Gauge 

MCP 1/1/1 0.04/0.02/0.02  1/1/1 0.04/0.02/0.02 

E-SCAD 1/1/1 0.13/0.10/0.10             1/1/1 0.12/0.09/0.09 

AEnet 0.99/1/1 0.01/0/0  0.99/1/1 0.02/0/0 

Autometrics 0.99/1/1 0.01/0.01/0.01 0.99/1/1 0.05/0.01/0 

n=80/160/320 𝝆 = 0.50, P = 50 𝝆 = 0.50, P = 70 

MCP 0.99/1/1 0.06/0.02/0.02 0.99/1/1 0.08/0.02/0.01 

E-SCAD 1/1/1 0.15/0.10/0.10 0.99/1/1 0.14/0.09/0.09 

AEnet 0.99/1/1 0.02/0/0 0.99/1/1 0.03/0/0 

Autometrics 0.99/1/1 0.01/0.01/0.01 0.99/1/1 0.05/0.01/0.01 

n =80/160/320 𝝆 = 0.90, P = 50 𝝆 = 0.90, P = 70 

MCP 0.91/0.99/1 0.16/0.12/0.05 0.82/0.99/1 0.14/0.11/0.05 

E-SCAD 0.98/0.99/1 0.28/0.23/0.15 0.96/0.99/1 0.26/0.22/0.13 

AEnet 0.94/0.99/0.99 0.04/0.01/0 0.92/0.99/0.99 0.06/0.01/0 

Autometrics 0.82/0.98/0.99 0.03/0.01/0.01 0.76/0.97/0.99 0.10/0.01/0.01 
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     Figure 4.3: Potency and Gauge across when 𝜌 = 0.90, n = 80 and P = 50(a) and P = 70(b). 
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4.2. Comparison of Feature Selection Procedures using Fat Big Data 

The development of econometric tools presents various challenges to modern data. The first 

challenge comes from the large data environment. Fat big data, where the length of predictors (p) 

greatly exceeds the number of observations (n) (Ye et al., 2021). For example, the volume of the 

dataset observed in economic research and application grows very swiftly and is more likely to 

affect economic policies as well as other economic activities (Eisenstein and Lodish, 2002). Hence, 

economic data indicates a useful asset with an under-utilized opportunity for the formulation of 

economic policy and its importance for the economic and social state of the nation. There is a wide 

range of sources that have economic and financial data with a huge set of features, including retail, 

real sector (output), prices, online trade, insurance, advertising, risk management, portfolio 

optimization, effect of education on earnings, labor market dynamics, money, exchange rates, 

interest rates, fiscal sector, and stock market dynamics (Syed and Lee, 2021, Belloni et al., 2013; 

Fan et al., 2014). So, the accurate analyses of economic data in the data-rich environment (many 

predictors) has become an emerging problem in the recent era of advanced econometrics. 

This section analyzes the performance of variable selection methodologies, previously described 

in section 4.1, under different simulation experiments utilizing the Fat Big data. We also provide 

a systematic comparison of all these tools in terms of feature selection. 

4.2.1. Design of Experiments and Results 

For the simulation experiments, three types of scenarios are examined by allowing the 

Multicollinearity, Heteroscedasticity, and Autocorrelation problems to be altered by altering the 

number of predictors and sample size. We split the two candidate sets of predictor variables into 

50 and 70, and further divided them into relevant (p) and irrelevant (q) predictor variables, as 
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depicted in Fig. 4.4. Aside from this, the random samples of sizes 40, 80, and 100 are drawn 1,000 

times from a Gaussian distribution.  

 

 

 

 

 

Figure 4.4: Distribution of candidate variables into relevant and irrelevant variables. 

We set the true parameters, including intercept in the following way: 

𝛽 = (3, 1, … ,1⏟  ,
25

0,… ,0⏟  
105

 ) 

𝛽 = (3, 1, … ,1⏟  ,
30

0,… ,0⏟  
120

 ) 

In the above, the intercept is set to be 3; the first set assumes 25 relevant and 105 irrelevant 

variables, and the second set assumes 30 relevant and 120 irrelevant variables while generating the 

DGP. Further expalanation regarding the DGP is provided in the preceding chapter. The results of 

the Monte Carlo simulation experiments are provided in Tables 4.4-4.6. 

4.2.2. SCENARIO-I 

Table 4.4 depicts the findings of simulation in the case of low, moderate, and high multicollinearity 

for different combinations of observations (n) and covariates. The potency of all methods is 

improving with increasing sample size, as depicted in Fig. 4.4(a, b).  

Candidate 
variables

P = 130

p = 25 q = 105

P = 150

p = 30 q = 120
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In case of low multicollinearity, the potency associated with Autometrics is comparatively high 

under n = 40, but with expanding the sample size, the potency of E-SCAD switches to one. As we 

take into consideration more covariates (P =150), the performance of MCP and E-SCAD 

improved, whereas the Autometrics and AEnet were adversely influenced. In terms of gauge, the 

Autometrics performance is best amongst the competitors. Furthermore, in Fig 4.5(a, b), it is noted 

that the MCP potency is very low at n = 40, but as the sample size increases, its potency tends to 

rise rapidly against the rival methods. The moderate level of multicollinearity negatively affects 

the potency of Autometrics and AEnet, and enhances the potency of MCP and E-SCAD. With 

expanding the covariate window to 150, all methods gain improvement in potency.  

The case of high collinearity among the set of covariates exerts a negative influence on MCP and 

Autometrics related potency, whereas E-SCAD achieves a substantial improvement in potency. 

Moreover, the AEnet potency improved when n = 40, but the relative performance (against the 

moderate case of multicollinearity) did not improve under n = 80 and 100. Increasing the length 

of covariates (relevant and irrelevant) enhances the potency of all methods. Moreover, the AEnet 

beats its rival counterparts in gauge. Across the three levels of multicollinearity, it is noted that by 

switching from ∑ = 0.25 to ∑ = 0.50 (∑ shows multicollinearity), the potency of all methods 

improved, except for Autometrics. Only E-SCAD improved in potency when we changed to ∑ = 

0.90, as shown in Fig. 4.6(a), but the gauge of autometrics is close to zero in Fig. 4.6(b). 
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Table 4.4. Variable Selection under Multicollinearity from Monte Carlo Simulation 

Models ∑ = 0.25, P = 130 ∑ = 0.25, P = 150 

n= 40/80/100  Potency Gauge Potency Gauge 

MCP 0.109/0.461/0.898 0.014/0.054/0.049 0.158/0.743/0.999 0.019/0.062/0.030 

E-SCAD 0.507/0.971/1 0.143/0.105/0.083 0.594/0.999/1 0.146/0.099/0.094 

AEnet 0.516/0.915/0.971 0.012/0.0006/0 0.412/0.852/0.942 0.016/0.0004/0 

Autometrics 0.558/0.988/0.999 0.0004/0/0 0.450/0.996/1 0.0005/0/0 

n= 40/80/100 ∑ = 0.50, P = 130 ∑ = 0.50, P = 150 

MCP 0.189/0.524/0.726 0.025/0.057/0.051 0.255/0.651/0.906 0.034/0.056/0.028 

E-SCAD 0.688/0.985/0.999 0.121/0.059/0.031 0.757/0.998/0.999 0.111/0.045/0.030 

AEnet 0.409/0.859/0.947 0.015/0.0004/0 0.513/0.919/0.974 0.011/0.0002/0 

Autometrics 0.426/0.910/0.993 0.0002/0/0 0.448/0.954/0.997 0.0006/0/0 

n= 40/80/100 ∑ = 0.90, P = 130 ∑ = 0.90, P = 150 

MCP 0.186/0.23/0.236 0.014/0.005/0.003 0.205/0.244/0.253 0.013/0.004/0.002 

E-SCAD 0.999/0.999/1 0.03/0.018/0.017 0.999/1/1 0.028/0.020/0.019 

AEnet 0.627/0.761/0.796 0/0/0 0.687/0.808/0.840 0/0/0 

Autometrics 0.359/0.476/0.524 0/0.0001/0 0.368/0.495/0.545 0.001/0/0 
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                                                                                    (a) 

 

 

                                                                                   (b) 

Figure 4.5: Computation of Potency across sample sizes when ∑ = 0.25, P = 130(a) and P = 

150(b). 

0.109

0.507 0.516
0.558

0.461

0.971
0.915

0.988

0.898

1
0.971 0.999

MCP E-SCAD AEnet Autometrics

P
o

te
n

cy

40 80 100

0.158

0.594

0.412
0.45

0.743

0.999

0.852

0.9960.999 1
0.942

1

MCP E-SCAD AEnet Autometrics

P
o
te

n
cy

40 80 100



69 
 

 

                                                                           (a) 

(b) 

Figure 4.6: Computation of Potency and gauge across low, moderate, and high levels of 

multicollinearity when n = 40 and P = 130(a), P=150(b) 
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4.2.3. SCENARIO-II 

Table 4.5 presents the simulation results by varying heteroscedasticity along with sample size and 

many covariates (both relevant and irrelevant). The potency of all techniques is growing with the 

expansion of the data window, as portrayed in Fig. 4.7. In case of low heteroscedastic errors, it can 

be seen that the potency of Autometrics is close to one if the number of observations is 40, but by 

increasing the number of observations to 100, both E-SCAD and Autometrics retain all the relevant 

variables. As we consider more candidate variables (both relevant and irrelevant), which in turn 

negatively influence the potency of all methods, particularly in case of n = 40 and 80. In contrast, 

Autometrics shows remarkable performance in gauge whatever the number of predictors (P = 130 

or 150). For n = 80 and 100, the AEnet also reduces the gauge to zero. 

Increasing the level of heteroscedasticity exerts a huge negative influence on the potency of 

Autometrics, and more specifically, under the number of 150 predictors, the E-SCAD yields good 

output, as shown by Fig. 4.8. In terms of gauge, the Autometrics performed very well. Fig. 4.9(a, 

b) shows that the gauge associated with Autometrics is lower than that of competitor methods. 
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Table 4.5. Variable selection under Heteroscedasticity from Monte Carlo Simulation 

Models 𝝅𝟏 = 0.1/0.3, P = 130 𝝅𝟏 = 0.1/0.3, P = 150 

n = 40/80/100 Potency Gauge Potency Gauge 

MCP 0.259/0.781/0.983 0.034/0.034/0.002 0.196/0.567/0.851 0.025/0.055/0.022 

E-SCAD 0.776/0.999/1 0.102/0.002/0.0001 0.692/0.995/0.999 0.116/0.015/0.002 

AEnet 0.543/0.995/0.999 0.009/0/0 0.428/0.967/0.999 0.014/0/0 

Autometrics 0.999/1/1 0/0/0 0.975/1/1 0/0/0 

n = 40/80/100 𝝅𝟐 = 0.2/0.6, P = 130 𝝅𝟐 = 0.2/0.6, P = 150 

MCP 0.261/0.759/0.98 0.035/0.037/0.003 0.195/0.563/0.834 0.026/0.054/0.026 

E-SCAD 0.776/0.999/1 0.104/0.004/0.001 0.692/0.994/0.999 0.116/0.019/0.003 

AEnet 0.540/0.989/0.999 0.009/0/0 0.435/0.953/0.997 0.032/0/0 

Autometrics 0.924/1/1 0/0/0 0.645/1/1 0.0001/0/0 

n = 40/80/100  𝝅𝟑 = 0.3/0.9, P = 130  𝝅𝟑 = 0.3/0.9, P = 150 

MCP 0.257/0.729/0.972 0.034/0.043/0.005 0.192/0.549/0.812 0.025/0.055/0.031 

E-SCAD 0.770/0.999/1 0.105/0.009/0.003 0.694/0.992/0.999 0.118/0.028/0.007 

AEnet 0.532/0.975/0.997 0.010/0.00003/0 0.421/0.929/0.989 0.015/0/0 

Autometrics 0.657/1/1 0.0003/0/0 0.518/0.999/1 0.0002/0/0 
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Figure 4.7: Computation of Potency across sample sizes when 𝝅𝟏 = 0.1/0.3, P = 130 

 

Figure 4.8: Computation of Potency across all levels of Heteroscedasticity when n = 40 and P = 

130. 
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                                                                          (a) 

 

                                                                          (b) 

Figure 4.9: Computation of Potency across all levels of Heteroscedasticity when n = 40, P = 130 

and P=150.  
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4.2.4. SCENARIO-III 

Whatever the level of Autocorrelation, the potency of E-SCAD is often higher than the competitive 

counterparts for a different number of covariates we use (P = 130/150), as shown in Fig. 4.10. It 

can be observed in Fig. 4.10 that the potency of Autometrics rapidly tends to one asymptotically. 

Moreover, it can be seen in Fig. 4.11 that all methods' performance gets worse, as we raise the 

level of Autocorrelation. In terms of gauge, the Autometrics showed good performance, which 

circumvents the inclusion of irrelevant variables. The AEnet is a good competitor to Autometrics 

in gauge, particularly when n = 80 and 100. 
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Table 4.6. Variable selection under Autocorrelation from Monte Carlo Simulation 

Models 𝝆 = 0.25, P = 130 𝝆 = 0.25, P = 150 

n = 40/80/100 Potency Gauge Potency Gauge 

MCP 0.245/0.648/0.903 0.032/0.057/0.031 0.186/0.522/0.717 0.025/0.057/0.053 

E-SCAD 0.750/0.997/0.999 0.115/0.050/0.034 0.689/0.984/0.999 0.122/0.060/0.035 

AEnet 0.516/0.915/0.971 0.118/0.0001/0 0.410/0.850/0.941 0.014/0.0004/0 

Autometrics 0.446/0.936/1 0.001/0/0 0.441/0.887/0.987 0.0001/0/0 

n = 40/80/100 𝝆 = 0.50, P = 130 𝝆 = 0.50, P = 150 

MCP 0.250/0.628/0.868 0.032/0.058/0.041 0.183/0.513/0.688 0.025/0.059/0.057 

E-SCAD 0.752/0.996/0.999 0.118/0.063/0.048 0.690/0.980/0.998 0.120/0.071/0.046 

AEnet 0.514/0.900/0.959 0.009/0.0002/0 0.406/0.832/0.922 0.015/0.0006/0 

Autometrics 0.427/0.866/0.976 0.001/0/0 0.408/0.806/0.956 0.0002/0/0 

n = 40/80/100 𝝆 = 0.90, P = 130 𝝆 = 0.90, P = 150 

MCP 0.234/0.524/0.634 0.030/0.061/0.068 0.174/0.450/0.562 0.023/0.058/0.065 

E-SCAD 0.730/0.952/0.982 0.131/0.145/0.148 0.671/0.926/0.970 0.132/0.133/0.134 

AEnet 0.459/0.766/0.829 0.016/0.002/0.001 0.337/0.701/0.781 0.017/0.003/0.001 

Autometrics 0.321/0.503/0.573 0.001/0.0002/0.0002 0.315/0.474/0.542 0.0002/0.0001/0 
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         Figure 4.10: Computation of Potency across the sample sizes when 𝜌 = 0.25, P = 130. 

 

 

Figure 4.11: Computation of Potency across all levels of Autocorrelation when n = 40, P = 130. 
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Chapter 5 

Forecast Comparison and Discussion 

 

5.1. Out-of-Sample Forecasting Comparison using Huge Big Data 

Prediction is a very difficult art, especially when it involves the future‖ -Neils Bohr (Nobel 

Laureate Physicist).  

The prediction of macroeconomic variables is very important in macroeconomic studies, monetary 

policy analysis, and environmental economics. Accurate forecasts lead to a better understanding 

of dynamic economy mechanisms (Bai and Ng, 2008), more effective monetary policies (Bernanke 

et al. 2005), and improved portfolio management and hedging strategies (Rapach et al. 2010). In 

the data-rich environment of today, economists and those who make decisions keep an eye on 

many macroeconomic series. 

Low-dimensional models often include some pre-specified economic covariates, for instance, 

vector auto-regression, and therefore have a complication in capturing the dynamic and complex 

patterns that contain huge panels of time series (Li and Chen, 2014). An under-specified model 

produces biased results when important variables are missing. There is a strong need to propose 

updated statistical models and analytical frameworks with the goal of expanding the low-

dimensional counterparts to make better predictions. 

5.1.1. Simulation Results 

This section uses the same design of experiments, i.e., the number of observations and the number 

of variables (p and q), which were explained in detail in section 4.1. 

The forecast comparison results derived from Monte Carlo experiments are presented in Tables 

5.1-5.3. All methods are improving their performance by augmenting the number of observations, 
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as shown in Fig. 5.1. On the other hand, when we add more irrelevant variables, the methods 

become less good at making predictions. 

5.1.1.1. SCENARIO-I 

In presence of low multicollinearity, it can be observed in Fig. 2(a) (see Appendix B) that the 

forecasting performance of MCP is superior to other rival methods across different sample sizes 

when the number of predictors is 50. Although we expand the variable window to 70, the MCP 

remains dominant except for the small sample case, where E-SCAD outperforms the competitive 

methods. Increasing the level of multicollinearity among variables, E-SCAD produced a better 

forecast for a small sample size, but as the sample size increased, the MCP produced a more 

satisfactory forecast than its competitor counterparts, as revealed by Fig. 2(b) (see Appendix B). 

Considering the case of extreme collinearity, it can be seen from Fig. 2(c) (see Appendix B) that 

the PLS-based factor model is superior, in particular at n = 80, while asymptotically, E-SCAD 

outperformed its rival counterparts. Furthermore, as shown in Fig. 5.2(a and b), factor models 

improved in forecasting accuracy by increasing the levels of multicollinearity. Similarly, the E-

SCAD showed improvement in accuracy in Fig. 5.2(b). 
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Table 5.1. Forecast Comparison under Multicollinearity from Monte Carlo Simulation 

Models ∑ = 0.25, P = 50 ∑ = 0.25, P = 70 

n=80/160/320 RMSE MAE RMSE MAE 

MCP 1.123/1.055/1.027 0.908/0.848/0.821 1.205/1.069/1.031 0.971/0.858/0.825 

E-SCAD 1.135/1.066/1.034 0.917/0.856/0.827 1.195/1.086/1.040 0.961/0.872/0.831 

AEnet 1.237/1.131/1.070 0.996/0.911/0.856 1.304/1.152/1.083 1.058/0.925/0.867 

Autometrics 1.316/1.091/1.027 1.065/0.874/0.822 1.316/1.091/1.042 1.065/0.874/0.834 

FM_PCA 3.517/3.210/2.829 2.839/2.576/2.260 4.493/4.305/3.966 3.623/3.458/3.173 

FM_PLS 1.528/1.200/1.090 1.235/0.963/0.871 1.921/1.321/1.126 1.551/1.059/0.901 

n=80/160/320 ∑ = 0.5, P = 50 ∑ = 0.5, P = 70 

MCP 1.145/1.056/1.027 0.925/0.848/0.821 1.318/1.069/1.032 1.062/0.858/0.825 

E-SCAD 1.112/1.058/1.030 0.898/0.849/0.824 1.168/1.074/1.035 0.940/0.862/0.827 

AEnet 1.282/1.147/1.077 1.031/0.924/0.862 1.341/1.176/1.093 1.088/0.943/0.874 

Autometrics 1.156/1.062/1.027 0.931/0.853/0.821 1.473/1.091/1.041 1.191/0.874/0.833 

FM_PCA 2.583/2.053/1.705 2.088/1.644/1.365 3.933/3.334/2.700 3.174/2.677/2.164 

FM_PLS 1.368/1.161/1.080 1.105/0.932/0.864 1.595/1.248/1.108 1.287/1.001/0.886 

n=80/160/320 ∑ = 0.9, P = 50 ∑ = 0.9, P = 70 

MCP 1.484/1.157/1.042 1.198/0.930/0.832 1.764/1.261/1.058 1.424/1.013/0.846 

E-SCAD 1.201/1.060/1.019 0.968/0.851/0.814 1.291/1.080/1.021 1.040/0.867/0.817 

AEnet 1.327/1.180/1.099 1.067/0.950/0.879 1.422/1.227/1.129 1.152/0.985/0.903 

Autometrics 4.363/1.795/1.031 3.528/1.443/0.825 6.589/2.501/1.053 5.333/2.006/0.843 

FM_PCA 1.169/1.099/1.075 0.943/0.883/0.859 1.318/1.212/1.165 1.065/0.974/0.932 

FM_PLS 1.138/1.078/1.043 0.919/0.865/0.834 1.184/1.095/1.053 0.959/0.880/0.842 

Noted: Bold values indicate a better forecast. 
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Figure 5.1: Out of sample root mean squares error across sample sizes, where forecasts are 

obtained from various models when ρ = 0.25(a) and P = 50. 
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                                                                              (b)   

Figure 5.2: Out of sample root mean squares error across the levels of Multicollinearity, where 

forecasts are obtained from various models when n = 80(a), n = 320(b), and P = 70. 

5.1.1.2. SCENARIO-II 

In presence of all schemes of heteroscedasticity, the performance of MCP is often better than all 

of its competitor counterparts. Whatever the number of predictors to be used, whether 50/70, the 

accuracy of the MCP forecast is maintained and is dominant all the time. Apart from this, when 

the number of predictors is equal to 50, Autometrics provides a similar forecast as MCP in large 

samples. In addition, Fig. 3(a, b and c) (see Appendix B) shows the improvement in the accuracy 

level with expanding the training data window, whatever the values of σ we consider here, i.e., 

0.2/0.6 or 0.3/0.9. Although switching from 0.2/0.6 to 0.3/0.9, the RMSE associated with each tool 

tends to increase. This increase was also observed when the triplet size of heteroscedastic errors 

was considered, as well as when the candidate set variables (relevant and irrelevant) were varied 

in Fig. 4(a and b) (see Appendix B).  
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Table 5.2. Forecast Comparison under Heteroscedasticity from Monte Carlo Simulation 

 

Models 𝝅𝟏 = 0.1/0.3, P = 50 𝝅𝟏 = 0.1/0.3, P = 70 

n=80/160/320 RMSE MAE RMSE MAE 

MCP 0.313/0.306/0.303 0.253/0.246/0.242 0.321/0.307/0.303 0.260/0.246/0.242 

E-SCAD 0.319/0.309/0.304 0.258/0.248/0.243 0.331/0.311/0.305 0.267/0.249/0.243 

AEnet 0.331/0.318/0.313 0.268/0.255/0.250 0.354/0.326/0.314 0.286/0.262/0.251 

Autometrics 0.318/0.308/0.303 0.256/0.248/0.242 0.339/0.313/0.305 0.274/0.250/0.244 

FM_PCA 3.373/3.055/2.648 2.723/2.452/2.115 4.382/4.197/3.847 3.534/3.374/3.078 

FM_PLS 0.399/0.327/0.311 0.322/0.262/0.249 0.625/0.347/0.317 0.504/0.278/0.253 

n=80/160/320 𝝅𝟐 = 0.2/0.6, P = 50 𝝅𝟐 = 0.2/0.6, P = 70 

MCP 0.627/0.613/0.606 0.507/0.492/0.484 0.643/0.614/0.607 0.520/0.492/0.485 

E-SCAD 0.637/0.617/0.609 0.515/0.496/0.486 0.659/0.621/0.609 0.532/0.498/0.487 

AEnet 0.662/0.636/0.623 0.537/0.510/0.499 0.683/0.644/0.625 0.550/0.518/0.500 

Autometrics 0.636/0.617/0.606 0.512/0.496/0.484 0.667/0.625/0.610 0.548/0.501/0.488 

FM_PCA 3.410/3.101/2.704 2.753/2.489/2.160 4.412/4.233/3.883 3.556/3.402/3.106 

FM_PLS 0.798/0.654/0.623 0.646/0.525/0.498 1.107/0.693/0.634 0.892/0.556/0.507 

n=80/160/320 𝝅𝟑 = 0.3/0.9, P = 50  𝝅𝟑 = 0.3/0.9, P = 70 

MCP 0.941/0.920/0.909 0.761/0.739/0.727 0.965/0.921/0.910 0.780/0.739/0.728 

E-SCAD 0.954/0.926/0.913 0.771/0.743/0.730 0.985/0.930/0.914 0.795/0.746/0.730 

AEnet 1/0.956/0.936 0.810/0.768/0.749 1.027/0.969/0.939 0.828/0.779/0.751 

Autometrics 0.954/0.926/0.909 0.768/0.744/0.727 1.017/0.938/0.916 0.823/0.752/0.733 

FM_PCA 3.478/3.176/2.791 2.809/2.549/2.230 4.467/4.281/3.941 3.601/3.440/3.153 

FM_PLS 1.181/0.983/0.935 0.956/0.789/0.748 1.507/1.040/0.951 1.215/0.834/0.760 

Noted: Bold values indicate a better forecast. 
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5.1.1.3. SCENARIO-III 

In presence of low and moderate autocorrelation, the MCP shows outstanding performance in 

terms of forecasting, particularly when we increase the sample size, as shown by Fig. 5.3(a, b). In 

contrast, when n = 80, the E-SCAD produced a remarkable forecast. In the case of extreme 

autocorrelation, E-SCAD outperformed the rival techniques under both 80 and 160 data points, 

but as we further augmented the sample to 320, the MCP induced a more accurate forecast. All 

these results are supported by Fig. 5.3(c). Furthermore, it can be noticed from Fig. 5.4(a and b) 

that the predictive ability of all tools distorts with increasing the level of Autocorrelation. As we 

progress from moderate autocorrelation to extreme autocorrelation, the Autometrics efficacy is 

more negatively affected than the MCP, E-SCAD, and PLS-based factor models, as shown in Fig. 

5.4(a). 
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Table 5.3. Forecast comparison under Autocorrelation from Monte Carlo Simulation 

 

Models 𝝆 = 0.25, P = 50 𝝆 = 0.25, P = 70 

n=80/160/320 RMSE MAE RMSE MAE 

MCP 1.167/1.078/1.056 0.943/0.866/0.845 1.254/1.110/1.065 1.012/0.892/0.851 

E-SCAD 1.175/1.091/1.062 0.952/0.877/0.850 1.241/1.124/1.074 1.002/0.904/0.859 

AEnet 1.250/1.174/1.104 1.012/0.944/0.886 1.353/1.192/1.118 1.094/0.957/0.895 

Autometrics 1.192/1.100/1.064 0.963/0.884/0.851 1.392/1.126/1.071 1.121/0.908/0.858 

FM_PCA 3.520/3.222/2.858 2.848/2.589/2.288 4.569/4.274/3.952 3.695/3.429/3.165 

FM_PLS 1.568/1.231/1.119 1.268/0.990/0.896 1.972/1.367/1.166 1.591/1.101/0.932 

n=80/160/320 𝝆 = 0.50, P = 50 𝝆 = 0.50, P = 70 

MCP 1.324/1.222/1.185 1.073/0.987/0.949 1.448/1.234/1.197 1.177/0.993/0.957 

E-SCAD 1.318/1.238/1.191 1.068/0.996/0.954 1.382/1.248/1.206 1.122/1.005/0.965 

AEnet 1.409/1.310/1.230 1.140/1.056/0.985 1.510/1.33/1.249 1.225/1.070/1.001 

Autometrics 1.330/1.222/1.187 1.080/0.985/0.951 1.630/1.255/1.202 1.318/1.011/0.964 

FM_PCA 3.570/3.279/2.916 2.889/2.624/2.333 4.607/4.247/4.021 3.716/3.381/3.219 

FM_PLS 1.720/1.392/1.258 1.389/1.121/1.005 2.108/1.503/1.303 1.702/1.206/1.042 

n=80/160/320 𝝆 = 0.90, P = 50 𝝆 = 0.90, P = 70 

MCP 2.953/2.408/2.364 2.449/1.997/1.936 3.608/2.538/2.368 2.961/2.100/1.940 

E-SCAD 2.714/2.380/2.366 2.267/1.976/1.937 3.039/2.498/2.370 2.525/2.069/1.941 

AEnet 2.812/2.560/2.435 2.346/2.117/1.981 3.081/2.568/2.515 2.549/2.116/2.051 

Autometrics 3.250/2.480/2.358 2.693/2.049/1.930 4.273/2.594/2.394 3.494/2.146/1.957 

FM_PCA 4.165/3.871/3.563 3.387/3.126/2.868 5.051/4.735/4.506 4.111/3.810/3.609 

FM_PLS 2.941/2.579/2.476 2.439/2.122/2.020 3.341/2.796/2.544 2.749/2.293/2.072 

Noted: Bold values indicate a better forecast.  
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                                                                           (c) 

Figure 5.3: Out of sample root mean squares error across sample size, where forecasts are 

computed from different models when rho = 025(a), 0.5(b), 0.9(c) and P = 70 
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                                                                              (b) 

Figure 5.4: Out of sample root mean squares error across the levels of Autocorrelation, where 

forecasts are obtained from various models when n = 80(a), 320(b) and P = 70. 

5.2. Out-of-Sample Forecasting Comparison using Fat Big Data 

Recent developments in the collection of macroeconomic data have led to a great focus on Big 

Data. An accurate analysis can be performed if we extract the important information suitably from 

a huge set of features. Albeit, the performance alters depending on the data dimension and 

estimation tool to be applied as well. Failure in dimensional reduction induces poor output because 

of redundant variables. Factor models are frequently employed for predictive modelling in a data-

rich environment, building on Stock and Watson's (2002a) seminal work on forecasting through 

diffusion index (DI). Stock and Watson (2012) showed that forecasting via factor models is more 

accurate than existing forecasting tools like autoregressive forecasts, bagging, pretest methods, 

empirical Bayes, and Bayesian model averaging. They inferred that the DI is an effective approach 

to reducing the regression dimension and that it appears to be hard to enhance this performance 
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without introducing severe changes to the predictive model. Recently, the factor models that are 

extended for forecasting aim to include those of Hansen and Liao (2019), Bai and Liao (2016), 

Fan et al. (2016a), Fan et al. (2016b), and Fan et al. (2017). 

In addition to the DI methodology, sparse regression is another family of tools utilized for 

dimension reduction and forecasting and is specifically well-known in the econometrics and 

statistics fields. The sparse regression tools attempt to keep the relevant features and force the 

coefficients of irrelevant features to zero. The advantage of such tools is that they can deal with 

the curse of dimensionality, which has been a problem in macroeconomic time series for a long 

time. However, the predictions that statistical tools make have also been used to make good 

monetary policies (Bernanke et al., 2005; Syed and Lee, 2020).  

5.2.1. Simulation Results 

This section uses the same design of experiments, i.e., the number of observations and the number 

of variables (p and q) as elaborately delineated in Section 4.2.  

The forecast comparison output obtained from Monte Carlo exercises is reported in Tables 5.4-

5.6. The entries in bold show the best performance of the underlying model. 

5.2.1.1. SCENARIO-I 

It is observed that the performance of all procedures improves with increasing data points, as 

shown by Fig. 5.5(a, b, and c). It is also clear from Figure 5.5 that there is a slight impact of sample 

size on PCA-based factor models. Furthermore, it is clear from Figure 5.6(a, b) that regardless of 

how large the candidate variables window is and how large the correlation between them is, all 

methods are effective. 
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Considering the cases of low and moderate multicollinearity, the forecasting performance of 

Autometrics is superior to that of its competitive counterparts. But, in the case of a small sample, 

the RMSE and MAE associated with Autometrics are slightly better than the PLS-based factor 

approach. It clearly indicates that the PLS-based factor approach is strongly competitive if n is 

small. Similarly, regardless of the considerable improvement in RMSE and MAE achieved by E-

SCAD with increasing the sample size, the forecasting performance is not as satisfactory as 

Autometrics. Moreover, by increasing the number of relevant and irrelevant variables, Autometrics 

remains dominant with the lowest RMSE and MAE. In presence of extreme multicollinearity, the 

factor approach based on PLS outperformed its rival counterparts in terms of the lowest forecast 

error. Although, according to both error criteria, Autometrics stood as a good competitor.  
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Table 5.4. Forecast comparison under Multicollinearity from Monte Carlo Simulation 

Models ∑ = 0.25, P = 130 ∑ = 0.25, P = 150 

n = 40/80/100  RMSE MAE RMSE MAE 

MCP 6.86/5.41/2.243                        5.602/4.375/1.811 6.043/3.319/1.208 4.970/2.681/0.975 

E-SCAD   5.80/2.00/1.355 4.741/1.620/1.095 4.899/1.364/1.257 4.008/1.098/1.016 

AEnet 5.049/2.628/2.106 4.113/2.123/1.698 6.414/3.303/2.559 5.267/2.669/2.057 

Autometrics 4.192/1.312/1.189 3.419/1.058/0.957 3.267/1.222/1.145 2.673/0.986/0.924 

PLS_FM 4.530/3.213/2.727 3.678/2.589/2.197 5.260/3.786/3.295 4.309/3.062/2.623 

PCA_FM 6.475/5.781/5.695 5.725/4.685/4.589 6.512/6.398/6.342 5.318/5.166/5.104 

n = 40/80/100 ∑ = 0.50, P = 130 ∑ = 0.50, P = 150 

MCP 7.918/4.414/3.007 6.505/3.564/2.429 6.512/3.192/1.748 5.353/2.579/1.406 

E-SCAD 5.380/2.093/1.581 4.414/1.688/1.276 4.118/1.548/1.326 3.375/1.247/1.070 

AEnet 6.310/3.231/2.493 5.163/2.615/2.002 5.129/2.524/2.038 4.204/2.029/1.645 

Autometrics 4.394/1.469/1.221 3.282/1.186/0.983 3.178/1.325/1.159 2.599/1.069/0.934 

PLS_FM 4.414/2.533/2.151 3.60/2.043/1.732 5.285/3.037/2.519 4.330/2.458/2.029 

PCA_FM 6.724/6.310/6.186 5.544/5.107/4.977 7.809/7.255/7.076 6.402/5.854/5.698 

n = 40/80/100 ∑ = 0.90, P = 130 ∑ = 0.90, P = 150 

MCP 5.031/3.784/3.638 4.101/3.057/2.932 4.123/3.253/3.146 3.372/2.636/2.541 

E-SCAD 2.699/2.344/2.307 2.215/1.895/1.856 2.222/2.024/2.016 1.817/1.630/1.629 

AEnet 3.342/2.425/2.233 2.731/1.957/1.798 2.791/2.090/1.938 2.888/1.682/1.563 

Autometrics 2.709/1.982/1.757 2.219/1.605/1.418 2.437/1.788/1.620 2.001/1.443/1.307 

PLS_FM 1.797/1.347/1.274 1.472/1.086/1.027 2.080/1.426/1.326 1.706/1.143/1.069 

PCA_FM 3.125/2.306/2.149 2.571/1.865/1.742 4.037/2.881/2.685 3.293/2.326/2.162 

Noted: Bold values indicate a better forecast. 
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                                                                        (c) 

Figure 5.5: Out of sample root mean squares error across sample sizes, where forecasts are 

computed from various models when rho = 0.25, rho = 0.5, rho = 0.90 and P = 130. 
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                                                                              (b) 

Figure 5.6: Out of sample root mean squares error across sample sizes, where forecasts are 

computed from several models when rho = 0.9, P = 130(a) and P =150(b). 

5.2.1.2. SCENARIO-II 

Based on RMSE and MAE, the forecasting capabilities of Autometrics is superior to all its 

competitor counterparts in the presence of heteroscedasticity. In contrast, the MCP and E-SCAD 

perform poorly using a small sample size, but as we expand the data window (large sample size), 

their forecasting performance dramatically improves. It indicates that penalized regression models 

require a large number of data points to provide accurate forecasts. Evidence was found from Fig. 

5.7(a, b) and 5.8(a, b) that the forecasting accuracy of all the underlying tools was enhanced with 

increasing data.   
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Table 5.5. Forecast comparison under Heteroscedasticity from Monte Carlo Simulation 

Models 𝛑𝟏 = 0.1/0.3, P = 130 𝛑𝟏 = 0.1/0.3, P = 150 

n=40/80/100 RMSE MAE RMSE MAE 

MCP   6.317/2.072/0.472   5.183/1.679/0.381 7.656/3.935/1.649 6.244/3.178/1.331 

E-SCAD 3.824/0.849/0.668 3.131/0.686/0.539 5.143/1.412/0.948 4.194/1.145/0.765 

AEnet 4.840/1.280/0.832 3.961/1.033/0.669 6.106/2.059/1.203 4.993/1.668/0.968 

Autometrics 0.403/0.327/0.317 0.330/0.264/0.255 0.582/0.332/0.326 0.477/0.268/0.263 

PLS_FM 4.236/1.985/1.328 3.455/1.603/1.070 5.146/2.668/1.898 4.216/2.158/1.530 

PCA_FM 6.658/6.222/6.134 5.477/5.037/4.936 7.863/7.195/7.043 6.300/5.805/5.668 

n=40/80/100 𝛑𝟐 = 0.2/0.6, P = 130 𝛑𝟐 = 0.2/0.6, P = 150 

MCP  6.419/2.349/0.798  5.269/1.899/0.642   7.711/4.002/1.962 6.296/3.238/1.583 

E-SCAD   3.891/1.038/0.871   3.185/0.837/0.703   5.186/1.567/1.121   4.222/1.270/0.906 

AEnet   4.897/1.593/1.132   4.009/1.284/0.911   6.144/2.334/1.514   5.024/1.891/1.218 

Autometrics 0.974/0.653/0.644 0.798/0.528/0.519  1.765/0.668/0.653 1.443/0.538/0.527 

PLS_FM 4.277/2.106/1.555 3.487/1.695/1.253  5.178/2.743/2.038 4.485/2.220/1.645 

PCA_FM 6.680/6.244/6.155 5.495/5.050/4.952  7.735/7.216/7.055 6.350/5.822/5.679 

n=40/80/100  𝛑𝟑 = 0.3/0.9, P = 130  𝛑𝟑 = 0.3/0.9, P = 150 

MCP 6.463/2.661/1.152 5.300/2.147/0.926 7.743/4.131/2.292 6.363/3.339/1.851 

E-SCAD 3.983/1.293/1.131 3.263/1.043/0.912 5.257/1.796/1.359 4.287/1.455/1.097 

AEnet 4.989/1.980/1.509 4.087/1.594/1.215 6.208/2.683/1.916 5.078/2.172/1.541 

Autometrics 1.939/0.977/0.958 1.588/0.785/0.772 2.730/1.010/0.975 2.225/0.818/0.786 

PLS_FM 4.345/2.281/1.838 3.542/1.839/1.480 5.234/2.867/2.241 4.292/2.320/1.807 

PCA_FM 6.719/6.284/6.203 5.540/5.084/4.991 7.780/7.241/7.089 6.386/5.843/5.705 

Noted: Bold values indicate a better forecast. 
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                                                                                      (b) 

Figure 5.7: Out of sample root mean squares error across sample sizes, where forecasts are 

computed from several models when π1 = 0.1/0.3(a), π2 = 0.2/0.6(b) and P =130. 
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                                                                                    (a) 

 

                                                                                    (b) 

Figure 5.8: Out of sample root mean squares error across sample sizes, where forecasts are 

computed from several models when π1 = 0.3/0.9, P =130(a) and P =130(b). 
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5.2.1.3. SCENARIO-III 

Across low and moderate autocorrelation, the Autometrics showed outstanding forecasting 

performance despite increasing the number of candidate variables (relevant and irrelevant). The 

E-SCAD remains a good competitor, particularly in case of more observations. While considering 

the extreme Autocorrelation, E-SCAD provided the lowest RMSE and MAE as compared to its 

competitor counterparts, regardless of the number of predictors to be used (130/150). Autometrics 

is still a good competitor. The forecasting performance of all methods improves with augmenting 

the sample size, which is observed under different schemes of Autocorrelation, shown in Fig. 5.9(a, 

b, and c). Similarly, it is also found that growing the size of Autocorrelation has an adverse 

influence on forecasting accuracy, as noted in Fig. 5.10.  
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Table 5.6. Forecast comparison under Autocorrelation from Monte Carlo Simulation 

Models 𝝆 = 0.25, P = 130 𝝆 = 0.25, P = 150 

n=40/80/100 RMSE MAE RMSE MAE 

MCP 6.566/3.266/1.780 5.364/2.641/1.440 7.935/4.379/3.076 6.488/3.541/2.475 

E-SCAD 4.254/1.614/1.364 3.475/1.306/1.102    5.335/2.154/1.609 4.362/1.738/1.297 

AEnet 5.049/2.628/2.098 4.113/2.123/1.693 6.213/3.285/2.583 5.090/2.652/2.078 

Autometrics 3.253/1.407/1.214 2.659/1.137/0.982 4/1.548/1.278 3.248/1.252/1.030 

PLS_FM 4.520/2.617/2.204 3.695/2.117/1.777 5.330/3.096/2.538 4.348/2.499/2.048 

PCA_FM 6.713/6.282/6.195 5.490/5.073/4.987 7.691/7.239/7.024 6.291/5.869/5.697 

n=40/80/100 𝝆 = 0.50, P = 130 𝝆 = 0.50, P = 150 

MCP 6.642/3.376/2.111 5.441/2.722/1.702 7.996/4.524/3.295 6.562/3.654/2.663 

E-SCAD 4.326/1.756/1.507 3.541/1.422/1.220 5.359/2.310/1.772 4.364/1.867/1.431 

AEnet 5.150/2.781/2.277 4.211/2.250/1.838 6.406/3.475/2.765 5.249/2.809/2.233 

Autometrics 3.462/1.622/1.388 2.840/1.316/1.123 4.470/1.789/1.489 3.637/1.446/1.201 

PLS_FM 4.585/2.689/2.329 3.764/2.174/1.877 5.330/3.207/2.683 4.362/2.598/2.164 

PCA_FM 6.847/6.393/6.228 5.611/5.142/5.019 7.457/7.214/7.185 6.108/5.853/5.796 

n=40/80/100 𝝆 = 0.90, P = 130 𝝆 = 0.90, P = 150 

MCP 7.069/4.646/4.002 5.771/3.782/3.257 8.268/5.544/4.678 6.780/4.84/3.781 

E-SCAD 4.963/3.279/2.923 4.065/2.705/2.425 5.957/3.653/3.193 4.901/3.001/2.623 

AEnet 5.782/4.072/3.796 4.737/3.323/3.095 6.925/4.723/4.266 5.685/3.838/3.472 

Autometrics 5.257/3.687/3.329 0.268/3.031/2.736 6.169/4.013/3.573 5.013/3.270/2.916 

PLS_FM 5.128/3.822/3.454 4.209/3.129/2.822 7.735/7.216/7.035 6.350/5.822/5.679 

PCA_FM 6.939/6.692/6.601 5.664/5.426/5.322 7.964/7.523/7.459 6.530/6.079/6.015 

Noted: Bold values indicate a better forecast. 
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                                                                            (c) 

Figure 5.9: Out of sample root mean squares error across sample sizes, where forecasts are 

computed from several models when 𝜌 = 0.25(a), 𝜌 = 0.50(b), 𝜌 = 0.90(c) and P =130. 

Figure 5.10: Out of sample root mean squares error across the levels of Autocorrelation, where 

forecasts are computed from several models when n = 40 and P =150. 
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Chapter 6 

Real Data Implications 

6.1. Comparison of Variable Selection Methods using Huge Big Data 

Using both huge and fat big data, we investigated and compared advanced statistical and machine 

learning techniques in simulation exercises. Our primary concern is to evaluate the robustness of 

feature selection and forecasting techniques utilizing a variety of Data Generating Processes 

(DGPs) and real datasets.  

In the discipline of economics, empirical analyses are quite important. The reason for this is that 

theory without measurement can lead to an inadequate assessment of actual economic challenges. 

Measurement without economic theory, on the other hand, is inadequate for providing a 

satisfactory description of how economic forces interact with one another. Neither "theory" nor 

"measurement" are sufficient to evaluate economics, that is, understanding the relationship 

between economic variables. Macro-econometric modelling is an established and separate field 

within the science of economics. It shows a nice composition of economic theories and 

econometric tools and has been given the most credit for its importance because it gives well-

organized frameworks for making policy decisions and planning the economy as a whole. 

In this section, we perform some real data analysis in order to support the simulation experiments, 

which are carried out in the preceding sections. This section consists of four subsections. The first 

two subsections analyze the variable selection procedures; the last two subsections evaluate the 

predictive power of the proposed factor model against existing tools using the macroeconomic and 

financial datasets of Pakistan. The first dataset includes workers' remittance inflow and all its 

possible determinants. 
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The question arises, what are the possible determinants of workers' remittance inflow and how do 

we explore them? There are so many factors that affect the worker's remittances inflow, including 

economic, financial, political, social, etc. We use two approaches to investigate the factors 

influencing remittance inflows: literature and economic theories. Some covariates are suggested 

to be added to the model by economic theories, and a long list of variables has been suggested by 

studies in the past. 

This study includes all the possible determinants based on economic theories and literature to make 

a general model. In the econometrics literature, such a model is known as the general unrestricted 

model (GUM). 

6.1.1. Data Source 

This study collects the yearly data for Pakistan from 1972 to 2020 using different sources such as 

World Development Indicators (WDI), International Financial Statistics (IFS), International 

Country Risk Guide (ICRG), and State Bank of Pakistan (SBP). The few missing observations in 

the data set are replaced by averaging the neighboring observations. Most variables are 

transformed into logarithmic form to ensure normality. Details regarding the variables have been 

given in Appendix Table A1. Table A1 describes the variables, symbols, definitions of each 

variable, and data source.  

6.1.2. Correlation matrix 

In Fig. 6.1, blue and red colours exhibit positive and negative correlations between the variables. 

The colours, severity and area of the circles indicate a high pairwise correlation. Besides the right 

side of the correlogram, the legend colour shows the pairwise correlation. We can see a lot of large 

blue and red colour circles, which is a sign of a high pairwise correlation. 
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Figure 6.1 shows that there is high multicollinearity among the predictors using the data period 

spanning from 1972 to 2020. We noted that in Monte Carlo simulations with high 

multicollinearity, the AEnet outperformed its rival counterparts in terms of potency and 

gauge, mainly when the sample size is small. It reveals that AEnet is more robust in such 

circumstances, and thus we should proceed with AEnet output.       

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Correlation structure among covariates 
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                          Table 6.1. Features Selection based on Real Data (Huge Big data) 
Variables        MCP   E-SCAD          AEnet        Autometrics 

GDP         

INF         

IR         

FDI         

UEMP         

TO         

GOLD         

DEX         

D911         

TIND          

MW         

SP         

SSEN         

REER         

FINL         

DMOC         

ICNF         

XCNF         

AOR         

CORR         

DEPT         

GS         

IRUS         

IRPAK         

AGC         

WAGE         

BMP         

               Table 6.1: Tick marks show the selected variable, and cross marks show the non-selected variable. 
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Table 6.1 depicts the feature selection based on real data using classical and shrinkage methods. 

In Table 6.1, the AEnet suggests almost 13 important determinants of workers’ remittances among 

27 determinants. In contrast, MCP and E-SCAD recommend many unrelated determinants for 

workers’ remittance. In other words, we can conclude that they have over-specified the model, and 

therefore such models often provide poor forecasts in practice. In a similar way, Autometrics keeps 

the least number of irrelevant variables, in contrast to MCP and ESCAD, but misses an important 

variable. However, the right set of covariates can improve forecasting, leading to a low forecast 

error. Consequently, an accurate forecast can help the government and other sectors in their 

decision-making. 

Referring to simulation results; under the severe case of multicollinearity in simulation, we 

observed that MCP and ESCAD over-specified the model, whereas the Autometrics approach 

suffered from under-specification. In contrast to these findings, the results produced by the AEnet 

approach are very close to the true DGP. When analyzing real data, MCP and ESCAD retained 

more irrelevant variables, whereas Autometrics dropped the important variable(s). The 

performance of AEnet showed the same behaviour as shown in the simulation exercise. As a 

whole, the results show that the empirical application strongly backs up the results of the 

simulation exercise. 

Using another dataset, we use the same procedures for feature selection and compare their 

performance, as shown in Table 6.2. In each column, we mention the variable name, which is 

selected by the specific method. In practice, E-SCAD selected 11 predictors, MCP kept one 

variable, DEX, AEnet selected four variables, and Autometrics kept four predictors. In presence 

of severe multicollinearity, Enet has shown outstanding performance in simulation exercises. 
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Thus, the variables selected by Enet are the most useful drivers for the stock market. As we can 

notice, E-SCAD retained many irrelevant variables that are probably not important for the stock 

market. MCP, in contrast, under-specifies the true model of the stock market, and such a model 

often produces biased results. 

Table 6.2. Features Selection based on Real Data (Huge Big data) 

E-SCAD MCP AEnet Autometrics 

GDP - GDP GDP 

- - - GS 

Debt - Debt Debt 

OP - - OP 

GFCF - - GFCF 

FDI - - - 

Gold - Gold - 

REER - REER - 

IR - - - 

DEX DEX - - 

 

TIND - - - 

REM - - - 

Noted: Selection of important features for Stock market prices. 

6.2. Comparison of Variable Selection Methods using Fat Big Data 

We analyze the macroeconomic time series data set for Pakistan. The data set consists of 79 

aggregated and disaggregated variables collected at a monthly frequency for the period starting 

from 2013 to 2020. The dataset covers the fiscal sector, real sector, financial and monetary sector, 

and external sector of the economy of Pakistan. The data is taken from the state bank of Pakistan. 
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The forecasting model is basically constructed for inflation (INF), where a long list of variables is 

incorporated as explanatory variables in the model. All the variables (response variables and 

explanatory variables) are transformed in order to make them stationary before an empirical 

analysis. Generally, the logarithmic transformation is performed for all non-negative time series 

that are not already in rate (Stock and Watson, 2012). A complete list of variables is given in the 

Appendix. Details on the variables used for analysis are given in Appendix Table A2. 

Before modelling, we check the multicollinearity among the explanatory variables through a 

correlation matrix, which is not possible to show here. The correlation matrix showed a strong 

pairwise correlation in the set of covariates. Moreover, the frequency of the data set under 

consideration is monthly, so there is a huge likelihood of autocorrelation in the data. 

The real data based comparison is given in Table 6.3. It can be seen from the table that E-SCAD 

selects 17 features, the MCP retains 8 features, the AEnet retains 4 features, and the Autometrics 

holds 5 features out of the entire set of 78 features. To relate these results with the output of 

simulation experiments, the E-SCAD has higher potential in contrast to competing approaches 

while retaining the relevant features in the presence of high pairwise correlation in the predictor 

set (severe multicollinearity). It was also shown through simulation experiments that regardless of 

such good performance, the E-SCAD keeps irrelevant variables as well. Analyzing the real dataset, 

it is also noticed that out of 17 features, some are more likely to be irrelevant. However, the rival 

approaches have dropped the important features (as observed in simulation), which in turn leads 

to biased estimates. In view of all this, the output of the real data analysis supports the simulation 

results. 
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Table 6.3. Features Selection based on Real Data (Fat Big data) 

E-SCAD MCP AEnet Autometrics 

Wholesale Price Index Wholesale Price Index Wholesale Price Index Wholesale Price Index 

Sensitive Price Index - Sensitive Price Index Sensitive Price Index 

Federal Government 

Indirect Tax (Excise Tax) 

Federal Government 

Indirect Tax (Excise 

Tax) 

- - 

Federal Government 

Indirect Tax (Customs) 

- - - 

Old Foreign Currency 

Accounts 

Old Foreign Currency 

Accounts 

- - 

Call Money Rate - - - 

Nominal effective 

exchange rate 

Nominal effective 

exchange rate 

- Nominal effective 

exchange rate 

Real effective exchange 

rate 

Real effective 

exchange rate 

Real effective 

exchange rate 

Real effective 

exchange rate 

Japanese Yen (Monthly 

Average) 

Japanese Yen 

(Monthly Average) 

 

- - 

Other Deposits with State 

Bank of Pakistan 

Other Deposits with 

State Bank of Pakistan 

Other Deposits with 

State Bank of Pakistan 

Other Deposit with 

State Bank of Pakistan 

Currency in Tills of 

Scheduled Banks 

- - - 

Time Deposits - - - 

Caustic Soda - - - 

Chlorine Gas - - - 

Lime Stone Lime Stone - - 

Crude Oil - - - 

Natural Gas - - - 

 



109 
 

6.3. Out-of-Sample Forecasting Comparison using Huge Big Data 

For real data analysis, we focus on two datasets: macroeconomic data and financial market data. 

The macroeconomic and financial dataset includes workers remittances inflow (which is already 

discussed in section 6.1) and stock market prices. Stock market prices are determined by many 

factors, including economic, financial, political, social, etc. To make a GUM, this study looks at 

all the possible determinants based on theories and literature. 

6.3.1. Data Source 

This study collects the annual data for Pakistan from 1972 to 2020. The data is sourced from the 

World Development Indicators (WDI), international financial statistics (IFS), international 

country risk guide, and the state bank of Pakistan. The few missing observations in the data set are 

replaced by averaging the neighboring observations. 

 

                Figure 6.2: Trend of Workers’ Remittance series (in the log) against time. 
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Figure 6.3: Trend of Stock Prices series (in the log) against time. 

6.3.2. Correlation Matrix  

For empirical analysis, we split the data set into parts: observations from 1972–2007 are utilized 

to train the models, and the remaining data (testing data) is used to evaluate their forecasting 

performance, which is provided in Figures 6.2 and 6.3. But before going to compute the forecast 

error, we discover the correlation structure among covariates through the visualization approach. 

The plot of pairwise correlation for the workers’ remittances dataset is provided in Fig. 6.4, where 

blue and red colours exhibit positive and negative correlations, respectively. The colour severity 

and the area of the circle are directly associated with correlation coefficients. On the right side of 

the correlogram, the legend color shows the correlation coefficients and the corresponding 

colours. We can observe that there are many dark colour circles in blue and red, which clearly 

illustrates the high pairwise correlation. In other words, we can conclude that there is high 

multicollinearity among the predictors of a dataset. Likewise, the pairwise correlation of the 

second dataset related to stock market determinants is provided in Table 6.4. Here, the statistical 
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significance of the correlation is indicated by stars. It can be seen from the table that many pairs 

of variables are highly correlated, which ensures the case of severe multicollinearity. Figure 6.5 

reveals that the distribution of stock market data is almost symmetric. As we have noted in 

simulation experiments, in the presence of high multicollinearity (what we observed in the real 

datasets), the PLS-based factor model outperformed the other procedures in terms of producing a 

low forecast error for n = 80. It reveals that a PLS based factor approach is more robust in such 

circumstances. 

           Figure 6.4: Pairwise correlation using the determinants of workers’ remittance 
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Table 6.4: Pairwise Correlation using the Determinants of Stock Market 

  LGDP LGS LDEBT OP GFCF LFDI UEMP LTO LGOLD LREER LFINL INF IR LDEX LTIND LREM MS 

LGDP                                   

LGS 0.263                                 

LDEBT 0.795*** -0.046                               

OP 0.561*** 0.028 0.667***                             

GFCF -0.176 0.181 0.155 -0.393**                           

LFDI 0.919*** 0.393** 0.773*** 0.507*** 0.076                         

UEMP 0.568*** 0.571*** -0.406** 0.331* 0.024 0.634***                       

LTO 0.089 0.053 -0.094 -0.055 0.505*** 0.174 0.143                     

LGOLD 0.899*** 0.052 0.715*** 0.670*** -0.441** 0.726*** 0.294* -0.116                   

LREER 0.809*** -0.309* 0.636*** -0.342* 0.008 0.799*** 0.690*** 0.354* 0.554***                 

LFINL 0.918*** 0.348* 0.758*** 0.564*** -0.262 0.863*** 0.701*** -0.007 0.807*** 0.833***               

INF -0.280 0.522*** 0.063 0.080 -0.168 -0.397** -0.284* 0.301* -0.150 0.096 -0.193             

IR -0.007 0.044 -0.092 0.179 0.017 0.128 -0.062 0.256 0.024 -0.011 0.076 0.070           

LDEX 0.974*** 0.171 0.856*** 0.667*** -0.265 0.880*** 0.475*** 0.044 0.938*** 0.740*** 0.899*** -0.209 0.069         

LTIND 0.691*** -0.081 0.597*** 0.483*** 0.457*** 0.515*** -0.014 -0.120 0.866*** -0.337* 0.574*** -0.165 0.117 0.781***       

LREM 0.873*** 0.216 0.685*** 0.575*** -0.105 0.792*** 0.336* 0.124 0.860*** 0.519*** 0.658*** 0.350* 0.007 0.874*** 0.735***     

MS -0.103 0.073 0.056 0.020 0.384** 0.068 0.178 0.080 -0.160 0.061 -0.037 -0.146 0.062 -0.119 -0.188 -0.101   

Computed correlation used pearson-method with listwise-deletion. 

Noted: Statistical significance of the pairwise correlation is represented by stars, as 1, 5, and 10 percent are indicated by (***), (**), and (*).  
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                                          Figure 6.5: Density Plot of Pakistan Stock Prices. 

6.3.3. Forecast Comparison Based on Dual Real Datasets 

Figures (6.6 and 6.7) present the forecasting experiment across different forecasting procedures 

for one of the core macroeconomic variables (inflation), and the second core variable is a financial 

variable of interest (stock market prices). The forecasting accuracy is given as the RMSE and 

MAE, which are represented in our case by a bar chart against different methods. The smaller the 

length of a bar, the better the forecast attained by a model, comparatively. The length of a bar in 

Fig. 6.6(a, b) indicates that the PLS-based factor model outperformed the competing methods in 

the out-of-sample forecast. It illustrates that the PLS-based factor model (proposed model) has 

better predictive power than other competitor models, in terms of having the lowest forecast errors 

in multi-step-ahead forecasts (2008 to 2020). Seeing another figure 6.7(a, b), we obtained a similar 

outcome. The proposed model shows an outstanding prediction against the competing approaches. 

It is noted that Autometrics showed the worst performance, as it showed in the simulation under 
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similar circumstances (extreme multicollinearity). The real data results support the simulation 

results under both real datasets. 
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Figure 6.6: The proposed model versus the baseline models (Workers’ Remittance series) 
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(b) 

Figure 6.7: The proposed model versus the baseline models (Stock prices series) 

6.4. Out-of-Sample Forecasting Comparison using Fat Big Data 

We analyze the macroeconomic time series data set for Pakistan. This dataset has already been 

used in section 6.2, where a detailed explanation has been given regarding the variables, source, 

and frequency of data. Details on the variables used for analysis are given in Appendix Table B1. 
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6.4.1. Inflation Forecasting 

The dataset is divided into two parts with the intention of facilitating out-of-sample forecast 

accuracy. For model estimation, we utilize the data from January 2013 to February 2019, and 

March 2019 to December 2020, for assessing the models’ multistep-ahead post-sample prediction 

accuracy. The inflation time series plotted in Fig. 6.8 is divided by a vertical blue dotted line, 

where the training part is used for model estimation and the second part (testing data) is used for 

out-of-sample prediction. 

 

 

 

 

 

 

 

 

 

Figure 6.8: Monthly inflation detrended series against time 

Fig. 6.9 presents the forecasting experiment across different forecasting methods for one of the 

core macroeconomic variables of interest (inflation). The forecasting accuracy is given as the 

RMSE and MAE, which is represented in our case by a bar chart against different methods. The 

smaller the length of a bar, the better the forecast attained by a model, comparatively. By observing 

the length of the bar given in Fig. 6.9, we can infer that the PLS based factor model is superior to 
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its rival counterparts in post sample forecast. In other words, the forecasted values are close to the 

observed data on inflation. In contrast, Autometrics produces a good forecast but is not as 

satisfactory as PLS based factor model. 
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Figure 6.9: The proposed model versus the baseline models (Inflation series) 
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Chapter 7 

Conclusion, Limitations and Future Direction 

The primary objectives of statistical learning are to ensure high prediction accuracy and identify 

relevant predictive variables. Variable selection is crucial when the representation of the true 

underlying model is sparse. Identifying important predictors will enhance the predictive ability of 

the fitted model. Literature discusses a variety of methods for selecting variables, but each method 

selects a distinct subset of variables and performs differently under distinct conditions. Through 

comparison, we can evaluate their relative performance. The first objective of this study is to 

compare different variable/model selection tools, namely Autometrics, Adaptive Elastic net, 

Elastic-Smoothly Clipped Absolute Deviation, and Minimax Concave Penalty using huge big data 

and Fat Big data. The comparison is made under different scenarios, including Multicollinearity, 

Heteroscedasticity, and Autocorrelation with varying sample sizes and the candidate set of 

variables (relevant and irrelevant). The study performed Monte Carlo experiments to compare all 

methods in terms of variable selection using potency and gauge. First, we discuss the results 

obtained from huge big data: 

Considering the cases of low and moderate multicollinearity as well as low and moderate 

autocorrelation, all the techniques often retain all the relevant predictor variables. However, in 

terms of gauge, the MCP and E-SCAD keep many irrelevant predictors, and thereby over-specify 

the models under the same scenarios. The AEnet retains more than 93 percent of the correct 

variables in the presence of extreme multicollinearity. However, the potency of the remaining 

techniques, specifically MCP and E-SCAD, tends towards unity with increasing sample size, 

capturing the massively irrelevant predictors as well.  
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Considering the higher level of autocorrelation, E-SCAD has shown good performance in the 

selection of relevant variables under a small sample, but the same method collapsed under a gauge. 

On the other hand, Autometrics and AEnet performed better in gauge and frequently held less than 

5% of irrelevant variables. In presence of heteroscedasticity, all adopted techniques often hold all 

relevant variables, but also suffer from over-specification problems, except AEnet and 

Autometrics which avoid irrelevant predictors and identify the true model precisely. 

Secondly, we delineate the findings coming from Fat Big data: 

In case of low multicollinearity, the Autometrics often retain the true DGP. By enlarging the 

covariate window, the E-SCAD frequently outperforms the competitors in terms of potency, 

though in terms of gauge, the Autometrics performance is the best among the competitors. The 

moderate level of multicollinearity declines the potency of Autometrics and AEnet, while 

improving the MCP and E-SCAD. In presence of high multicollinearity, E-SCAD showed an 

outstanding performance. 

In case of low and moderate heteroscedasticity, it can be seen that the potency of Autometrics is 

usually higher than competitor tools, and it retains fewer irrelevant variables. increasing the 

strength of heteroscedasticity, which in turn declines the potency of Autometrics in comparison to 

shrinkage techniques. Whatever the level of Autocorrelation, the potency of E-SCAD is often 

higher than the competitive counterparts. In terms of gauge, the Autometrics showed good 

performance, which circumvents the inclusion of irrelevant variables. The AEnet is a good 

competitor to Autometrics in gauge, asymptotically. 

The second goal of our study is to compare how good the proposed factor model (PLS based factor 

model) is at making predictions with existing tools under the same conditions. 
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In the presence of low and moderate multicollinearity as well as low and moderate autocorrelation, 

the MCP often produced better forecasts than the rival methods for large sample size. Despite this, 

E-SCAD frequently outperforms competing methods for small samples. Considering the case of 

extreme collinearity, the PLS-based factor model is superior in case of a small sample. In case of 

extreme autocorrelation, the E-SCAD outperformed the rival techniques except at n = 400, where 

the MCP induced a more accurate forecast. In presence of heteroscedastic errors, MCP remains an 

effective tool.  

Considering the case of low and moderate multicollinearity, the forecasting performance of 

Autometrics is more promising than its competitive counterparts. In presence of extreme 

multicollinearity, the factor approach based on PLS outperformed rival counterparts. Similarly, in 

presence of heteroscedastic errors, the forecasting capability of Autometrics is superior to all 

competitors. Across the low and moderate sizes of autocorrelation, the predictive power of 

Autometrics remained higher despite increasing the candidate set of variables. In terms of extreme 

autocorrelation, the E-SCAD produced the lowest forecast errors.  

To achieve the third and last objective of our study by analysing the real datasets of Pakistan. 

On the application side, we take the workers’ remittance data along with its twenty-seven 

determinants, spanning from 1972 to 2020. The AEnet keeps 13 predictors, the Autometrics holds 

12 predictors, and the MCP and E-SCAD have over-specified the models due to retaining many 

irrelevant determinants affecting the workers’ remittance. 

Complementing the simulation exercises, we analyse the macroeconomic time series data set for 

Pakistan. The data set consists of 79 aggregate and disaggregated variables collected at a monthly 

frequency for the period starting from 2013 to 2020. The dataset covers the fiscal sector, real 
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sector, financial sector, monetary sector, and external sector of the economy of Pakistan. The data 

is taken from the State Bank of Pakistan. The findings conclude that E-SCAD selects 17 features, 

the MCP retains 8 features, the AEnet retains 4 features, and the Autometrics holds 5 features out 

of the entire set of 78 features. To relate these results with those of simulation experiments, the E-

SCAD has higher potential in contrast to rival counterparts while retaining the relevant features in 

the presence of autocorrelation and multicollinearity problems. 

For empirical applications, macroeconomic and financial datasets are used. To compare the 

forecasting performance of the included methods, we divide the data into two parts, i.e., data over 

1973–2007 as training data and data over 2008–2020 as testing data, using both datasets. All 

methods are trained on training data and subsequently, their performance is evaluated through 

testing data. Based on RMSE and MAE, the PLS based factor model showed superior performance 

against its competitor counterparts. 

Using the same dataset (inflation data), we divide the dataset into two parts in order to facilitate 

out-of-sample forecast accuracy. For model estimation, we utilise the data from January 2013 to 

February 2018, and March 2019 to December 2020, for assessing the models’ multistep-ahead 

post-sample prediction accuracy. It can be inferred that a PLS based factor model is superior to its 

rival counterparts in post-sample forecasting. 

7.1. Limitations and Future Direction 

The few limitations of this study are that it only focuses on linear models. Secondly, because 

simulation analysis is specific to the underlying setup, it is difficult to generalize the results of the 

simulation. Thirdly, the simulation part of this study is restricted to Gaussian distributed errors, 

but in practice, it is not essential that the errors of a model are always normal. Similarly, we have 
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evaluated the selected models under multicollinearity, autocorrelation, and heteroscedasticity. 

What if these three problems occur simultaneously? Hence, this research can be expanded to 

discover the forecasting performance of advanced statistical and machine learning techniques 

under non-normal residuals as well as missing observations in the data set. Moreover, it is also 

possible to consider the lagged variables and compare these tools in terms of forecasting and 

variable selection. This study can be expanded to examine the performance of non-linear and non-

parametric algorithms like artificial neural networks, random forests, support vector machines, etc. 

Finally, researchers should focus on addressing the aforementioned problems simultaneously. 
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Appendix A 

Table A1 describes the variables, symbols, definition of each variable and source of data.   

Table A1. Variables description 

Sr. No Variables Symbol  Definition/Construction Source of Data 

1 Workers’ 

Remittances 

WR The transfer of foreign money by 

migrated workers to Pakistan. 

SBP 

2 Interest Rate INT Call money rate SBP 

3 Gold prices GOLD Gold prices is defining the price of gold 

in which the gold is traded on gold 

market. 

SBP 

4 Development 

expenditure 

DEX It is the type of expenditure which helps 

economic and social development on the 

country. For example, the expenditure on 

education, health etc. 

SBP 

5  Major 

agriculture crops 

AGC Major agriculture crops are wheat, rice, 

cotton, sugarcane, maize etc. 

SBP 

6 Inflation INF Inflation is the increase in price of goods 

and services over time in general level. 

Inflation rate is measured by 

CPIt - CPIt-1/ CPIt-1  * 100 

SBP 

7 Foreign direct 

investment 

FDI FDI is the type of investment in which 

the people or organization of one 

country invested in company of property 

of other countries. 

SBP 

8 Trade openness TO Trade openness is defined as the ratio of 

trade to GDP. 

SBP 
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9 Exchange 

rate/Nominal 

exchange rate 

EXR Value of the rupees per unit of US dollar IFS 

10 Stock market 

performance 

SP Share prices IFS 

11 Investment 

return of Pak 

IRPak 0.8INTPk + 0.2dLn (SPPk) 

Where INTPk is interest rate and SPPk is 

share prices of Pakistan. 

IFS 

12 Investment 

return of US 

IRUS 0.8INTUS + 0.2dLn (SPUS) 

Where INTUS is interest rate and SPUS is 

share prices of US. 

IFS 

13 Real Domestic 

Product 

GDP It is defined as, the total value of final 

goods and services which are produced 

inside the boundary of the country in a 

given period. 

WDI 

14 Unemployment UEMP Unemployment is defined as, the people 

who want to work but do not have a job. 

WDI 

15 Foreign debts  DEBT Foreign debt is a money that one country 

borrowed from outside country or 

organization. It is also known as external 

debt. 

WDI 

16 Real effective 

exchange rate 

REER It is defined as, the nominal effective 

exchange rate which is divided by a price 

deflator. 

WDI 

17 Secondary school 

enrolment 

SSEN Secondary school enrolment is defined as 

the number of students which are enrolled 

in secondary school. 

WDI 
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18 Financial 

Liberalization 

FINL The data on financial liberalization is 

taken from Shabbir (2013). He used the 

following formula for the construction of 

financial liberalization. 

Shabbir (2013) 

19 Job skill index  The Job skill index is constructed with the 

help of weighted index of the different 

skill categories.  

Bureau of 

Emigration and 

Overseas 

Employment 

20 Wage rate WAGE The amount of wage that is paid to the 

worker per unit of time. 

Bhatti(2018) 

21 Democracy  DMOC Democracy is the type of government in 

which people elect their representatives. 

ICRG 

22  Internal Conflict ICNF Internal conflict is defined as, the 

political violence inside the country and 

its actual influence on the governance. 

ICRG 

23 External Conflict XCNF External conflict is defined as, the 

problem such as; diplomatic pressures, 

trade restrictions etc. to the mandatory 

government from the foreign action to 

violent external pressure. 

ICRG 

24 Law and order 

situation 

LAOR Law and order situation is defined as the 

condition when people follow the rule 

and regulation. There is no violence or 

threats, and the police control all the 

crime etc. 

ICRG 

25 Corruption CRRP The illegal actions by powerful people 

such as bureaucrats, government, police 

etc. 

ICRG 
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26 Terrorism index 

(no’ of attacks) 

TIND It is the use of violence and threats for the 

purpose of achieving political and 

ideological objectives. 

ICRG 

27 Government 

stability  

GS Whenever the representative of the govt. 

change without any threats of violence it 

is known as political stability. 

ICRG 

28 Black Market 

Premium 

BMP Black market premium is defined as, the 

percentage difference between the black 

market exchange rate and official 

exchange rate. 

ICRG 

29 Gross fixed 

capital formation 

GFCF The physical capital is measured by gross 

fixed capital formation (GFCF). 

Theoretically, the relation between 

economic growth and capital formation is 

described by “Q” theory. 

WDI 

30 Money Supply MS The money supply is the total amount of 

money in circulation in a country or group 

of countries in a monetary union. 

WDI 

31 Oil prices OP It is taken as crude oil (per barrel).  IFS 
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Table A2. Variables Description 

Sr. no T Name of the Variables 

 4 Real Sector (Output) 

1 4 Production of Sugar (SA) 

2 4 Production of Vegetable (SA) 

3 4 Production of Cigarettes (SA) 

4 4 Production of Cotton yarn (SA) 

5 4 Production of Cotton Cloth (SA) 

6 4 Production of Paper (SA) 

7 4 Production of Paper Board (SA) 

8 4 Production of Soda Ash (SA) 

9 4 Production of Caustic Soda (SA) 

10 4 Production of Sulfuric Acid (SA) 

11 4 Production of Chlorine Gas (SA) 

12 4 Production of Urea (SA) 

13 4 Production of Super Phosphate (SA) 

14 4 Production of Ammonium Nitrate (SA)  

15 4 Production of Nitro Phosphate (SA)  

16 4 Production of Cycle Tyres & Tubes (SA) 

17 4 Production of Motor Tyres & Tubes (SA) 

18 4 Production of Cement (SA) 
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19 4 Production of Tractors (SA) 

20 4 Production of Bicycle (SA) 

21 4 Production of Silica Sand (SA) 

22 4 Production of Gypsum (SA) 

23 4 Production of Limestone (SA) 

24 4 Production of Rock Salt (SA) 

25 4 Production of Coal (SA) 

26 4 Production of Chromate (SA) 

27 4 Production of Crude Oil (SA) 

28 4 Production of Natural Gas (SA) 

29 4 Production of Electricity (SA) 

  Monetary Sector (Money, Reserves and Banking System) 

Money 

30 4 Currency in circulation 

31 4 Bank Deposit with State Bank of Pakistan 

32 4 Other Deposit with State Bank of Pakistan 

33 4 Currency in Tills of Scheduled Banks 

34 4 Demand Deposits 

35 4 Time Deposits 

36 4 Resident Foreign Currency Deposits 

37 4 Government Sector Borrowing (net) 
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38 4 Budgetary Support 

39 4 Commodity Operations 

40 4 Credit to Private Sector 

41 4 Credit to Public Sector Enterprises 

42 4 Net Foreign (Domestic) Assets of State Bank of Pakistan 

43 4 Net Foreign Assets of the Scheduled Banks in Pakistan 

  Prices 

44 4 Consumer Price Index 

45 4 Consumer Price Index (Food) 

46 4 Wholesale Price Index 

47 4 Sensitive Price Index 

  Exchange Rates 

48 4 Nominal Effective Exchange Rate 

49 4 Real Effective Exchange Rate 

50 4 Saudi Arabian Riyal (Monthly Average) 

51 4 UAE Dirham (Monthly Average) 

52 4 US Dollar (Monthly Average) 

53 4 Canadian Dollar (Monthly Average) 

54 4 UK Pound Sterling (Monthly Average) 

55 4 Euro (Monthly Average) 

56 4 Japanese Yen (Monthly Average) 
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  Interest Rates 

57 2 Lending Weighted Average Rates 

58 2 Deposits Weighted Average Rates 

59 2 Call Money Rate 

60 2 Overnight Weighted Average Repo Rate (all data) 

61 2 Karachi Interbank Offered Rate 1 Week 

62 2 Karachi Interbank Offered Rate 2 Weeks 

63 2 Karachi Interbank Offered Rate 1 Month 

64 2 Karachi Interbank Offered Rate 3 Months 

65 2 Karachi Interbank Offered Rate 6 Months 

66 2 Karachi Interbank Offered Rate 9 Months 

67 2 Karachi Interbank Offered Rate 12 Months 

  External Sector 

68 4 Exports 

69 4 Imports 

70  4 Workers Remittances 

71 4 Gold Reserves 

72 4 Foreign Exchange Reserves with State Bank of Pakistan 

73 4 Foreign Exchange Reserves with Scheduled Banks in Pakistan 

74 4 Old Foreign Currency Accounts 

75 4 New Foreign Currency Accounts (FE-25) 
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  Fiscal Sector 

76 4 Federal Government Direct Tax Collection 

77 4 Federal Government Indirect Tax (Sales Tax) 

78 4 Federal Government Indirect Tax (Excise Tax) 

79 4 Federal Government Indirect Tax (Customs) 
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Appendix B 

 

                                                                           

 Figure 1: Computation of Gauge across three cases of multicollinearity, when n = 80 and P = 50. 
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Figure 2: Out of sample root mean squares error across sample size, where forecasts are obtained 

from various models when ρ = 0.25(a), ρ = 0.5(b), ρ = 0.90(c), and P = 70. 
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                                                                            (c) 

Figure 3: Out of sample root mean squares error across sample size, where forecasts are achieved 

from various models when 𝜋1 = 0.1/0.3(a), 𝜋2 = 0.2/0.6(b), 𝜋3 = 0.3/0.9(c) and P = 70. 
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                                                                              (b)   

Figure 4: Out of sample root mean squares error across the levels of Heteroscedasticity, where 

forecasts are achieved from various models when n = 80(a), n = 320(b), and P = 70. 
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Appendix C 

 

Package Details 

In this study, various methods are used. We have used the R version 4.2 and 4.3 in our study. 

Autometrics: We use GETS (general to specific) package in R, in order to estimate the model, 

which retains the relevant variable (also called parsimonious model). After estimating the model, 

we did not use the forecast package for forecasting purpose, rather we design the code and achieve 

the forecast. The details are given below: 

 gets: General-to-Specific (GETS) Modelling and Indicator Saturation Methods 

Author: Genaro Sucarrat [aut, cre], Felix Pretis [aut], James Reade [aut], Jonas Kurle [ctb], 

Moritz Schwarz [ctb] 

Maintainer: Genaro Sucarrat <genaro.sucarrat at bi.no> 

Pretis, Reade and Sucarrat (2018) <doi:10.18637/jss.v086.i03>. 

Shrinkage Methods: Similarly, for estimating the Elastic SCAD and MCP models, we use 

‘ncvreg’ package. For adaptive Elastic net, we glmnet package. Glmnet package is unable to 

estimate the adaptive elastic net package directly, thus we made some adjustment in the codes for 

achieving the output from adaptive elastic net. For forecasting, we forecast package.  

Author: Patrick Breheny [aut, cre] 

Maintainer: Patrick Breheny <patrick-breheny at uiowa.edu> 

 ncvreg: Regularization Paths for SCAD and MCP Penalized Regression Models 

https://doi.org/10.18637%2Fjss.v086.i03
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Breheny and Huang (2011) <doi:10.1214/10-AOAS388> or visit the ncvreg homepage 

<https://pbreheny.github.io/ncvreg/>. 

Author: Jerome Friedman [aut], Trevor Hastie [aut, cre], Rob Tibshirani [aut], 

Balasubramanian Narasimhan [aut], Kenneth Tay [aut], Noah Simon [aut], Junyang 

Qian [ctb], James Yang [aut] 

Maintainer: Trevor Hastie <hastie at stanford.edu> 

 glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models 

URL: https://glmnet.stanford.edu, https://dx.doi.org/10.18637/jss.v033.i01, 

https://dx.doi.org/10.18637/jss.v039.i05 

Factor Models: For factor models, we use caret and pls packages. Modified the codes accordingly.   

 caret: Classification and Regression Training 

Author: Max Kuhn  [aut, cre], Jed Wing [ctb], Steve Weston [ctb], Andre Williams [ctb], 

Chris Keefer [ctb], Allan Engelhardt [ctb], Tony Cooper [ctb], Zachary Mayer [ctb], 

Brenton Kenkel [ctb], R Core Team [ctb], Michael Benesty [ctb], Reynald 

Lescarbeau [ctb], Andrew Ziem [ctb], Luca Scrucca [ctb], Yuan Tang [ctb], Can 

Candan [ctb], Tyler Hunt [ctb] 

Maintainer: Max Kuhn <mxkuhn at gmail.com> 

https://github.com/topepo/caret/issues 

 pls: Partial Least Squares and Principal Component Regression 

https://doi.org/10.1214%2F10-AOAS388
https://pbreheny.github.io/ncvreg/
https://github.com/topepo/caret/issues
https://github.com/topepo/caret/issues
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Author: Kristian Hovde Liland [aut, cre], Bjørn-Helge Mevik [aut], Ron Wehrens [aut], 

Paul Hiemstra [ctb] 

Maintainer: Kristian Hovde Liland <kristian.liland at nmbu.no> 

https://github.com/khliland/pls/issues 
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