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ABSTRACT 

This study aims to analyze the performance of tests of independence for 

categorical data which may further be classified as nominal and ordinal data. Tests of 

independence are one of the most frequently used statistical tools in econometrics. 

Researchers are often interested in the independence of variables summarized in 

Contingency Tables (CTs). Many tests are available in the literature to test 

independence in CTs. However, there is no clarity about the choice of tests that are 

incapable to provide a comparison of a large number of tests.  

A central problem and question facing researchers is to decide which tests of 

independence are most stringent for the data in hand. Most of the studies make pairwise 

comparisons of tests and such studies are unable to guide optimal tests among a wide 

set of tests. Furthermore, such studies used different conventional statistical techniques 

to find an optimal test of independence for nominal and ordinal data.  

This study used Monte Carlo Simulations (MCS) to evaluate the performance 

of a large number of tests of independence for nominal and ordinal data.  

The study compares eleven tests of independence for nominal data namely, 

Pearson’s Chi-Square ( χ2) test, Log Likelihood Ratio (G2) test, Fisher Exact Test 

(FES), Freeman and Tuckey Test (FTS), Cressie and Read Test (CRS), Kulber  and 

Liaber test (KLS), Neyman Modified Chi-Square  Test (NMCS),  Modular Test (MDS), 

D Square (D2), BP Test, and Logarithmic Minimum Square Test (LMS). We were able 

to calculate the most stringent test and it turned out that Logarithmic Minimum Square 

(LMS) is the most stringent test for nominal data in w × k CTs.  

Similarly, seven popular tests of independence for ordinal data are compared 

namely, Spearman 𝜌 coefficient of correlation, Kendall’s𝜏 − 𝑎, Kendall’s𝜏 − 𝑏, 

Kendall’s 𝜏 − 𝑐 coefficient, Goodman and Kruskal γ, Sumer’s D and Novel 

Phi_k (ϕ𝑘). Since the likelihood function is not found in the literature; for ordinal data, 

the stringency criteria cannot be applied to compare tests. Therefore, the comparison 

was made based on power and our MCS concludes based on solid estimations using the 

power criteria that the most powerful test is Novel ϕ𝑘 in w × k CTs for ordinal data.  

 

Keywords: Tests of Independence, Size of test, Power of test, Stringency Criteria, 

Contingency Table. Nominal data, Ordinal data 
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CHAPTER 1 

INTRODUCTION  

1.1. Background of the Study 

Tests of independence are one of the most used statistical tools in econometrics. 

Contingency Tables (CTs) are cross-classified tables of frequency counts which 

provide a wide range of information. The study of CTs is one of the most appealing and 

active topics in statistics because of its applications and importance in the social and 

biological sciences. 

Numerous studies use CTs and focus on determining and testing the 

independence of variables, such as Haberman (1981), Berry and Mielke Jr (1988), 

Lawal and Uptong (1990), Mature and Elsayigh, (2010), Yenigün, Székely et al. (2011), 

Assad, (2012), Lipsitz, Fitzmaurice et al. (2015),  Sulewski (2017), Sulewski (2019) 

and Islam & Rizwan, (2020). Even though there are several powerful tests available in 

the literature; for CTs there is little clarity about the relative merits of tests of 

independence. It is not known which of the tests is most optimal for the available data 

set. 

The data in the CTs is also known as categorical data, which can be further 

divided into two types such as nominal and ordinal. There are certain tests designed for 

nominal data e.g., the Chi-square test ( χ2), Log-likelihood ratio test (G2), Fisher exact 

test statistics, Freeman and Tucky test statistics, Kullback - Libeler test statistics, 

Cressie - Read test statistics, etc. There are some other tests of independence designed 

for ordinal data such as Spearman correlation coefficient (𝜌), Kendall’s 𝑡𝑎𝑢, Goodman 

and Kruskal γ, Sumer’s D among others; and some of the above tests which are being 
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used for both type of data e.g. Chi-square test ( χ2). It’s not clear what would happen if 

the tests designed for one type of data are used for the other type of data.  

Most of the tests make use of Asymptotic Critical Values (ACV) and can be 

studied for large samples. Since, large sample tests sometimes fail to behave well in 

small samples. Therefore, we tested the size distortion of tests using asymptotic critical 

values. Since numerous tests are based on asymptotic critical values; sometime 

asymptotic critical values may not work robust in finite samples. Consequently, there 

is a need to obtain Finite Sample Critical Values (FSCV) that work robust even with 

small samples. For this reason, we focused on finite sample critical values in this study. 

The nominal critical value of each independence test is already given in the literature, 

e.g., the critical value for the chi-square test of independence is the value at which the 

area of the chi-square distribution with  (w − 1)(k − 1) degree of freedom is greater 

than 95%. To keep the size of the test constant at the nominal level (𝛼) at 1%, 5%, and 

10%; if size distortion exists, then finite simulated critical values for each test of 

independence are required to be computed for power computation.  

There are several independence tests for both nominal and ordinal data in the 

literature and this always leads to confusion when it is applied on real datasets. 

Choosing the most stringent and powerful test in the literature is a key issue. Most 

researchers have compared the performance of independence tests, but they have 

carried out pairwise comparisons instead of comparisons for large numbers of tests. The 

variation in Data Generating Process (DGP) is often ignored by early researchers and 

the finite sample properties are not analyzed.  

In this context, this study is aimed to evaluate the performance of the 

independence test for a variety of DGP for categorical data in CTs. We compared tests 

of independence for nominal data based on the Stringency Criteria (SC) which are 
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computed from the power envelop, and provide an opportunity to compare large 

numbers of tests. We used Power Criteria (PC) for tests of independence for ordinal 

data. In addition, this study analyzes the size distortion of w × k CTs under different 

DGP using Asymptotic Critical Values (ACV) and Simulated Critical Values (SCV).  

1.2 Problem Statement  

 

Many statistical articles discuss the comparison of tests of independence for 

categorical data. Likewise, many statistical tests for nominal and ordinal data have been 

modified and developed over time. 

As stated earlier these studies make pairwise comparisons of tests which are 

insufficient for the selection of tests among a large class of available tests. Thus, the 

literature is silent and no consensus has been developed on the most stringent test 

expected in the literature in w × k CTs. Consider the data types described in Table 1.1. 

Table 1. 1: Typical  W × K Contingency Table for Variable X and Y 

Variable  X Variable Y Total  

Y1 Y2 ... YK 

X1 𝑛11 𝑛12 ... 𝑛1𝑘 𝑛1. 

X2 𝑛21 𝑛22 ... 𝑛2𝑘 𝑛2. 

.. ... ... ... ... ... 

XW 𝑛𝑤1 𝑛𝑤2 ... 𝑛𝑤𝑘 𝑛𝑤. 

Total 𝑛.1 𝑛.1 ... 𝑛.𝑘 N 

      

Table 1.1 elaborates that if we have “n” draws having two variables ‘X’ and ‘Y’; 

each character is having certain categories.  𝑛11, is the number of draws having category 

1 in the ‘X’ variable and category 1 in the ‘Y’ variable. Similarly,  𝑛𝑤𝑘 is the number 

of draws having category ‘w’ in the ‘X’ variable and category ‘k’ for the ‘Y’ variable 

such that the categories of ‘X’ and ‘Y’ can have a natural ordering and in that case, 
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data would be termed as ordinal data. While sometimes the categories do not have 

any order and are known is nominal data.  

The marginal sums in the w × k CT would be:  

𝑛1. =∑𝑛1𝑗,  𝑛2. =∑𝑛2𝑗, … ,   𝑛𝑤. =

𝑘

𝑗=1

𝑘

𝑗=1

∑𝑛𝑤𝑗

𝑘

𝑗=1

                (1.1) 

𝑛.1 =∑𝑛𝑖1,  𝑛.2 =∑𝑛𝑖2, … ,   𝑛.𝑘 =

𝑤

𝑖=1

𝑤

𝑖=1

∑𝑛𝑖𝑘

𝑤

𝑖=1

                 (1.2) 

The value “N” is the sum of all the counts of the w × k CT, 

               𝑁 =∑𝑛𝑖. =∑𝑛.𝑗 =

𝑘

𝑗=1

𝑤

𝑖=1

∑∑𝑛𝑖𝑗

𝑘

𝑗=1

 

𝑤

𝑖=1

                                       (1.3)                 

Suppose each entry of table 1.1 is divided by ‘n’ such that the Table 1.2 takes 

following forms.  

Table 1. 2: 𝑊 × K Contingency Table for Observed Frequencies Variable X and Y 

Variable X 

Variable Y Total 

 𝐘𝟏 𝐘𝟐 ... 𝐘𝐣 

𝐗𝟏 𝑛11/𝑛 = 𝑝11 𝑛12/𝑛 = 𝑝12 ... 𝑛1𝑗/𝑛 = 𝑝1𝑗 𝑝
1.

 

𝐗𝟐 𝑛21/𝑛 = 𝑝21 𝑛22/𝑛 = 𝑝22 ... 𝑝
2𝑗

 𝑝
2.

 

… ... ... ... ... ... 

𝐗𝐢 

𝑛𝑖1/𝑛

= 𝑝
𝑤1

 

𝑛𝑖2/𝑛

= 𝑝
𝑤2

 

... 𝑝
𝑖𝑗

 𝑝
𝑖.
 

Total 𝑝
.1

 𝑝
.2

 ... 𝑝
.𝑗

 𝟏 
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Table 1.2 shows that  𝑝11 represents proportions of draws having category 1 in 

‘X’ and category 1 in ‘Y’. Whereas,  𝑝𝑖𝑗 represents category ‘i’ in variable ‘X’ and 

category ‘j’ in variable ‘Y’ and the term is as follows; 

                                                ∑∑𝑝
𝑖𝑗

𝑘

𝑗=1

 

𝑤

𝑖=1

  = 1                                     (1.4)                     

Table 1.2 are random draw; the actual probability could be different from the observed 

proportions. The actual probabilities are shown in table 1.3 as follows:  

Table 1. 3: Theoretical Distribution of Variable X and Y in 𝑊 × K CTs 

If, 
𝑛𝑖𝑗

𝑛
  in Table 1.2 gives observed frequency for a particular cell. Then 

𝜋𝑖𝑗  would be the theoretical probabilities associated with the cell. Researchers are 

mostly interested in the variables, especially when looking at the CTs to see if there is 

a relationship between variables, whether they are independent or not.  

Therefore, the condition for independence can be written as follows: Suppose 

we have equation 1.5. 

                                          𝜋.j = ∑𝜋ij

w

i=1

                                                               (1.5) 

 

 

 

 

‘X’ Variable 
 

‘Y’  Variable 
Marginal 

Probability 

 (𝜋11 )  (𝜋12 ) -  (𝜋2j ) 𝜋1. 

(𝜋21 )  (𝜋22 ) -  (𝜋2j ) 𝜋2. 

- - - - - 

- - - - - 

 (𝜋i1 )  (𝜋i2 ) …  (𝜋ij ) 
 

𝜋i. 

Marginal 

Probability 
𝜋1• 𝜋2• 

…

… 
𝜋j• 1 
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Thus, the condition for independence is the probability of any cell in the CTs equal 

to the product of the row and column probability of the concerned cell. This 

condition transforms into equation 1.7.  

      𝜋.i.j  =  𝜋.i  ×  𝜋.j      For all i, j.                                               (1.6)       

This gives us;          

                                          ∑𝜋ij =∑(𝜋i.𝜋j.)

k

j=1

                                                            (1.7)

w

i=1

 

Thus, the null and alternative hypothesis for independence becomes,  

            𝑁𝑢𝑙𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 ∶  ∑∑(𝜋ij−𝜋i.𝜋j.)
n = 0

k

j=1

    

𝑤

𝑖=1

                                        (1.8) 

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠: ∑∑(𝜋ij−𝜋i.𝜋j.)
n ≠ 0

k

j=1

    

𝑤

𝑖=1

                                        (1.9) 

𝐹𝑜𝑟 𝑖 = 1………  𝑤,            𝑗 = 1………   𝑘. 

1.3 Research Objectives  

The core objective is to evaluate the performance of tests of independence for a 

variety of DGPs for nominal and ordinal data. This study aims to expand the literature 

on the following topics. 

A. Given the Nominal Data Organized in 𝐖× K CTs: 

a) To calculate size distortion (SD) for a test having asymptotic critical value 

(ACV) in the finite sample using Monte Carlo simulations (MCS).  

b) To calculate finite sample critical value (FSCV) for the tests with no 

asymptotic critical value (ACV) and the tests with size distortion (SD).  
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c) To compare the power of tests of independence using stringency criteria 

(Based on power envelope) to evaluate the most stringent test of 

independence for nominal data 

B. Given the Ordinal Data Organized in 𝐖× K CTs: 

a) To calculate size distortion (SD) for a test having asymptotic critical value 

(ACV) in the finite sample using Monte Carlo simulations (MCS).  

b) To calculate finite sample critical value (FSCV) for the tests with no 

asymptotic critical value (ACV) and the tests with size distortion (SD).  

c) To compare the power of tests of independence using power criteria (PC) 

to evaluate the most powerful test of independence for ordinal data. 

C. Application of the Most Stringent/Powerful Test on Real Data Sets:  

a) Application of the most stringent test for nominal data on the relationship 

between girls' enrollment in education across provinces in Pakistan.  

b) Application of the most powerful test of independence of ordinal data on 

corruption perception index and countries categorized by per capita income.   

1.4 Research Outline 

This dissertation consists of ten chapters. Chapter one explains the study 

background, the problem statement, and the research goals. Chapter two contains a 

discussion of the systematic and critical literature review for existing comparisons of 

tests of independence for nominal and ordinal data in CTs. Chapter three contains a 

brief discussion of various proposed tests of independence tests for nominal and ordinal 

data used in this study.  

Chapter four discusses the methodology to achieve specific and central goals, 

which consists of simulation design, DGP, computation of Size Distortion (SD), FSCV, 
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and power analysis. In addition, this chapter explains the evaluation of the most 

stringent techniques i.e., SC and PC for tests of independence for nominal and ordinal 

data. Chapter five provides a brief discussion of the results of SD and FSCV based on 

solid estimations of Monte Carlo Simulations (MCS) for nominal and ordinal data.  

Chapter six demonstrates a discussion on MCS results of the most stringent test 

for nominal data (Power analysis of different scenarios in w × k CTs, evaluation of 

most stringent test of independence obtained by using SC). Chapter Seven discusses the 

results of the most powerful test of independence for ordinal data using power criteria 

(PC) in w× k CTs. Chapter eight and nine explains the applications of the most 

stringent test of independence on real nominal data along with the application of the 

most powerful test on a real ordinal data set. Last chapter explains conclusion, 

recommendations, and future directions.  
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CHAPTER 2 

LITERATURE REVIEW ON TESTS OF INDEPENDENCE 

This chapter discusses a comprehensive and critical examination of the 

literature on tests of independence for nominal and ordinal data. Section 2.1 explains 

early development of tests of independence for nominal and ordinal data, their 

comparison, and critical analysis of numerous approaches for comparing tests of 

independence for nominal and ordinal data. Section 2.2 describes summary and 

research gap in literature in CTs. 

2.1 Brief Literature Review 

 

The concept of correlation was created by Francis Galton’s Brooks in 1887, and 

he was the pioneer to utilize its significance in the social and biological sciences. His 

contributions to the development of regression and correlation are most notable in the 

literature of econometrics. Pearson has penned numerous essays and focused significant 

emphasis on the development of correlation (Stigler 1986). In his book "On the theory 

of contingency and its relevance to association and correlation," Karl Pearson coined 

the phrase "Contingency Table". Theoretical debates, concerns, and issues surrounding 

the testing of independence in CTs have a long history and were first investigated in 

1800s. The chi-square test was produced by Pearson's renowned goodness of fit test 

when a 2 x 2 CTs was analyzed (Pearson, 1900; 1904). By examining the equality of 

two independent binomial proportions of a single dichotomous factor, Yule (1911) 

developed the first association test. Fisher (1934) used the extended hyper geometric 

distribution to describe the combinatorial randomization of two-factor association, 

which gave rise to his exact test.  
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By 1920s the philosophy of hypothesis testing had been well established by 

Fisher (1925, 1935), and Neyman and Pearson (1928), among others. It also initiated 

the long debate concerning the two approaches: significance testing for Fisher and 

hypothesis testing for Neyman and Pearson. Testing independence for a 2 x 2 CTs was 

a notable example in these arguments. While the debate was focused on the notions of 

inductive inference, significance level, and decision theory for testing hypotheses, the 

importance of power evaluation was accepted e.g., (Fisher, 1946) with the adoption of 

the idea of identifying appropriate critical regions for constructing more sensitive tests. 

For example, in testing the equality of two binomial parameters by Yule’s test, the ‘p’ 

values and the power at alternatives can be computed from either the normal 

approximation or the exact distribution. However, unified power analysis has not been 

fully developed for Pearson’s chi-square or Fisher’s exact test for assessing 

independence in a 2 x 2 CTs. 

In the 1960s, the invention, development, and modification of tests of 

independence drew the attention of econometricians and statisticians. During the period 

from 1950 to 1970, a rapid improvements were made in various areas of statistics and 

econometrics, including the CTs for categorical data analysis. 

Meanwhile, a controversial issue arises when using the exact test, due to its discrete 

nature; with the limited sample space defined by fixed row and column margins, it 

yielded a conservative test when the sample size is not large. The criticism of the 

conservativeness of Fisher’s exact test reached a climax when Berkson, (1978) 

dispraised Fisher’s exact test using arguments based on Yule’s test for the equality of 

two independent binomial proportions. Since then, Yule’s test has been discussed most 

widely exact as unconditional test in the literature. Yates, (1984) gave supporting 

arguments for Fisher’s exact test, noting that “Tests for independence in a 2 x 2 CTs 
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must be conditioned on both margins”. Most discussants on Yates’ paper agreed with 

his assertion. However, this remains a debated issue in the literature, primarily due to 

the lack of unified power analysis for both Pearson’s chi-square test and Fisher’s exact 

test. (Cheng, P. E., Liou, M., Aston, J. A., & Tsai, A. C. (2008).  

We have found in the literature that many tests for independence in CTs have 

been compared recently, with a wide range of findings such as Assad, (2012) Lin, 

Chang et al. (2015), Amiri and Modarres (2017), (Sulewski (2013), Sulewski (2017) 

etc. The modification in the test of 𝜒2 proposed by Lawal and Upton (1984) bring it 

closest to the nominal level alpha (𝛼). There are numerous studies on the CTs and  χ2 

test of independence in the literature e.g. Meng and Chapman (1966),  Diaconis and 

Efron (1985), Albert (1990), and Andrés and Tejedor (1995), Where there are various 

ways to interpret the test of  χ2   statistics.  Extensive information on the approximation 

of chi-square (χ2 ) and the Likelihood ratio test (G2) provided by several studies e.g.,  

Cochran (1954), (Koehler and Larntz 1980, Cressie and Read 1989). Henceforth, the tests of χ2 

and G2 are consistent and asymptotically unbiased independence tests (Haberman 

1981). According to Cressie and Read (1989), these tests belong to the family of power 

divergence statistics (PDS1).  

Irwin independently created the Fisher-Irwin test in 1935, which is also known 

as the Fisher-Irwin test and is a well-known and extensively investigated test (Fisher, 

1935). Campbell (2007) suggests the application of 𝜒2 test for large sample size and 

Fisher Irwin test for small sample size. Basically, some scholars claim that the actual 

rejection rate of Fisher’s exact test under 𝐻0 is lower than nominal level of significance 

(Liddell 1976, Douglas, Fienberg et al. 1990).   

                                                           
1 Cressie and Read (1984) proposed the power divergence statistics (PDS). PDS family consists numerous tests of 

independence namely,  χ2, G2, Modified G2, FTS, NMCS and CRS. Sulewski, P. (2017) 
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In addition, Haberman (1981) compared the power of the two-tailed Fisher - 

Irwin test to six non-randomized unconditional exact tests. The D2 test which is a 

modification of the 𝜒2 test, was proposed by (Zelterman 1987). Furthermore, the study 

of Lawal and Uptong (1990) attempts to compare the modified 𝜒2 test statistics, (Lawal 

and Upton 1984) to the power of divergence statistics in terms of statistical power.  

A simulation study by Yenigün, Székely et al. (2011) to perceive the empirical 

power performance of maximal correlation tests and compare it with tests of 𝜒2  and 

𝐺2. This study highlights some cases for which the maximal correlation tests 

seems to have more power when considered continuous variable are dependent 

and uncorrelated. Assad, (2012) described and compared four independence tests in 

his dissertation and found that Fisher's exact independence test is robust to all four tests 

used in his study, i.e., Pearson’s product moment coefficient correlation; Goodman and 

Kruskal’s measure of correlation, fisher exact test and chi-square test of independence 

This study used few independence tests for categorical data. There is confusion among 

the data as it has not been segregated as nominal and ordinal. Additionally, the study 

has been conducted on the evaluation of optimal tests for a small contingency table that 

is 2 ×2 contingency table.  

Sulewski, (2013), proposed a modular test that represents the modification in 

χ2 test for two-way and higher-order contingency tables. The study compared  Shan 

and Wilding (2015) modify the extension of the unconditional approach based on 

maximization and estimation to fixed sum designs. This method is based on 𝜒2 , 𝐺2,  

Yates corrected test statistics are evaluated with respect to the actual type 1 error, power, 

and rates.  

Lipsitz, Fitzmaurice, et al. (2015) proposes forest and score test statistics for 
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independence. The proposed Wald and Score test statistics, unlike the Rao-Scott test 

statistics, exist without restriction. Comparing the power of the Rao-Scott test statistic, 

the Score statistic, and the Wald test statistic, it was found that the Wald test statistic 

has the maximum power.  

The technique of bootstrap is a crucial technique for statistical hypotheses 

testing. Bootstrapping procedure approximates the sampling distribution of statistics 

based on the null or the alternative hypothesis by using re-sampling. The non-

parametric bootstrap approach is more effective than  𝜒2  statistic, the 𝜒2  statistic with 

a Yates’ correction and the Fisher exact test (Amiri and von Rosen 2011). 

Lin, Chang, et al. (2015) applied an extensive simulation to identify the 

accuracy of the 𝜒2  and 𝐺2   tests, and then recommend techniques of bootstrapping 

that tends to perform better than the asymptotic tests in term of adhering to the nominal 

level for small to large sample sizes and extreme cell frequencies. The proposed method 

of bootstrapping is criticized for being a conventional method. Moreover, Amiri and 

Modarres (2017) define a test statistic for bootstrapping that deliver more precise results 

in term of inference in the case of small sample size in a contingency table.  

Piotr Sulewski has many recent research contributions in literature-related 

development and comparison of tests of independence such as (Sulewski (2013), 

Sulewski (2017), Sulewski (2019), and Sulewski (2020) in which comparison is carried 

out of tests of independence in CTs. These studies are worthy but still, there is a lack 

of clarity for the evaluation of an optimal test for nominal data for a large number of 

tests as well as for various types of data-generating processes such as in one of his study 

comparisons of modular test is carried out with the PDS for selected larger size of 

contingency table other than 2 ×2 concerning their size of power. The study used power 

criteria (PC) and still, there is a lack of confusion in the case of several types of data 
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sets which one is the optimal test that can be applied to all types of data. In most 

scenarios, the power of each test is extremely useful for comparing different tests 

especially when comparing tests of independence. However, in some scenarios, this 

approach does not provide a satisfactory conclusion.  

When two categorical variables are both naturally ordered, a variety of effect 

size measures have been proposed for such ordinal data, including spearman’s 𝜌, 

Gamma coefficient, Kendall's tau-b, Kendall's tau-c, and Somers’d (Garson, 2008). The 

correlation coefficient”𝜌” is a summary measure that describes the degree of the 

statistical link between two interval or ratio-level variables. The correlation coefficient 

is scaled so that it is always between -1 and +1. When is close to 0 this means that there 

is little or no link between the variables. There is extremely limited literature exists on 

comparisons of experiments of independence for ordinal data in contingency tables. 

Mardia (1969) studied the performance of some tests of independence for ordinal data. 

They found Kendall’s coefficient and a certain other measure of correlations are 

asymptotically equivalent that tests based on Spearman’s rank correlation coefficient. 

The asymptotic relative efficiency of spearman’s rank test was found greater than or 

equal to 1.  

There is limited literature studying comparisons of tests of independence for 

categorical data particularly concerning ordinal data. From 1900 to the present day, 

several tests have been invented, and modified criticism has been leveled at times due 

to data assumptions, the nature of dimensions, statistical techniques, and the nature of 

variable types in the contingency table. Accordingly, over time one hand several tests 

have been developed’ On one side; on the other hand, the question remains as to which 

test is the stringent test and which test should be used for a particular type of nominal 

and ordinal data. In response to this specific question numerous studies have been 
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conducted, e.g. B. Haberman (1981), Lawal and Uptong (1990),  Yenigün, Székely et 

al. (2011), Berry and Mielke Jr (1988),  Mature and Elsayigh, (2010),  Assad, (2012), 

Lipsitz, Fitzmaurice et al. (2015),  Sulewski (2017) and Islam, & Rizwan, M. (2020). 

There is still no consensus on the stringent tests for categorical data and the studies have 

been criticized for developing of new modified tests and performance methods. Mature 

and Elsayigh use standard error criteria for performance in their study, while some other 

researchers used size and power analysis techniques (Sulewski 2017). 

There is limited literature on the tests of independence for ordinal data; 

However, most of these are limited in scope and do not come to the precise conclusion 

of finding the optimal test of independence. Charles H, (1961) discussed in his book 

the relative efficiency of four measures of correlation Pearson product-moment 

correlation, Kendal 𝜏𝑎, 𝜏𝑏 𝑎𝑛𝑑 𝜏𝑐 compared and found that Kendal Tau is more reliable. 

Selecting the most powerful test from the literature is a central problem in the social 

sciences and the primary question facing researchers is figuring out which test to use 

for available data.  

2.2 Literature Summary and Research Gap 

 

There are several tests of independence for nominal data in the literature which 

always lead to confusion when applied to real data sets. In the literature the study is 

associated with comparing tests of independence; many studies are found using 

pairwise comparisons but there is no consensus for universal comparisons of tests of 

independence for nominal and ordinal data using special techniques such as stringency 

criteria (SC). Let’s assume that there are two tests 𝑇1 and 𝑇2 for comparison of 

independence in CTs. For some alternatives, 𝑇1 may perform better than 𝑇2 and for 

some other alternative scenarios, 𝑇2 the test may perform better than  𝑇1. To solve this 
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type of puzzle, Maxwell L King developed a technique, (1985) and further popularized 

by Zaman, (1996) to compare different tests and solved the above scenario problem 

known as Stringency Criteria (SC). The literature is silent about using a comparison of 

a large number of tests of independence for numerous DGP in w× k CTs.  

In summary of the literature, it is noted that researchers have compared tests 

of independence for nominal and ordinal data for specific data-generating process rather 

than taking a variety of DGP. This study takes into consideration a variety of DGP in 

2 × 2 and w × k  order CTs. This study also contributes in literature related to ordinal 

data as limited literature is available comparing the tests of independence on ordinal 

data. Subsequently, this study examines the size and power properties of different tests 

of independence and evaluate the most stringent test for nominal data as well as the 

most powerful test for ordinal data.  
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CHAPTER ‘3 

COMPUTATIONAL DETAILS OF TEST OF INDEPENDENCE 

FOR CATEGORICAL DATA 

This chapter describes an ‘overview ‘of ‘several ‘tests of independence for nominal 

‘data in ‘‘2 × 2 and  w × k  CTs ‘in section 3.1. Section 3.2 and 3.3 describes preliminaries 

of ordinal data and explains computational details of popular tests of independence/measure of 

correlation ‘used ‘in ‘w ×  k CTs.  

3.1 Tests of Independence for Nominal Data for 𝐰 ×  𝐤 CTs 

 

Statistical science has been enriched by many tests proposed in different 

periods as tests of independence in w ×  k CTs. We describe notations and formulas 

of some of the recent and well-known popular tests of independence concerning 

w ×  k CTs below. 

3.2.1 Chi-Square ( 𝝌𝟐) Test Statistics 

The chi-square statistics to examine the independence for X and Y has the 

following forms  

                                χXY
2 =∑∑

(nij − eij)
2

eij

k

j=1

w

i=1

                                                      (3.17) 

Where nij, is observed counts, ije  is expected counts and the sign ∑ denotes 

sum over a row or a column. The statistics have an asymptotically (i.e. sample size 

∞) follows chi-square distribution with  𝑑𝑓 =  (w − 1)(k − 1) provided that the 

hypothesis Ho of the independence of X and Y is true.  



18 
  

3.1.2 Likelihood Ratio(𝑮𝟐) Test Statistics 

The likelihood-ratio test is an alternative to the Pearson chi-square test for 

testing the independence of row and column classifications in unordered CTs. The 

likelihood ratio test examines the independence for X and Y has the form for w ×  k 

CTs. [Sokal & Rohlf, 2012] 

                                   GXY
2 = 2∑∑nij

k

j=1

ln (
nij

eij
)

w

i=1

                                                      (3.18) 

Where nij are observed in the ith  row and jth  column. eij is the expected number 

of the ith row and the jth  column. When the null hypothesis of the independence of 

X, Y variable is accepted. The statistics follow an asymptotic non-central chi-

square distribution with (k − 1)(w − 1) degree of freedom.  

3.1.3 Fisher Exact Test Statistics (FES) 

The Fisher exact test (Fisher, 1922) is also popular, independently developed 

by Irwin (1935), and known as the Fisher-Irwin (FI) test. The FI test is most applied 

to 2×2 CTs because it can be computationally time-consuming for tables bigger than 

2×2. According to a study by Yates (1934) and shier, (2004); the test  χ2, Pearson is 

used when  eij ≥ 1  for each = 1,… .w; j = 1,… , k, , and when no more than 20% of 

the expected counts are less than 5. If the above-mentioned condition is not met, then 

the Fisher-Yates test can be used.  

An extension of the Fisher-yates test for the tables w ×  k was proposed by 

Freeman and Halton (1951).  If the null hypothesis [H0], the independence of X and Y 

variables is true, is the probability of a specific distribution of numbers in the table w ×

 k, for the determined marginal numbers and the symbols adopted in the 2 ×  2 CTs, It 

is given by the formula (Kang 1999).  
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                           FESxy =
∏ ni.
w
i=1 . ∏ n.j

k
j=1

n!.∏ ∏ nij
k
j=1

w
i=1

                                   (3.19) 

Where  nij = i = 1,2……w, j = 1,2……k), We generate each table that is 

compatible with the given marginal totals, and calculate the exact probability "p” 

of each table, through the formula of Fisher, (1934) formula. The subroutine 

increment generates each of the possible CTs by computation of its simple exact 

probability, which is based on studies of Yates, (1934) and Fisher, (1934). If n1,

n2, n3…, are the totals of the row and  m1, m2, m3…, are the totals of the column, 

anda1, a2, a3…, are the array’s elements, and "G” represents the total, then 

FESxy =
n1! n2! n3! n4!……….  m1!m2!m3!m4!…… .

G! a1! a2! a3!
                          (3.21) 

Apart from the challenge of logical design, there is also the challenge of 

lengthy computation. In fact, the original papers give simulated critical values 

(SCV) instead of the critical values (CV) based on any standard distribution. 

Therefore, it is assumed that there is no standard distribution of fisher exact test.  

3.1.4 Neyman Modified Chi-Square Test Statistics (NMCS)  

 The Neyman modified Chi-Square statistics for w ×  k CTs has the 

following computational form; [Neyman 1949] 

                            NMCSXY = ∑ ∑
(nij−eij)

2

nij

k
j=1

w
i=1                                       (3.22) 

Where nij are observed counts in the ith  row and jth  column. eij is expected 

counts of the ith row and the jth  column. When the null hypothesis of the 

independence of X, Y variable is true. The test statistics are nonparametric and do 

not follow any standard or known distribution (Sulewski, P., & Motyka, R. 2015) 
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3.1.5 Kullback and Liabler Test Statistics (KLS) 

The Kulback and Liaber test statistics for w ×  k CTs for two variables X 

and Y have the following computational form; [Kullback 1959] 

                                             𝐾𝐿𝑆𝑋𝑌 = 2∑∑𝑒𝑖𝑗(
𝑒𝑖𝑗

𝑛𝑖𝑗

𝑘

𝑗=1

𝑤

𝑖=1

)                                           (3.23) 

Where nij are observed counts in the ith  row and jth  column. eij is expected 

counts of the ith row and the jth  column. When the null hypothesis of the 

independence of X, Y variable is true. The test statistics are nonparametric and do 

not follow any standard or known distribution. Sulewski, P., & Motyka, R. (2015) 

3.1.6 Freeman and Tuckey Test Statistics (FTS) 

The Freeman and Tuckey test for higher order CTs for two variables X and 

Y has the following computational form: [Freeman, Tukey 1950] 

                                FTSXY = 4∑∑(√nij

K

j=1

W

i=1

−√eij)
2                                      (3.24) 

Where nij are observed counts in the ith  row and jth  column. eij is expected 

counts of the ith row and the jth  column. When the null hypothesis of the 

independence of X, Y variable is true. The statistics have an asymptotic non-central 

chi-square distribution with (w − 1)(k − 1) degree of freedom.  

3.1.7 Cressie and Read Test Statistics (CRS) 

The computational form of Cressie and Read (CR) test for two variables X and 

Y are stated below; [Cressie, Read 1984] 

                              CRSXY =
9

5
∑∑nij[(

nij

eij
)

2

− 1]

k

j=1

w

i=1

                                         (3.25) 
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Where nij are observed counts in the ith  row and jth  column. eij is expected 

counts of the ith row and the jth  column. When the null hypothesis of the 

independence of X, Y variable is true. The statistics follow an asymptotic non-

central chi-square distribution with (w − 1)(k − 1) degree of freedom. 

3.1.8 D Square (𝑫𝟐) Test Statistics (DST) 

The D - Squared (𝐷2) test which has been developed by Zelterman, (1987) has 

the following computational form for w ×  k CTs are sated below. 

                   𝐷2𝑥𝑦 =∑∑
(𝑛𝑖𝑗

∗ − 𝑒𝑖𝑗
∗ )2 − 𝑛𝑖𝑗

∗ )

𝑒𝑖𝑗
∗

𝑘

𝑗=1

                                                       (3.26)

𝑤

𝑖=1

 

Where, 𝑛𝑖𝑗
∗  are observed in the ith row and jth column. 𝑛𝑖𝑗

∗  are expected numbers 

of ith row and jth column. When the null hypothesis H0 about the independence of X 

and Y is accepted then 𝐷2𝑥𝑦  has an asymptotic non-central chi-square distribution 

with df = (w − 1)(k − 1). 

3.1.9 Modular Test Statistics |χ| (MDS) 

Sulawesi, (2013) proposed |χ| test which is the modification of chi-square 

tests and is given by.  

                                     𝑀𝐷𝑆|χ|𝑋𝑌 =∑∑|
𝑛𝑖𝑗 − 𝑒𝑖𝑗

𝑒𝑖𝑗
|                                          (3.27)

𝑘

𝑗=1

𝑤

𝑖=1

 

 

The test statistics follow the chi-square distribution. Where, nij are observed in 

the ith row and jth column. eij are expected numbers of ith row and jth column. When 

the null hypothesis ‘ H0’ about the independence of X and Y is true then |χ|𝑋𝑌   has 
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an asymptotic non-central chi-square distribution with a degree of freedom = (w −

1)(k − 1). 

3.1.10 Logarithmic Minimum Square Test (LMS)  

  LMS tests have the following computational form for w ×  k CTs are sated 

below. 

                      LMSXY = −∑∑ln

K

j=1

[
min(nij, eij)

max(nij, eij)
]                                        (3.28)

W

i=1

 

The above LMS formula shows that 𝑛𝑖𝑗 ≠  0 and 𝑒𝑖𝑗 ≠ 0  for each i =

1…… .w: j = 1…… . k, as a result, the size of the sample cannot be too narrow to 

calculate the power of the test for different scenarios stated in Chapter 4. Since it is 

known that resampling must reflect the null hypothesis. This is important to 

resample the CT, if 𝑝𝑖𝑗 = 𝑝𝑖+𝑝+𝑗 holds. When testing the independence for two 

categorical variables, Amiri and von Rosen (2011) and Lin et al. (2015) used the 

expectations of cells under the null hypothesis: 𝐻𝑜: 𝑒𝑖𝑗 =
𝑛𝑖+𝑛+𝑗

𝑛
.  

We can convert the cell counts of the w ×  k CTs 

(𝑛11,…… . 𝑛1𝑘,, …… ; 𝑛𝑤1… . , 𝑛𝑤𝑘) to (𝑛1,𝑛2,, …… . , 𝑛𝑁) where 𝑛𝑢, are the 𝑛𝑖𝑗 

values indexed row by row. A new variable for each cell is 𝑍 = (𝑛1,𝑛2,……𝑧𝑁,)
𝑡
 

and the associated probabilities are 𝑝 =  (𝑝1,𝑝2,……𝑝𝑁,)
𝑡
, for a given CT, the 

variable Z and probabilities 𝑝, we can write this as  𝑍~𝑀𝑢𝑙𝑡𝑖 (𝑛, 𝑝). 

Let 𝑍 = (𝑧1 = 𝑛1, 𝑧2 = 𝑛2…… 𝑧𝑁) be a multinomial sample with  ∑𝑖=1
𝑁 𝑛1 

, estimates of the sample proportions are �̌�= �̌�1, ………… . �̌�𝑁), where �̌�𝑗 =
𝑛𝑗

𝑛
 , the 

bootstraps resample is defined as sampling with replacement with elements of z 
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with size n. the bootstraps estimates of the proportions are �̂�= �̂�1, ………… . �̂�𝑁), 

where �̂�𝑖= 
𝑛1

𝑛
 . A modified Logarithmic minimum square test (𝐿𝑀𝑆𝑚) is to be used in 

a case if there is zero in the cells. Sulewski, P. (2019). 

                      LMSm = −∑∑ln

K

j=1

[
min(nij, eij)

max(nij, eij)
+ 0.00001]                               (3.29)

W

i=1

 

3.1.11 BP Tests Statistics (BPS) 

Amiri and Modarres, (2017) proposed the BP test of independence using a 

test statistic for the bootstrap sample defined as  

                                    BPTXY = n(p̂ − p0)
tA(p̂ − p0)                                          (3.30) 

Where 𝑃𝑜 is calculated under  𝐻𝑜: 𝑝𝑖𝑗, = 𝑝𝑖+,𝑝𝑗+,∑𝑝 = 𝐷𝑖𝑎𝑔(𝑝) = 𝑃𝑡𝑝, 𝐴 =

∑𝑝−1 𝑎𝑛𝑑 𝑝 𝑖𝑠 the vector of observed proportions. Since the inverse of ∑𝑝 does not 

exist (det (∑𝑝) = 0)), therefore, we used the Moore – Penrose2 generalized inverse 

which has been used previously in literature. Sulewski, P. (2019). 

3.2 Independence in Ordinal data  

 

Ordinal data can take different forms; For example, one can measure students' 

height and weight and calculate the correlation between pairs of measurements. Both 

height and weight are continuous variables and do not fall under the category of 

categorical variables. However, researchers often measure these variables in different 

intervals. One can ask for the range instead of the exact height such as (taking the most 

appropriate height i.e., 50-55, 55-60, 65-70, etc.,). Such intervals have natural ordering 

                                                           
2 Moore-Penrose is a linear algebra technique used to approximate the inverse of non-invertible matrices. This 

technique can approximate the inverse of any matrix, regardless of whether the matrix is square or not. In short, 

Pseudo-inverse exists for all matrices. If a matrix has an inverse, its pseudo-inverse equals its inverse. 
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and may be taken as discrete variables having a proper rank. The results obtained can 

be replaced by ranks and the correlation between pairs of ranks can be computed. 

Rank is the sequence number of the statistical observation in the sample after 

the observations have been ordered by the value of one of the variables. Usually, an 

ascending ordering and numbering from 1 are used. Replacing a variable with its ranks 

is an operation called ranking. In the case of observations with an equal value of the 

ranked variable (so-called linked ranks), usually, all these observations are assigned the 

same rank, which is the average of their sequential numbers. Therefore, ranks cannot 

have integer values. If x1 = 2; x2 = 1; x3 = 4; x4 = 4, it's after sorting ;  x2 =

1; x1 = 2; x3 = 4; x4 = 4, Then the rank has the form ;  r2 = 1; r1 = 2; r3 =

3,5; r4 = 3, 5, and after restoring the original order, r1 = 2; r2 = 1; r3 = 3,5; r4 =

3, 5.  

In many situations where ranks are used, it is not possible to obtain numerical 

measures (e.g., ranking students in terms of their degree of social adoption). Ranks have 

been used in correlation studies for many years, but they are also used for many other 

purposes, such as in tests that compare two correlated or independent samples. Ranks 

are expressed in terms of natural numbers 1, 2 …. N and identify with 

symbols X1, X2 , …… . . Xn. The sum of these numbers and the sum of their squares is 

written as follows: 

                                      ∑ Xw =
N(N+1)

2
 N

i=1                                                          (3.31)  

                                   ∑ Xw
2 =

N(N+1)(2N+1)

6

N
i=1                                                    (3.32)               

Average and variance of numbers 1,2, …… .N is.  
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                                      X̅ =
N+1

2
,                        s2 =

(N−1)(N+1)

2.6
                             (3.33)      

For, rx , ry  condition of independence is πwk = πw πk  implies that Cov (rx , ry  ) =0.  

3.2.1 Inversion Factors 

N’ units are ranked by X and Y traits. X ranks are denoted by 

X1, X2, X3…… . XN   and the ranks in the range of Y are denoted by Y1, Y2, Y3…… . YN . 

One of the inversion factors is the sum of the squared differences between the pairs of 

ranks.  

                                 d2 = ∑ (Xi − Yi)
2N

i=1
                                              (3.34) 

This quantity takes on a minimum value of zero if the items in the range of both 

variables are in the same order. If the pairs of ranks are in the reverse order, then the 

measure takes the maximum value equal to 

                                    dmax
2 =

N(N2 − 1)

3
                                                          (3.35) 

Another inversion factor is the ‘S’ statistic. If the ranks for variable X are in 

ascending order, then the ranks for variable Y show some degree of inversion 

concerning X. To compute the ‘S’ statistic, each rank for variable Y compares with all 

other ranks. If the pair of ranks is in ascending order, the value of the S statistic increases 

by 1. If the pair of ranks is in decreasing order, the value of the S statistic decreases by 

1. This statistic is the sum of such with 𝑁(𝑁 − 1)/2 comparisons. When sets of ranks 

are arranged in ascending order, the measure S takes the maximum value equal to 

                                             𝑆𝑚𝑎𝑥 =
𝑁(𝑁 − 1)

2
                                                         (3.36) 

Rearranging data into descending will not change the value of S.  
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3.3 Tests of Independence for Ordinal Data in ‘W × K CTs 

 

We have taken popular tests of independence3 ordinal data in w × k CTs which 

are described below. 

3.3.1 Spearman's Rank Correlation Test (𝝆) 

Spearman’s rank correlation test is a non-parametric test/measure of strength 

and direction of association that exists between two variables measured as an ordinal 

scale. It is denoted by a symbol  𝑟𝑠 and Greek letter 𝜌. The inversion measure is 

presented in 3.3.1 in the definition of spearman's 𝜌 coefficient. It is identical to the 

Pearson correlation coefficient calculated for ranks. Which is used to describe the 

strength of the correlation of two variables, especially when they are qualitative. When 

the number of observations is small, it can be used to examine the relationship between 

quantitative variables by prior ranking. Spearman's 𝜌 is described by the formula. 

                                               𝜌 = 𝑟𝑠 = 1 −
6𝑑2

𝑁(𝑁2 − 1)
                                              (3.37) 

Where, 𝑑2 is the measure of inversion, and N - is the number of observations (sample 

size).  

Based on the “n” of a sample taken from the population, the null hypothesis is that the 

spearman 𝜌 coefficient is zero i.e., ( 0:0 sH  ) against the alternative hypothesis

0:0:0: 111  sss HHH  .  

                                                           
3 Tests of independence are same as measure of correlations for ordinal data. The study of seven well known tests 

of independence/measure of correlations for ordinal data is carried out in this study.  
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3.3.2 The Kendall τ-a coefficient 

The τ-a Kendall coefficient is used only in cases where the so-called tied 

(related) ranks. Linked pairs occur when not all observations have the same values and 

respondents cannot be strictly ordered by the value of a given variable. A pair is said to 

be linked if the same value (rank) is observed for one or both variables. The relation 

can be due to variable X, variable Y, or both. For two-way tables, all cases falling into 

the same category of one variable (row or column) are related to each other. 

There are five types of pairs: 

                                        𝑁𝑐 + 𝑁𝑑 + 𝑇𝑥 + 𝑇𝑦 + 𝑇𝑥𝑦 =
𝑛(𝑛−1)

2
                                 (3.38) 

 If the difference 𝑁𝑐 − 𝑁𝑑   is divided by the number of all pairs in the ‘N’ 

element set, the coefficient proposed by Kendall in the form Kendall, (1938). 

                                      𝜏𝑎 =
𝑁𝑐 − 𝑁𝑑

(
𝑛
2
)

=
2(𝑁𝑐 − 𝑁𝑑)

𝑛(𝑛 − 1)
                                             (3.39) 

 If the empirical data is written in the form of w × k  CT and the categories of 

this table are ordered, then. 

                                         𝑁𝑐 =∑∑𝑛𝑖𝑗𝐶𝑖𝑗

𝑘

𝑗=1

                                                              (3.40)

𝑤

𝑖=1

  

                                 𝐶𝑖𝑗 =∑∑𝑛𝑎𝑏 + ∑ ∑ 𝑛𝑎𝑏

𝑘

𝑏=𝑗+1

  

𝑤

𝑎=𝑖+1

𝑗−1

𝑏=1

   

𝑖−1

𝑎=1

                                   (3.41) 

                                      𝑁𝑑 =∑∑𝑛𝑖𝑗𝐷𝑖𝑗

𝑘

𝑗=1

𝑤

𝑖=1

                                                                (3.42) 
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                       𝐷𝑖𝑗 =∑ ∑ 𝑛𝑎𝑏 + ∑ ∑𝑛𝑎𝑏

𝑗−1

𝑏=1

                                         (3.43)

𝑤

𝑎=𝑖+1

𝑘

𝑏=𝑗+1

𝑖−1

𝑎=1

 

 If the numbers of matched pairs are denoted by 𝑁𝑐   and unmatched pairs by 

𝑁𝑑  ; then the difference between  𝑁𝑐 − 𝑁𝑑   is the difference between the matched pairs 

and unmatched pairs. In case of 𝑁𝑐 −𝑁𝑑 > 0, the relationship is positive while in the case 

of 𝑁𝑐 − 𝑁𝑑 < 0 the relationship is negative.  

3.3.3 The Kendall coefficient of τ-b 

The τ-b coefficient proposed by Kendall has the following computational form. 

                          𝜏𝑏 =
𝑁𝑐 − 𝑁𝑑

√(𝑁𝑐 − 𝑁𝑑 + 𝑇𝑥)((𝑁𝑐 − 𝑁𝑑 + 𝑇𝑦)
                                (3.44) 

 Its popularity is because it takes on values close to Pearson's linear correlation 

coefficient, especially when the number of categories for each of the analyzed variables 

is not less than 5. The τ-b coefficient is symmetric, takes values from the interval, but 

takes extreme values only for square tables. It is the geometric mean of the two 

asymmetric Somer’s D coefficients. 

                                            𝜏𝑏 = ±√𝑑𝑦𝑥 − 𝑑𝑥𝑦                                                         (3.45) 

If the empirical data is written in higher order CT, then the following formula is used 

for computation; 

                                            𝜏𝑏 =
𝑁𝑐 − 𝑁𝑑

√𝐷𝑤 − 𝐷𝑘
                                                                (3.46) 

3.3.4 Kendall Stuart τ-c coefficient 

 The Kendall Stuart τ-c coefficient proposed by Kendall and Stuart for CTs has 

the following computational form stated by Kendall and Stuart, (1973) 
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                                      𝜏𝑐 =
2𝑚(𝑁𝑐 − 𝑁𝑑)

𝑛2(𝑚 − 1)
= 𝑚 = min(𝑤, 𝑘)                             (3.47) 

 It was designed specifically for tables and can formally take values from    

(−1 𝑡𝑜 + 1). Interpreting its size is difficult as it is strongly dependent on the size of the 

table. The τ-c coefficient is symmetrical and has no proportion reduction error (PRE)4 

interpretation. 

3.3.5 Goodman – Kruskal Gamma (γ)  

 The γ coefficient proposed by Goodman and Kruskal does not consider bonded 

pairs, it can be computed from the following formula, Goodman and Kruskal, (1954). 

                                                                   𝛾 =
𝑁𝑐 − 𝑁𝑑
𝑁𝑐 + 𝑁𝑑

                                                     (3.48) 

This coefficient is symmetric and takes on values from the range. Values close 

to zero indicate that there is no or only a weak relationship between the variables, values 

close to | 1 | mean a strong dependence. Gamma can be used as a test of independence 

using a Z score where the null hypothesis is 𝐻1 = no association against the 

alternative hypothesis of 𝐻1 = there is an association amongst the variables. 

3.3.6  Sommers’s coefficient 

 The Somers Delta or “d” coefficient proposed by summer’s taking into account 

bonded pairs has the form; (Somers 1962).  

(Y - Dependent variable)                      

                                                           
4 Proportion Reduction Error (PRE) is predicting the ordering of unrelated pairs with respect to the independent 

variable in CTs.  

 



30 
  

                                            𝑑𝑦 𝑥 =
𝑁𝑐 − 𝑁𝑑

𝑁𝑐 + 𝑁𝑑 + 𝑇𝑦
                                                            (3.49) 

(X - Dependent variable)  

                                                     𝑑𝑥 𝑦 =
𝑁𝑐 − 𝑁𝑑

𝑁𝑐 +𝑁𝑑 + 𝑇𝑥
                                                   (3.50) 

 The “d” coefficient is asymmetric, its size depends on which variable is 

dependent. Comparing it with the coefficient γ, it was found that it does not reach an 

absolute value greater than γ. It takes values from the interval. If the number of columns 

is greater than the number of rows, it does not get the value 1, because then there are 

connections due to Y. Likewise (X is a dependent variable) it does not get the value 1 

when the number of rows is greater than the number of columns.  

Somer’s also used the following formula for symmetrical variants 

                                     
 

yxdc

dc
s

TTNN

NN
d






5,0
                                            (3.51)                                      

(Y - Dependent variable) 

                                           
w

dc
xy

D

NN
d


|                                                         (3.52) 

(X - Dependent variable) 

k

dc
yx

D

NN
d


|                      ,     

 kw

dc
s

DD

NN
d






5,0
                                      (3.53) 

                                                      𝐷𝑤 = 𝑛2 − ∑𝑛𝑖.
2

𝑤

𝑖=1

                                                                   (3.54) 

                                      



k

j
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,                                                         (3.55) 
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       𝐷𝑤, 𝐷𝑘 are the coefficients, Somers’s coefficient also has an interpretation in 

terms of PRE and is analogous to the interpretation of coefficient γ. The difference is 

that proportional error reduction is about predicting the ordering of unrelated pairs with 

respect to the independent variable. The coefficient factor  yxd  can be interpreted as the 

probability that random observation ‘j’ ranks higher/lower and variable ‘Y’ when it 

ranks higher on variable ‘X.’ 

3.3.7 Novel Phi_k ( 𝒌 ) Correlation  

The Novel ϕ
𝑘
 correlation is useful for assessing the association between 

nominal, ordinal, ratio, and interval variables. This has the specialty that it does not 

only capture the linear association but nonlinear association as well in CTs.  

The calculation of correlation coefficients between paired data variables is a 

standard tool of analysis for every data analyst. Pearson’s correlation coefficient is a de 

facto standard in most fields, but by construction only works for interval variables 

(sometimes called continuous variables). Pearson is unsuitable for data sets with mixed 

variable types, e.g., where some variables are ordinal or categorical. 

While many correlation coefficients exist, each with distinctive features, we 

have not been able to find a correlation coefficient with Pearson-like characteristics and 

a sound statistical interpretation that works for interval, ordinal, and categorical variable 

types alike. 

The correlation coefficient  ϕ
𝑘
  follows a uniform treatment for interval, ordinal 

and categorical variables, captures non-linear dependencies, and is like Pearson’s 

correlation coefficient in the case of a bivariate normal input distribution. 
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Visualizing the dependency between variables can be tricky, especially when 

dealing with (unordered) categorical variables. To help interpret any variable 

relationship found, we provide a method for the detection of significant excesses or 

deficits of records with respect to the expected values in a contingency table, so-called 

outliers, using a statistically independent evaluation for the expected frequency of 

records, accounting for the uncertainty on the expectation. We evaluate the significance 

of each outlier frequency in a table and normalize and visualize these accordingly. The 

resulting plots we find to be valuable to help interpret variable dependencies and work 

alike for interval, ordinal and categorical variables.  

The Novel ϕ𝑘 The correlation estimator is computed as: 

Step 1  A w × k CT is created, filling of the CT for ordinal data or chosen 

variable pair, which contains N records, has w rows.  

Step 2  Evaluate the χ2 contingency test using Pearson's  χ2  test statistic 

Step 3  Interpret the χ2 value as coming from results and if  χ2  < χ2 
𝑝𝑟𝑒
 , set 

𝜌 = 0. 

Step 4  Else, with fixed N, w, k, χ2  invert the function and solve numerically 

for the rho value. The solution for 𝜌 defines the correlation 

coefficient Novel 𝑘.  
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CHAPTER 4 

METHODOLOGY 

This chapter presents the methodology and procedure used to compare tests of 

independence for nominal and ordinal data. Section 4.1 explains the simulation design, 

Data Generating Process (DGP), Computation of size distortion (SD), Computation of 

finite sample critical values (FSCV), Power envelope, Maximum likelihood, Power 

analysis, and SC for selection of most stringent test of independence for nominal data. 

Section 4.2 discusses the methodology for the most stringent test of 

independence/measure of correlation for ordinal data using PC.   

4.1 Methodology and Procedure of Tests of Independence for Nominal Data 

 

The methodology for tests of independence in w × k CTs is discussed below: 

4.1.1 Simulation Design  

The core objective is to assess the performance of tests of independence for 

nominal data by comparing the power of tests using the stringency criteria (based on 

the power envelope). To achieve these objectives, the study focuses on Monte Carlo 

Simulations (MCS). We have analyzed the performance of tests of independence using 

algorithms based on MCS and through SC select the most stringent tests of 

independence for nominal in w× k CTs.  

The proposed methodology consists of the following three steps: 

a. Data generating process (DGP) 

b. Calculation of finite sample critical values (FSCV)  

c. Power curve, power envelope, and stringency criteria (SC) 

The sub-objective of the simulation experiment is to find out the size and power 

properties of tests of independence for nominal data. Therefore, we need several DGP 
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in 2 × 2 and w× k dimensions5 CTs. The selection of the DGP for the MCS study is 

particularly important mostly in the comparative analysis. The tests or approaches can 

be compared in the same framework to recommend the superiority of one test or the 

weakness of another test. Fig 4.1 shows the simulation design for the present study.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Simulation design for categorical data 

+ 

For simulation purposes, we construct a sample of nominal random variables that 

cover conditions of independence. Suppose we want to generate a random number having 

theoretical distribution shown in Table 1.3. The row probabilities of each random number 

                                                           
5 The dimensions chosen by this dissertation covers the dimension i.e., 2×2 CT and for 3×3 CT, used by earlier 

studies. In addition to that we have added some new dimensions i.e., 2×3 CT , 3×2 CT , 4×4 CT , 5×5 CT 6×6 CT 

and 12×12 CTs which provides sufficient space for GENERALIZATION. 
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of the statisics

Size Distotion ( 
Asymptotic)

Compute Test Statisics

H1

CT (Repeat n Times S)

Apply Tests (Using CV 
Obtaind under H0)

Count % of rejection = 
(Power)

Compute Test Statisics
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are given by 𝜋1., 𝜋2.……… . 𝜋𝑤.whereas column probabilities are given by 

𝜋.1 , 𝜋.2…………𝜋.𝑘 . The procedure is as follows, Take a contingency table of W*K 

having all zeroes. 

a) Let’s Generate “X” such that X ∼ U [0, 1] and define X′  as follows.  

Take      x′ =  1                 if          x ≤    
π 1. 

               x′ =  2                  if          x >
π 1. and x <    

π 1. +
π 2. 

:  : : : 

:  : : : 

:  : : : 

                x′ =  𝑊                 if          x >    π 
1.
+  

π 2.…… . .
π w−1. 

b. Similarly, generate  “Y” such that Y ∼ U [ 0, 1] 

Take                           y′ =  1                   if          y ≤    π 
.1

 

y′ =  2                  if          y > π 
.1
𝑎𝑛𝑑 < π 

.1
+ π 

.2
 

:  : : : 

:  : : : 

:  : : : 

:  : : : 

y′ =  𝐾             if          y >    π
.1 
+  π

.2 
  +.…… . .

π
.k−1  

c. Adding 1 to row x′ and column y′ .  

d. Repeating step 1 n times to get a contingency table with n data points.  

4.1.2 Computation of Size Distortion in CTs 

The following steps are involved in calculating size distortion.  
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a)  Generate data under 𝐻0. 

b) Arrange data in 2 ×  2  or  w ×  k contingency tables. 

c) Calculate test statistics (selected one of eleven tests taken under this study).  

d) Use asymptotic critical values (ACV) to Accept/Reject.  

e) Repeat 20,000 (MCS)6 times, Count% rejection probability, distortion is  (𝑝 −

α) where, "𝑝" is actual rejection probability and “α” is a nominal size. If size 

distortion is greater than 0, calculate 95%, percentile.  

4.1.3 Computation of Finite Sample Critical Values in CTs 

The following steps are involved in the calculation of finite sample critical values.  

a) Generate data under 𝐻0 

b) Arrange data in 2 ×  2  or w ×  k contingency tables. 

c) Calculate test statistics (Selected one of eleven tests taken under this study).  

d) Repeat 20,000 times (MCS).  

e) Critical Value is(1 − 𝛼) percentile of the tests statistics obtained.  

4.1.4 Computation of Power in CTs 

a) Generate data under 𝐻1 with pre-specified MoU. 

b) Arrange data in 2 ×  2  or w ×  k contingency tables. 

c) Calculate test statistics, and decide acceptance/rejection using ACV / FSCV. 

d) Repeat steps a, b, and c “20,000” times (MCS) and calculate power = % of 

rejections.  

                                                           
6 The replications involves so many regressions and millions of calculations are needed just to complete one 

replication. There are so many scenarios presented in dissertations for 18 tests of independence used for nominal 

and ordinal data. Since for each scenario I needed such calculations. The total arithmetic’s needed to do the analysis 

becomes in billions, therefore even with heavy duty computers, it is problematic to increase MCSS.   
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4.1.5 Computation of Maximum Likelihood Ratio Test 

Maximum likelihood estimation is a systematic technique for estimating 

parameters in a probability model from a data sample. Suppose a sample 

x1, x2, x3……… . . xn has been obtained from a probability model specified by a 

contingency table; then the maximum likelihood estimate is produced as follows for 

higher order contingency table. 

Let we have observed the table under H0 shown in equation 4.1. 

                Z =   (

n11 n12………… n1w
n21 n21………… n2w
n31 n32………… n3w

)                                                      (4.1) 

Then the general n × k becomes  

                                         𝑛 =  ∑𝑛𝑤𝑘                                                                    (4.2) 

Then the probabilities under  𝐻0 becomes i.e., the Theoretical table shown in equation 

4.4 

                                                 𝑍1 = 
𝑍
𝑛⁄                                                                   (4.3) 

                 𝑍1 =  (

π11 π12………… π1w
π21 π22………… π2w
π31 π32………… π3w

)                                                    (4.4) 

Suppose we have theoretical probabilities as defined in Table 1.3. The likelihood under 

𝐻1  can be written as below:  

 

 Liklihood =  
(
𝑛
n11)(

𝑛
n12)…………..(

𝑛
nwk)  

(π11)
n11  (π12)

n12

(πwk)
nwk

                                   (4.5)                                                               

𝐿𝑖𝑘𝑙𝑖ℎ𝑜𝑜𝑑 =  ∏ ∏ (
𝑛
nij
) (πij)

nij𝐾
𝑗=1

𝑊
𝑖=1                                                        (4.7) 

𝐿𝑜𝑔 𝐿𝑖𝑘𝑙𝑖ℎ𝑜𝑜𝑑 =  ∑ ∑ 𝐿𝑜𝑔 (
𝑛
𝑛𝑖𝑗
)𝐾

𝑗=1
𝑊
𝑖=1 + ∑ ∑ 𝐿𝑜𝑔 (πij)

nij𝐾
𝑗=1

𝑊
𝑖=1            (4.8)        
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Using equation 4.8 we calculated the maximum likelihood under H0. 

4.1.6 Measurement of Untruthfulness (MoU) 

MoU is the measure of deviation from the condition of independence and is 

denoted by the symbol ′θ′ in this dissertation. Sulewski, (2017) proposed MoU for 

W*K CTs defined as:  

          𝑀𝑜𝑈 =  ∑ ∑ |𝐾
𝑗=1

𝑊
𝑖=1 𝜋𝑖𝑗 − 𝜋𝑖+𝜋+𝑗   | =  θ                                 (4.9) 

Replacing theoretical probabilities with empirical ones we obtain MoU as  

MoU = 1/𝑛 ∑ ∑ |𝐾
𝑗=1

𝑊
𝑖=1 𝑛𝑖𝑗

∗ − 
𝑛𝑖+
∗ 𝑛𝑗+

∗

𝑛
 |  =  1/𝑛 ∑ ∑ |𝐾

𝑗=1
𝑊
𝑖=1 𝑛𝑤𝑖𝑗

∗ − 𝑒𝑖𝑗
∗      (4.10) 

The MoU takes values in (0, 2), and is applied in Monte Carlo Simulation.  

4.1.7 Power Envelope Curve and Stringency Criteria (SC) 

The power curve is the graph of power plotted against the measure of 

untruthfulness (MoU). For each test of independence when we calculate critical values 

and draw the power curve taking different alternatives θi  on the X-axis and power of 

point optimal test on the y-axis that is the plot of (θi, 𝑇
𝑚) where,(  Tθ

m  ) is the maximum 

power that is attained by the approximate point optimal test. Then we calculate the 

shortcomings of the numerous tests of independence through stringency criteria.  

Consider tests 𝑇1, 𝑇2, 𝑇3… , 𝑇𝑀 with power function (𝑇𝑚, θ ), m = 1, 2,…., M, that 

depends on θ, the degree to which the null hypothesis is violated. At each value of 

θ, find out the test with maximum power to produce the envelope function 

S (θ) =  max
𝑚
{𝑃 (𝑇𝑚,θ ), m =  1,2,… . ,M, }                      (4.11) 

For each test, find the largest “Shortcoming” defined as  

  D (𝑇𝑚) =  max
0
{𝑆(θ) − 𝑃(𝑇𝑚, θ )}          m =  1,2, … . ,M,             (4.12) 
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The most stringent test 𝑇∗ is that which minimizes the maximum shortcoming. 

That is, 

𝑇∗ = 𝑎𝑟𝑔min
𝑇𝑚

{𝐷(𝑇𝑚),   m =  1,2, … . , M, } 

We identified the test with minimum shortcomings which is the most stringent test for nominal 

data and with maximum shortcomings are considered the poorest tests for nominal data.  

4.1.8 Construction of Scenarios in W×K CT 

Let X and Y be two variables of the same object having levels X1, X2, X3 and Y1, 

Y2, Y3. Testing for independence of these two variables with suitably arranged in two 

way and higher order CTs with different scenarios7 are presented in Table 4.1 and 4.2. 

If row 2 is scalar multiple of row 1, then we have independence. The dependency in 

CTs can be drawn by adding / subtracting same scale to a row so that r2 = ar1. “a” is 

chosen such that MoU becomes at desired level in W×K CT. 

Table 4. 1: Scenario of 2×2 Contingency Table 

(Author’s Source) 

                                                           
7 We created many scenarios in the above procedure for 2×2 CT , 2×3 CT , 3×2 CT , 3×3 CT , 4×4 CT , 5×5 CT 6×6 

CT and 12×12 CTs. Table 4.1 and 4.2 describes scenarios for 2×2 CT and 3×3 CT. 

 

Scenario I Scenario – II 

 Y1 Y2  Y1 Y2 

X1 𝜋11 𝜋12 − 𝑎/2 X1 𝜋11 − 𝑎 𝜋12 

X2 𝜋21 + 𝑎 𝜋22 − 𝑎/2 X2 𝜋21 𝜋22 + 𝑎 

Scenario – III Scenario – IV 

 Y1 Y2  Y1 Y2 

X1 𝜋11 + 𝑎 𝜋12 − 𝑎/2 X1 𝜋11 − 𝑎 𝜋12 

X2 𝜋21 𝜋22 − 𝑎/2 X2 𝜋21 + 𝑎 𝜋22 

  Scenario – V   

  Y1 Y2  

 X1 𝜋11 − 𝑎 𝜋12 + 𝑎  

 X2 𝜋21 + 𝑎 𝜋21 − 𝑎  
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Table 4. 2: Scenario of 3×3 Contingency Table 

(Author’s Source) 

 

4.2 Methodology for Power analysis of Tests of independence for Ordinal 

data 

 

In addition, above to achieve most stringent test of independence / measure of 

correlation for ordinal data. This study seven popular tests of independence/measures of 

correlations based on Power.  

 

Scenario – I Scenario – II 

 Y1 Y2 Y3  Y1 Y2 Y3 

X1 𝜋11 − 𝑎 𝜋12 − 𝑎/2 𝜋13 X1 𝜋11 − 𝑎 𝜋12 𝜋13 + 𝑎 

X2 𝜋21 − 𝑎/2 𝜋22 𝜋23 + 𝑎/2 X2 𝜋21 − 𝑎/2 𝜋22 𝜋23 + 𝑎/2 

X3 𝜋31 𝜋32+ 𝑎 /2 𝜋33 + 𝑎 X3 𝜋31 −  𝑎          𝜋32   𝜋33 + 𝑎 

Scenario – III Scenario – IV 

 

 Y1 Y2 Y3  Y1 Y2 Y3 

X1 𝜋11 − 𝑎 𝜋12 𝜋13 + 𝑎 X1 𝜋11 𝜋12 − 𝑎/2 𝜋13 

X2 𝜋32+ 𝑎/2 𝜋22 𝜋32- 𝑎/2 X2 𝜋21 − 𝑎 𝜋22 𝜋23 + 𝑎 

X3 𝜋31 + 𝑎 𝜋32 𝜋33 − 𝑎 X3 𝜋31 + 𝑎 𝜋32+ 𝑎/2 𝜋33 − 𝑎 

Scenario – V 

  Y1 Y2 Y3   

 X1 𝜋11 − 𝑎 𝜋12 𝜋13 − 𝑎/2   

 X2 𝜋21 𝜋22 𝜋23   

 X3 𝜋31 + 𝑎/2 𝜋32 𝜋33 + 𝑎   
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Let X be a random variable which can be ordered into K categories. The variable 

can be generated as   

𝑥1 ~  𝑈(0, 𝑘) 

Then X becomes categorical random variable 

X = round (𝑥1)                          (4.13) 

Let Y is another variable which is dependent on X be generated as  

                                                           𝑍1 =  𝑈(0, 𝑘2)                           (4.14) 

Where 𝑘2  is numbers of categories in Y.  

Suppose                 𝑦 = 𝑎𝑥1 + 𝑏𝑧1         where a+b = 1,                 (4.15) 

Then     Y = round (𝑦
1
) 

The equation 4.15 can give us perfectly correlated variables when a = 1 and b= 0 and 

perfectly independent when a = 0 and b=0.  

Thus, correlation is determined by a, b (a+b=1) where a=1 and b=1 then there is perfect 

correlation and are independent.  

4.2.2 Finite Sample Critical Values (FSCV) and Power  

All the tests / Measure of correlations for ordinal data are non-parametric and critical 

values are calculated by simulations. Therefore, it is useless to calculate size distortion. 

However, power shall be calculated as described below.  

4.2.3 Computation of Finite Sample Critical Values in CTs 

The following steps are involved in calculation of finite sample critical values.  

f) Generate data under 𝐻0 
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g) Arrange data in w ×  k contingency tables. 

h) Calculate tests statistics (Selected one of seven tests taken under this study).  

i) Repeat 20,000’ times (MCS).  

j) Critical Value is(1 − 𝛼) percentile of the tests statistics obtained.  

4.2.4 Computation of Power in CTs 

e) Generate data under 𝐻1 with pre-specified MoU. 

f) Arrange data in w ×  k contingency tables. 

g) Calculate test statistics, decide acceptance / rejection using FSCV. 

h) Repeat step a, b, and c “20,000” times (MCS) and calculate power = % of 

rejections.  
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CHAPTER 5 

ANALYSIS OF SIZE OF TESTS FOR CATAGORICAL DATA  

The core objective of the study is to evaluate the most stringent and powerful 

test of independence for nominal and ordinal data in w × k order CTs. To achieve sub 

objectives; section 5.1 describes size distortion. Section 5.2 and 5.3 explains 

computation of size distortion in 2 × 2 and w× k order of CTs for numerous sample 

sizes for nominal data. Moreover, section 5.4 discusses computation of Finite Sample 

Critical Values (FSCV) for tests of independence for nominal and ordinal data that do 

not follow any standard or known distribution. Finally, the chapter covers FSCV for 

tests of independence for ordinal data discussed in section 5.5. 

5.1 Size Distortion as Measure of Performance 
 

It is well well-known that powers of econometric tests are comparable if the size 

remain same, and so is the case with the selected eight mentioned below tests of 

independence for nominal data. Usually, when tests are to be compared, the process 

starts by finding out the critical values with fixed size, say nominal level (𝛼) at 1%, 5% 

or 10%. These critical values are then applied to calculate power curves. Alternatively, 

we use ACV and SCV for asymptotic tests8 to measure size distortion where the size of 

entire procedure can be calculated fixing the size at each single step that is at nominal 

level (𝛼) at 5%. The test with minimum size distortion would be the optimal test. The 

best performance would be considered as of the procedure having minimum size 

                                                           
8 Large sample tests often fails to behave well in small samples. However, we tested the size distortion of asymptotic 

tests and found very small distortion.  
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distortion and highest power. Finally, using SC we evaluate the most stringent test of 

independence for nominal data.  

Let’s alpha (𝛼) be the size of a test then, 

     𝛼 = 𝑃(𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0/𝐻0 𝑖𝑠 𝑇𝑟𝑢𝑒) 

In our case, the null hypothesis 𝐻0: nominal variable is independent "𝑥 and 𝑦” 

and for calculation of size, the data is generated such that 𝐻𝑜 is true against the 

alternative hypothesis 𝑖. 𝑒., "𝐻1". We also assumed that the size of complete process 

will be 1%, 5% & 10%. At the end, the difference between empirical size and the 

nominal size (1%, 5% and 10%) can be referred as size distortion. The results for 

various orders of CTs for tests of independence are given below: 

5.2 Computation of Size Distortion (SD) and Simulated Critical Values (SCV) for 

Nominal Data in 𝟐 × 𝟐 CTs. 

 

Through simulation and procedure adopted in chapter 4, empirical values/ 

(SCV) are computed for different level of 𝛼 = 1%, 5% & 10% for various 2 × 2 and 

w × k CTs at different sample size (Small, Medium, and Large).  

5.2.1 Computation of Finite Sample Critical Values for 𝟐 × 𝟐 CTs 

Simulated critical values are produced for tests of independence for 

power computation when a test does not follow a standard or known 

distribution. The tests of independence namely, Fisher exact Statistics (FES), 

Neyman modified chi squared statistics (NMCS) and Kullback - Leibler 

Statistics (KLS) falls in category of not following any standard or known 

distribution. Therefore, simulated critical values (SCV) have been computed 

at various level of α = 0.01, α = 0.05 and α = 0.10 for 2 × 2  CTs at different 
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sample size (SS: small, medium, and large). The results are shown in Table 

5.2.    

Table 5. 1: SCV of Tests of independence for 2 × 2 CTs 

 

The last row in above Table 5.1 gives us simulated FSCV for Fisher exact 

Statistics (FES), Neyman modified chi squared statistics (NMCS) and Kullback -

Leibler Statistics (KLS). The results show computations of SCV which are further used 

in computation of power to evaluate optimal tests of independence for nominal data.  

5.2.2 Computation of Empirical Size of Tests of Independence for 𝟐 × 𝟐 CTs 

We calculated empirical values for selected tests of independence at nominal 

level α = 0.05 for 2 × 2 CTs and found negligible size distortion at different sample size 

(SS: 25, 50,100, 200 and 400).  

The results of panel – I indicates when nominal size is 1 % then 𝜒2 test,  𝐷2 test 

and BPS have empirical value of .018 at sample size 25. , 𝐺2 test and Modular test have 

empirical value .017 at sample size 25. FTS and CRS have empirical value i.e., .016 at 

sample size of 25. However, LMS test has empirical value .014 at sample size 25. The 

results further shows that when nominal size is 1% then 𝜒2 test,  𝐷2 test and Modular 

test have empirical value .017 at sample size 50. LMS has empirical value .014 at 

sample size 50. Moreover, when nominal size is 1% then 𝜒2 test has empirical size .016, 

.015 and .012 at sample size of 100,200 and 400, respectively.  

Tests 

Name 
FES NMCS KLS  

(α) α = 5% α = 5% α = 5% 
Sample 

Size 
25 50 100 200 400 25 50 100 200 400 25 50 100 200 400 

CT 2 ×2 -.057 -.056 -.053 -.045 -.049 .030 .032 .058 .056 .042 .036 .037 .043 .044 .045 
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Panel - II indicates when nominal size is 5% then 𝜒2 test has empirical size .038, 

.051, .054, .047 and .052 at (SS: 25, 50,100, 200, 400). LMS test shows when nominal 

size is 5% then empirical size .06, .057, .04, .042 and .052 at (SS: 25, 50,100, 200,400). 

Panel – III indicates when nominal size is 10% then 𝜒2 test has empirical size 

.107, .093, .104, .103 and .101 at sample size (SS: 25, 50,100, 200,400).The results of 

BPS indicates that when nominal size is 10% then BPS has empirical size of .122, .12, 

.09, .114 and .11 at (SS: 25, 50,100, 200,400).  

We observed from Panel I-II and III that as the sample size increase the 

difference between nominal and empirical (simulated) critical value decreases or in 

order words the size reduces with sample size and same is true for others below 

mentioned tests of independence in the given tables for nominal data.  
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Table 5.2: Empirical size of tests9 of independence of Nominal Data for 𝟐 × 𝟐 CTs 

                       Sample Size 

Tests  

Panel – I Panel – II Panel - III 

Nominal Level (α = 0.01) α = 0.05 α = 0.10 

25 50 100 200 400 25 50 100 200 400 25 50 100 200 400 

𝜒2 Statistics .018 .017 .016 .015 .012 .038 .051 .054 .047 .052 .107 .093 .104 .103 .101 

𝐺2 𝑆𝑡𝑎𝑡𝑖𝑠𝑖𝑐𝑠 .017 .016 .014 .013 .011 .062 .058 .057 .047 .051 .112 .112 .114 .110 .110 

𝐷2 Statistics .018 .017 .016 .016 .013 .064 .056 .055 .054 .052 .116 .116 .115 .112 .110 

MDS |χ| .017 .017 .015 .016 .012 .062 .060 .058 .052 .052 .121 .120 .118 .116 .114 

FTS .016 .016 .016 .015 .012 .062 .058 .046 .046 .048 .122 .122 .123 .111 .110 

LMS .014 .014 .013 .013 .012 .060 .057 .040 .042 .052 .120 .120 .119 .115 .110 

CRS .016 .016 .015 .015 .013 .062 .058 .056 .046 .054 .122 .124 .123 .118 .111 

BPS .018 .019 .013 .012 .011 .058 .058 .056 .048 .051 .122 .120 .090 .114 .110 

                                                           
9 Eight of the selected tests of independence out of eleven tests have been analyzed for empirical values and the results are shown in Table 5.1. FES, KLS and NMCS does not follow any 

standard or known distribution therefore, simulated critical values (SCV) have been computed and are shown in Table 5.2.  



48 
 

5.3 Computation of Empirical Size of Tests of Independence for 𝐰× 𝐤 CTs 

 

We calculated empirical sizes for selected eight tests of independence at 

nominal level (α = 0.01, α = 0.05 and α = 0.10) for w × k CTs presented in Table 5.3, 

5.4 and 5.5.   

The results of panel – I indicates when nominal size is 1 % then 𝜒2 test has 

empirical size of .014 at sample size 25.  𝐺2 Test, CRS, FTS, LMS, BPS and Modular 

statistics have empirical size 0.02, 0.21, 0.21, 0.22 and 0.21 at sample size 25. Panel - 

II indicates when nominal size is 5% then 𝜒2 test has empirical size .043, .055, .051, 

.046 and .051 at (Small, Medium, and Large). LMS test shows when nominal size is 

5% then empirical size .072, .077, .055, .054 and .053 at (Small, Medium, and Large). 

Panel – III indicates when nominal size is 10% then 𝜒2 test has empirical size .106, 

.107, .113, .112 and .091 at sample size (Small, Medium, and Large). 

The results of size distortion of BPS indicates that when nominal size is 10% 

then BPT has empirical size of .134, .124, .121, .121 and .101 at (Small, Medium, and 

Large). Moreover, as the sample size increase the difference between nominal and 

empirical (SCV) size reduces with sample size and same is true for others tests of 

independence for nominal data. Looking to the empirical and nominal values in the 

above tables 5.1 and 5.3 drawn for 2 × 2 and  w × k CTs, this can be concluded that 

size distortion is negligible for tests of independence for nominal data. 
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Table 5. 3: Empirical size of test of independence for nominal data for 2 x 3 and 3 x 3 CTs 

 

                                                           
10 As we have small size contingency table so accordingly the same sample size which was used for 2 x 2 contingency table is also used for 2 x 3 and 3 x 3 CT. The sample size (SS: 

25,50,100,200,400) 

Panel Panel – I Panel – II Panel - III 

        10Sample    

              size          

Tests Name 

α = 0.01 α = 0.05 α = 0.10 

 
25 50 100 200 400 25 50 100 200 400 25 50 100 200 400 

S
iz

e 
D

is
to

rt
io

n
 2

 x
 3

 C
T

 

𝜒2Statistic 
0.014 0.013 0.012 0.011 0.011 0.043 0.055 0.051 0.046 0.051 0.106 0.107 0.113 0.112 0.099 

𝐺2 𝑆𝑡𝑎𝑡𝑖𝑠𝑖𝑐𝑠 
0.020 0.019 0.011 0.008 0.012 0.078 0.072 0.055 0.053 0.057 0.134 0.124 0.122 0.121 0.101 

𝐷2Statistics 
0.022 0.014 0.017 0.007 0.011 0.043 0.054 0.059 0.046 0.053 0.133 0.121 0.116 0.116 0.091 

MDS |χ| 
0.021 0.016 0.018 0.012 0.011 0.073 0.061 0.059 0.054 0.052 0.451 0.141 0.123 0.123 0.103 

FTS 
0.021 0.019 0.019 0.018 0.014 0.075 0.063 0.055 0.054 0.052 0.134 0.124 0.122 0.121 0.113 

CRS 
0.021 0.029 0.024 0.014 0.017 0.055 0.055 0.005 0.055 0.051 0.151 0.137 0.129 0.125 0.115 

LMS 
0.022 0.029 0.024 0.018 0.015 0.072 0.077 0.055 0.054 0.053 0.134 0.124 0.122 0.121 0.101 

BPS 
0.021 0.029 0.028 0.018 0.014 0.078 0.074 0.055 0.052 0.051 0.134 0.124 0.121 0.121 0.101 

   

S
iz

e 
D
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to

rt
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n
 3

 x
 3

 C
T

 

           Sample     

Size  

Tests Name 

α = 0.01 α = 0.05 α = 0.10 

25 50 100 200 400 25 50 100 200 400 25 50 100 200 400 

𝜒2 Statistics 
0.016 0.012 0.014 0.011 0.010 0.038 0.046 0.054 0.046 0.044 0.157 0.173 0.127 0.137 0.127 

𝐺2 𝑆𝑡𝑎𝑡𝑖𝑠𝑖𝑐𝑠 
0.018 0.016 0.014 0.015 0.012 0.040 0.045 0.052 0.049 0.048 0.126 0.136 0.138 0.140 0.113 

𝐷2 Statistics 
0.013 0.012 0.012 0.011 0.010 0.040 0.045 0.053 0.049 0.047 0.126 0.127 0.128 0.149 0.122 

MDS|χ| 
0.016 0.015 0.014 0.014 0.012 0.047 0.045 0.057 0.049 0.049 0.126 0.126 0.137 0.146 0.108 

FTS 
0.016 0.15 0.013 0.014 0.014 0.045 0.046 0.057 0.044 0.048 0.124 0.121 0.122 0.122 0.112 

LMS 
0.019 0.015 0.012 0.013 0.012 0.053 0.043 0.055 0.043 0.046 0.132 0.152 0.112 0.162 0.122 

CRS 
0.012 0.015 0.014 0.015 0.015 0.072 0.048 0.053 0.043 0.048 0.141 0.181 0.151 0.151 0.131 

BPS 
0.012 0.013 0.014 0.014 0.014 0.031 0.044 0.058 0.042 0.046 0.141 0.141 0.133 0.131 0.121 
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Table 5.4: Empirical size of test of independence for nominal data for 4 x 4 and 5 x 5 CTs 

S
iz

e 
D

is
to

rt
io

n
 4

 x
 4

 C
T

 

           
11Sample  

size 

Tests Name 

α = 0.01 α = 0.05 α = 0.10 

50 100 200 400 800 50 100 200 400 800 50 100 200 400 800 

𝜒2 Statistics 
0.012 0.014 0.017 0.007 0.011 0.043   0.054 0.059 0.046 0.053 0.003 0.121 0.116 0.116 0.091 

𝐺2 𝑆𝑡𝑎𝑡𝑖𝑠𝑖𝑐𝑠 
0.011 0.016 0.018 0.012 0.015 0.073 0.081 0.053 0.089 0.052 0.001 0.141 0.123 0.123 0.103 

𝐷2 Statistics 
0.011 0.019 0.011 0.008 0.016 0.065      0.093 0.055 0.054 0.057 0.134 0.123 0.128 0.122 0.123 

MDS |χ| 
0.018 0.016 0.014 0.015 0.012 0.040 0.045 0.052 0.049 0.048 0.121 0.136 0.138 0.140 0.113 

FTS 
0.013 0.012 0.012 0.011 0.010 0.040 0.045 0.053 0.049 0.047 0.126 0.122 0.123 0.149 0.122 

LMS 
0.013 0.012 0.012 0.011 0.010 0.040 0.045 0.053 0.049 0.047 0.123 0.121 0.125 0.149 0.122 

CRS 
0.016 0.015 0.014 0.014 0.012 0.047 0.045 0.057 0.049 0.049 0.126 0.126 0.137 0.146 0.108 

BPS 
0.016 0.15 0.013 0.014 0.014 0.045 0.046 0.057 0.044 0.048 0.124 0.121 0.122 0.122 0.112 

 

S
iz

e 
D

is
to

rt
io

n
 5

 x
 5

 C
T

 

Sample            

Size 

Tests Name 

α = 0.01 α = 0.05 α = 0.10 

75 150 300 600 1200 75 150 300 600 1200 75 150 300 600 1200 

𝜒2 Statistics 
0.016 0.019 0.018 0.015 0.012 0.038 0.035 0.031 0.048 0.052 0.182 0.132 0.082 0.032 0.118 

𝐺2 𝑆𝑡𝑎𝑡𝑖𝑠𝑖𝑐𝑠 
0.019 0.14 0.016 0.012 0.013 0.033 0.065 0.079 0.034 0.048 0.222 0.192 0.162 0.132 0.102 

𝐷2 Statistics 
0.020 0.024 0.062 0.019 0.015 0.034 0.065 0.059 0.054 0.049 0.183 0.163 0.143 0.123 0.103 

MDS |χ| 
0.026 0.018 0.014 0.069 0.013 0.040 0.065 0.038 0.063 0.052 0.163 0.153 0.143 0.133 0.123 

FTS 
0.016 0.029 0.019 0.018 0.019 0.034 0.057 0.062 0.055 0.047 0.181 0.176 0.171 0.166 0.122 

LMS 
0.016 0.014 0.016 0.019 0.010 0.044 0.065 0.039 0.054 0.048 0.192 0.172 0.152 0.132 0.112 

CRS 
0.020 0.017 0.016 0.015 0.012 0.063 0.065 0.028 0.073 0.047 0.182 0.163 0.144 0.125 0.106 

BPS 
0.016 0.014 0.015 0.012 0.013 0.072 0.057 0.072 0.055 0.052 0.182 0.132 0.162 0.132 0.118 

 

                                                           
11 As the size of the contingency table increases, accordingly the size of sample size increases. Thus for 4 x 4 and 5 x 5 CT the sample size (SS: 50,100,200,400,800) 

 (SS: 75,150,300,600,1200) 
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Table 5. 5: Empirical Size of Test of independence for nominal data for 6 x 6 and 12 x 12 CTs 

S
iz

e 
D

is
to

rt
io

n
 6

 x
 6

 C
T

 

 
             12Sample Size 

Tests Name 

α = 0.01 α = 0.05 α = 0.10 

100 200 400 800 1600 100 200 400 800 1600 100 200 400 800 1600 

𝜒2 Statistics 
0.013 0.012 0.012 0.011 0.010 0.040 0.045 0.053 0.049 0.047 0.123 0.121 0.125 0.149 0.122 

𝐺2 𝑆𝑡𝑎𝑡𝑖𝑠𝑖𝑐𝑠 
0.016 0.015 0.014 0.014 0.012 0.047 0.045 0.057 0.049 0.049 0.126 0.126 0.137 0.146 0.108 

𝐷2 Statistics 
0.018 0.016 0.014 0.015 0.012 0.073 .0649 0.037 0.075 0.054 0.182 0.148 0.132 0.129 0.110 

MDS |χ| 
0.013 0.012 0.012 0.011 0.010 0.053 .0439 0.034 0.054 0.053 0.198 0.188 0.131 0.123 0.108 

FTS 
0.013 0.012 0.012 0.011 0.010 0.064 .0429 0.021 0.041 0.048 0.207 0.187 0.178 0.160 0.123 

LMS 
0.013 0.012 0.012 0.011 0.010 0.073 .0489 0.034 0.058 0.047 0.218 0.208 0.161 0.133 0.118 

CRS 
0.016 0.015 0.014 0.014 0.012 0.047 0.045 0.057 0.049 0.049 0.126 0.126 0.137 0.146 0.108 

BPS 
0.020 0.017 0.016 0.015 0.012 0.063 0.065 0.028 0.073 0.047 0.182 0.163 0.144 0.125 0.106 

 

S
iz

e 
D

is
to

rt
io

n
 1

2
 x

 1
2

 C
T

 

             Sample Size 

Tests Name 

α = 0.01 α = 0.05 α = 0.10 

400 800 1600 3200 6400 400 800 1600 3200 6400 400 800 1600 3200 6400 

𝜒2 Statistics 
0.011 0.016 0.018 0.012 0.015 0.043 .0814 0.079 0.030 0.055 0.156 0.186 0.122 0.103 0.101 

𝐺2 𝑆𝑡𝑎𝑡𝑖𝑠𝑖𝑐𝑠 
0.011 0.019 0.011 0.008 0.016 0.086 .0225 0.047 0.064 0.051 0.153 0.183 0.167 0.114 0.106 

𝐷2 Statistics 
0.018 0.016 0.014 0.015 0.012 0.073 .0649 0.037 0.075 0.054 0.182 0.148 0.132 0.129 0.110 

MDS |χ|  
0.013 0.012 0.012 0.011 0.010 0.053 .0439 0.034 0.054 0.053 0.198 0.188 0.131 0.123 0.108 

FTS 
0.013 0.012 0.012 0.011 0.010 0.064 .0429 0.021 0.041 0.048 0.207 0.187 0.178 0.160 0.123 

LMS 
0.013 0.012 0.012 0.011 0.010 0.073 .0489 0.034 0.058 0.047 0.218 0.208 0.161 0.133 0.118 

CRS 
0.013 0.012 0.012 0.011 0.010 0.073 .0669 0.034 0.057 0.047 0.118 0.148 0.131 0.143 0.128 

BPS 
0.016 0.015 0.014 0.014 0.012 0.064 .0560 0.055       0.054 0.056 .1522 0.130 0.129 0.120 0.112 

                                                           
12 As the size of the CTs increases, accordingly the size of sample size increases. Thus for 6 x 6 and 12 x 12 CT the sample size (SS: 50,100,200,400,800) 

 (SS: 100,200,400,800,1600) and  (SS: 400,800,1600,3200,6400). 
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5.3.1 Computation of Finite Sample Critical Values in 𝐰× 𝐤 CTs 

Fisher exact test statistics (FES), Neyman modified chi squared test 

(NMCS) and Kullback - Leibler test (KLS) do not follow any standard or known 

distribution. Therefore, SCV are computed for power comparison. The tests of 

independence for nominal data which are selected in this study consists of 

eleven tests of independence among which three tests do not follow any 

distributions namely, Fisher exact test statistics (FES), Neyman modified chi 

squared test (NMCS) and Kullback-Leibler test (KLS). SCV have been 

computed at various level of α = 0.01, α = 0.05 and α = 0.10 in w × k  CTs at 

different sample size (Small, Medium, and Large). The results at α = 0.01 and 

α = 0.10 are shown in appendix - I while at nominal level α = 0.05 results are 

shown in Table 5.6 and 5.7.    

We computed FSCV for three tests of independence at α = 0.01, α = 0.05 and α 

= 0.10 for w × k CTs. We took a variety of DGP in different specification of CTs in 

w × k   and found that there is no size distortion at different sample size (Small, 

Medium, and Large) in w × k CTs. Moreover, as the sample size increase so empirical 

size converges to the nominal size i.e., size distortion reduces which are shown in table 

5.6 and 5.7. 

These values are used in computation of power analysis. Analogously, we 

computed empirical size for 2 × 3, 3 × 3, 4 × 4, 5 × 5, 6 × 6, 1 2 × 12 CTs. 
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Table 5.6: Finite Sample Critical Values of Test of Independence for Nominal Data in W × K CTs. 

S
C

V
 2

 X
 3

 C
T

 

 FES NMCT KLS 

Test 

SS 

 α = 5% α = 5%  α = 5% 

25 50 100 200 400 25 50 100 200 400 25 50 100 200 400 

CT 2

×  3 
.031 .062 .037 .062 .057 .035 .037 .059 .041 .044 .031 .052 .056 .036 .048 

CT3 ×  3 .062 .036 .040 .061 .057 .057 .053 .054 .043 .045 .068 .034 .063 .067 .057 

 

S
C

V
 4

 X
 4

 C
T

 

 FES NMCT KLS 

Test 

    SS13 

α = 5% α = 5% α = 5% 

50 100 200 400 800 50 100 200 400 800 50 100 200 400 800 

CT 4

×  4 
.033 .039 .046 .041 .055 .087 .027 .029 .035 .042 .094 .082 .081 .076 .066 

 

S
C

V
 5

 X
 5

 C
T

 

 FES NMCT KLS 

     Test 

    SS 

α = 5% α = 5% α = 5% 

75 150 300 600 1200 75 150 300 600 1200 75 150 300 600 1200 

CT 5

×  5 
.082 .081 .076 .075 .072 .100 .097 .094 .092 .066 .126 .121 .105 .103 .092 

                                                           
13 As the size of the contingency table increases, accordingly the size of sample size increases. Thus for 4 x 4 and 5 x 5 CT the sample size is (S: 50,100,200,400,800) 

and (S: 75,150,300,600,1200) 



54 
 

 

                                                           
14 As the size of the contingency table increases, accordingly the size of sample size increases. Thus for 6 x 6 and 12 x 12 CT the sample size is (S: 100,200,400,800,1600) 

and (S: 400,800,1600,3200,6400) 

 

Table 5. 7: Finite Sample Critical Values of Test of Independence for Nominal Data in W × K CTs. 

S
C

V
 6

 X
 6

 C
T

 

 Fisher Exact Test NMCT KL Statistics 

NS 

SS14 

α = 5% α = 5% α = 5% 

100 200 400 800 1600 100 200 400 800 1600 100 200 400 800 1600 

CT 6

×  6 
.096 .082 .071 .072 .062 .058 .051 .058 .051 .049 .131 .123 .118 .112 .098 

 

S
C

V
  

1
2

 X
 1

2
 C

T
 

 Fisher Exact Test NMCT KL Statistics 

NS 

 

 

SS 

α = 5% α = 5% α = 5% 

400 800 1600 3200 6400 400 800 1600 3200 6400 400 800 1600 3200 6400 

CT 12

×  12 
.058 .057 .055 .053 .051 .059 .059 .057 .052 .051 .139 .135 .127 .102 .097 
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5.4 Simulated Critical Values for Tests of Independence in 𝐰× 𝐤 CTs for Ordinal 

Data 

As non-parametric tests of independence do not follow any standard or known 

distributions. Therefore, for power comparison of tests of independence, simulated 

critical values are needed.  

Finite sample critical values (FSCV) are computed for seven tests namely 

Spearman 𝜌 coefficient of correlation, Kendall’s𝜏 − 𝑎, Kendall’s𝜏 − 𝑏, Kendall’s𝜏 − 𝑐 

coefficient , Goodman and Kruskal γ, Sumer’s D and Novel ∅𝑘 tests of independence 

for ordinal data at various level (α = 0.01, α = 0.05, α = 0.10) at different sample sizes 

(small, medium, and large) for w× k CTs are shown in Table 5.8 - 5.11. 
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Table 5. 8: Simulated Critical Values of Tests of Independence for 2 × 3 CTs for Ordinal Data 

 

                                                           
15 As we have small size 2 x 3 and 3 x 3 order of CTs. The sample size is used according to statistical calculation (SS: 25, 50,100,200,400).  

S
C

V
 2

 X
 3

 C
T

 

 15Sample Size  

Tests    

α = 0.01  α = 0.05 α = 0.10 

25 50 100 200 400 25 50 100 200 400 25 50 100 200 400 

Spearman  0.006 0.01 0.009 0.007 0.01 0.043 0.055 0.051 0.046 0.056 0.106 0.107 0.183 0.112 0.099 

Kendall τ-a 0.011 0.017 0.013 0.009 0.04 0.072 0.078 0.059 0.059 0.057 0.144 0.124 0.123 0.141 0.101 

Kendall τ-b 0.012 0.015 0.015 0.007 0.02 0.043 0.055 0.052 0.048 0.047 0.132 0.161 0.133 0.112 0.169 

Kendall τ-c 0.011 0.016 0.013 0.022 0.01 0.078 0.072 0.057 0.059 0.053 0.121 0.141 0.122 0.121 0.171 

Gd -Kruskal γ 0.011 0.019 0.012 0.008 0.01 0.072 0.071 0.051 0.052 0.051 0.114 0.104 0.162 0.132 0.162 

Somers’d 0.012 0.012 0.013 0.007 0.02 0.043 0.052 0.054 0.049 0.059 0.153 0.151 0.123 0.122 0.112 

Spearman  0.011 0.019 0.012 0.008 0.01 0.062 0.079 0.055 0.051 0.056 0.134 0.124 0.112 0.127 0.101 

𝑁𝑜𝑣𝑒𝑙 ∅𝑘 0.011 0.019 0.013 0.009 0.02 0.05 0.072 0.055 0.052 0.052 0.104 0.144 0.132 0.129 0.114 
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Table 5. 9: Simulated Critical Values of Test of Independence for Ordinal Data for 2 × 3 CT for Ordinal Data 

S
C

V
 3

 X
 3

C
T

 
             Sample 

 Size 

Tests Name 

α = 0.01  α = 0.05 α = 0.10 

25 50 100 200 400 25 50 100 200 400 25 50 100 200 400 

Spearman  .0240 0.016 0.014 0.012 0.011 0.038 0.046 0.054 0.046 0.044 0.245 0.210 0.173 0.143 0.103 

Kendall τ-a .0210 0.018 0.014 0.015 0.011 0.04 0.045 0.058 0.049 0.046 0.212 0.187 0.163 0.132 0.113 

Kendall τ-b  0.017 0.011 0.010 0.008 0.006 0.04 0.045 0.058 0.049 0.046 0.185 0.166 0.142 0.139 0.105 

Kendall τ-c 0.015 0.009 0.011 0.011 0.010 0.04 0.045 0.058 0.049 0.046 0.153 0.143 0.129 0.133 0.109 

Gd - Kruskal γ 0.013 0.008 0.011 0.012 0.014 0.04 0.045 0.058 0.049 0.046 0.123 0.121 0.113 0.131 0.110 

Somers’d  0.011 0.006 0.012 0.014 0.017 0.04 0.045 0.058 0.049 0.046 0.092 0.099 0.098 0.129 0.111 

𝑵𝒐𝒗𝒆𝒍 ∅𝒌 0.009 0.005 0.012 0.016 0.020 0.04 0.045 0.058 0.049 0.046 0.062 0.077 0.082 0.127 0.112 

 

S
C

V
 4

 X
 4

 C
T

 

             Sample 

 Size 

Tests Name 

α = 0.01  α = 0.05 α = 0.10 

50 100 200 400 800 50 100 200 400 800 50 100 200 400 800 

Spearman  0.011 0.012 0.012 0.011 0.011 0.113 0.098 0.085 0.063 0.054 0.245 0.210 0.173 0.143 0.103 

Kendal τ-a 0.018 0.016 0.015 0.012 0.010 0.126 0.111 0.095 0.084 0.064 0.212 0.187 0.163 0.132 0.113 

Kendalτ-b  0.014 0.020 0.014 0.010 0.014 0.093 0.083 0.073 0.063 0.053 0.185 0.166 0.142 0.139 0.105 

Kendalτ-c 0.016 0.024 0.019 0.010 0.016 -0.010 -0.011 0.032 0.053 0.074 0.153 0.143 0.129 0.133 0.109 

Gd - Kγ 0.018 0.029 0.025 0.010 0.018 0.014 0.034 0.054 0.074 0.094 0.123 0.121 0.113 0.131 0.110 

Somers’d  0.011 0.012 0.012 0.011 0.011 0.113 0.098 0.085 0.063 0.054 0.092 0.099 0.098 0.129 0.111 

𝑵𝒐𝒗𝒆𝒍 ∅𝒌 0.011 0.012 0.012 0.011 0.011 0.126 0.111 0.095 0.084 0.064 0.062 0.077 0.082 0.127 0.112 

 



58 
 

Table 5. 10: Simulated Critical Values of Measure of Correlation in 5 X 5 and 6 X 6 CTs for Ordinal Data 

  

S
C

V
  
5

 X
 5

 C
T

 

           Sample Size 

Tests Name 

α = 0.01 α = 0.05 α = 0.10 

75 150 300 600 1200 75 150 300 600 1200 75 150 300 600 1200 

Spearman  0.089 0.07 0.051 0.032 0.013 0.04 0.045 0.058 0.049 0.046 0.153 0.143 0.129 0.133 0.109 

Kendall τ-a 0.008 0.009 0.01 0.011 0.012 0.04 0.045 0.058 0.049 0.046 0.123 0.121 0.113 0.131 0.110 

Kendall τ-b 0.01 0.011 0.012 0.013 0.014 0.04 0.045 0.058 0.049 0.046 0.185 0.166 0.142 0.139 0.105 

Kendall τ-c 0.023 0.02 0.017 0.014 0.011 0.04 0.045 0.058 0.049 0.046 0.153 0.143 0.129 0.133 0.109 

Gd Kruskl γ 0.007 0.009 0.011 0.013 0.015 0.072 0.071 0.051 0.052 0.051 0.121 0.141 0.122 0.121 0.171 

Somers’d 0.089 0.07 0.051 0.032 0.013 0.043 0.052 0.054 0.049 0.059 0.114 0.104 0.162 0.132 0.162 

𝑁𝑜𝑣𝑒𝑙 ∅𝑘 0.008 0.009 0.01 0.011 0.012 0.062 0.079 0.055 0.051 0.056 0.153 0.151 0.123 0.122 0.112 

 

S
C

V
  
6

 X
 6

 C
T

 

    Sample Size 

Tests Name 

α = 0.01 α = 0.05 α = 0.10 

100 200 400 800 1600 100 200 400 800 1600 100 200 400 800 1600 

Spearman  0.011 0.019 0.012 0.008 0.01 0.062 0.079 0.055 0.051 0.056 0.134 0.124 0.112 0.127 0.101 

Kendall τ-a 0.011 0.019 0.013 0.009 0.02 0.05 0.072 0.055 0.052 0.052 0.104 0.144 0.132 0.129 0.114 

Kendall τ-b 0.023 0.02 0.017 0.014 0.011 0.04 0.045 0.058 0.049 0.046 0.153 0.143 0.129 0.133 0.109 

Kendall τ-c 0.007 0.009 0.011 0.013 0.015 0.072 0.071 0.051 0.052 0.051 0.121 0.141 0.122 0.121 0.171 

Gd - Kruskal γ .021 0.018 0.014 0.015 0.011 0.04 0.045 0.058 0.049 0.046 0.212 0.187 0.163 0.132 0.113 

Somers’d 0.017 0.011 0.010 0.008 0.006 0.04 0.045 0.058 0.049 0.046 0.185 0.166 0.142 0.139 0.105 

𝑁𝑜𝑣𝑒𝑙 ∅𝑘 0.008 0.009 0.01 0.011 0.012 0.04 0.045 0.058 0.049 0.046 0.123 0.121 0.113 0.131 0.110 
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Table 5. 11: Simulated Critical Values of Measure of Correlation in 12 × 12 Contingency Table for Ordinal Data 

16Sample  

Size 

Tests Name 

α = 0.01 α = 0.05 α = 0.10 

400 800 1600 3200 6400 400 800 1600 3200 6400 400 800 1600 3200 6400 

Spearman  0.017 0.011 0.010 0.008 0.006 0.04 0.045 0.058 0.049 0.046 0.185 0.166 0.142 0.139 0.105 

Kendall τ-a 0.015 0.009 0.011 0.011 0.010 0.04 0.045 0.058 0.049 0.046 0.153 0.143 0.129 0.133 0.109 

Kendall τ-b 0.013 0.008 0.011 0.012 0.014 0.04 0.045 0.058 0.049 0.046 0.123 0.121 0.113 0.131 0.110 

Kendall τ-c 0.011 0.006 0.012 0.014 0.017 0.04 0.045 0.058 0.049 0.046 0.092 0.099 0.098 0.129 0.111 

Gd - Kruskal γ 0.008 0.009 0.01 0.011 0.012 0.04 0.045 0.058 0.049 0.046 0.123 0.121 0.113 0.131 0.110 

Somers’d 0.01 0.011 0.012 0.013 0.014 0.04 0.045 0.058 0.049 0.046 0.185 0.166 0.142 0.139 0.105 

𝑁𝑜𝑣𝑒𝑙 ∅𝑘 0.011 0.019 0.013 0.009 0.02 0.05 0.072 0.055 0.052 0.052 0.104 0.144 0.132 0.129 0.114 

 

                                                           
16 As the size of the contingency table increases, accordingly the size of sample size increases. Thus for 12 x 12 CT  the sample size (SS: 400,800,1600,3200,6400) 
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5.5 Conclusion 

 

In this chapter empirical simulated critical values (SCV) have been computed 

for small, medium, and large sample size with all cases under different specifications 

for a variety of DGP in 2 × 2 and in w× k CTs of tests of independence for nominal 

and ordinal data. 

Keeping in view analysis of the chapters 5; we are now able to draw some 

conclusions from our MCS results. The powers of econometric procedures are 

comparable if the size remain the same. While comparing the tests, the process starts 

by finding out the critical values with fixed size, say 5%. Therefore 5% critical values 

for the entire procedures cannot be calculated. Instead, we can measure size distortion 

which is the difference between nominal and actual size of entire testing procedure; and 

the test with minimum size distortion and highest power would be the optimal test for 

ordinal data. Table 5.12 presents summary of SD for Nominal data. 

Table 5. 12: Present Summary of Empirical Sizes for Nominal Data 

 
2×2 Contingency table 

(SCV) 

 (W ×K) 3×3 Contingency table 

(SCV) 

α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10 

𝝌𝟐 Statistics .018 0.054 0.011 0.024 0.054 0.17 

𝑮𝟐 𝑺𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒄𝒔 .017 0.062 0.014 0.018 0.052 0.14 

𝑫𝟐 Statistics .018 0.064 0.011 0.013 0.053 0.14 

MDS |χ| .017 0.0062 0.012 0.016 0.057 0.14 

FTS .016 0.062 0.012 0.016 0.057 0.12 

LMS .014 0.060 0.012 0.019 0.050 0.12 

CRS .016 0.062 0.012 0.015 0.072 0.18 

BPS .019 0.058 0.012 0.014 0.058 0.15 



61 
 

FSCV have been drawn out for Fisher exact test statistics (FES), Neyman 

modified chi squared test (NMCS) and Kullback - Leibler test (KLS) shown in Table 

5.13.  

Table 5. 13: Present Summary of Simulated Critical Values for Nominal Data 

 2×2 Contingency table 

(FSCV) 

 W×K (3 ×3) Contingency table 

(FSCV) 

α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10 

 

FES -.018 -.057 -.011 -.010 -.042 -.119 

𝑵𝑴𝑪𝑺 .017 .058 .012 .011 .057 .136 

KLS .018 .045 .012 .018 .068 .139 

FES, NMCS and KLS do not follow any standard or known distribution and 

thus simulated critical values are computed (SCV). These values are used in the 

computation of power analysis which are presented in chapter 6.  In Table 5.14, 

simulated critical values have been carried out for seven tests of independence for 

ordinal data analysis in w× k CTs.  

Table 5. 14: Present Summary of Simulated Critical Values for Ordinal Data 

3×3 Contingency table 

(SCV) 

6×6 Contingency table 

(SCV) 

 α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10 

 

Spearman  .024 .054 .125 .019 .079 .134 

Kendall τ-a .021 .058 .122 .019 .072 .144 

Kendall τ-b  .017 .053 185 .023 .058 .153 

Kendall τ-c .015 .052 .153 .015 .072 .141 

Gd - Kruskal γ .014 .058 .123 .021 .058 .212 

Somers’d  .017 .051 .129 .017 .058 .185 

𝑁𝑜𝑣𝑒𝑙 ∅𝑘 .020 .049 .122 .012 .058 .131 

 

FSCV are computed which are used and works in computation of power which 

is presented in chapter 7.   
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CHAPTER 6 

POWER COMPARISON OF TESTS FOR NOMINAL DATA 

 This chapter has been documented of results based on solid estimations of MCS 

into two sections. Section I explains power comparison for selected eleven tests of 

independence namely (Pearson’s) χ2 test, log likelihood ratio (G2) test, Fisher Exact 

Test (FES), Freeman and Tuckey Test (FTS), Cressie and Read Test (CRS), Kulber and 

Liaber test (KLS), Neyman Modified Chi Square Test (NMCS), BPS, Logarithmic 

Minimum Square (LMS) Test, Modular Test (MDS) and D Square (D2) Test Statistics 

(MDS). We used five scenarios discussed in chapter 4 for 2 × 2 and W×K  CTs.  

Thus, in this connection eleven tests are compared, and we evaluated the most 

stringent test of independence using stringency criteria (SC) based on power envelope 

for 2 × 2  CT in section 1 while same procedure is adopted in section II for w × k CTs. 

The power of all these tests is defined as the probability of rejecting null hypothesis 

when it is false i.e.  

𝑃𝑜𝑤𝑒𝑟 = 𝑃(𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝐻0/𝐻1 𝑖𝑠 𝑇𝑟𝑢𝑒) 

 

The sample size (small, medium, and large) has been used with nominal level α 

= 5%. As for calculation of size, to calculate the power, we used DGP described in 

chapter 4. For eight tests of independence ACV were used while for three tests of 

independence SCV are used.  
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[Section I] 

6.1 Power Analysis of Tests of Independence for Nominal data in 𝟐 × 𝟐17 CTs 

 

We computed power analysis of tests of independence for nominal data for 

different scenarios (I-V) shown in Table 4.2 for a variety of DGP. The results are stated 

below in Table 6.1:   

Asymptotic critical values (ACV) are used for eight tests of independence 

namely, Pearson’s χ2 test, log likelihood ratio (G2) Freeman and Tuckey Test (FTS), 

Cressie and Read Test (CRS), BPS Test, Logarithmic Minimum Square Test, Modular 

Test (MDS) and D Square (D2) Test while simulated critical values (SCV) are 

computed in Table 5.3 are used for three tests of independence namely, Fisher Exact 

Test (FES), Kulber-Liabler Test (KLS) and Neyman Modified Chi Square  Test 

(NMCS).  The results of  2 × 2  for CTs, N=25 shows that Fisher exact test, Logarithmic 

Minimum Square test and BPS have maximum power compared to others tests of 

independence.  

We calculated Neyman Pearson Lemma (NPLT) point optimal test and calculated 

shortcomings to evaluate the most stringent test of independence in Scenario – I. We found that 

FES test of independence have minimum shortcomings compare to others tests of independence 

i.e., Pearson’s χ2 test, log likelihood ratio (G2) , Freeman  and Tuckey Test (FTS), 

Cressie and Read Test (CRS), BPS, Logarithmic Minimum Square Test, Modular Test 

(MDS) and D Square (D2), Kulber-Liabler Test (KLS) and Neyman Modified Chi 

Square  Test (NMCS).   

 

                                                           
17 Computational Formulas for Tests of independence for nominal data for 2 × 2   CTs are presented in Appendix 

A.  
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Table 6. 1: Power Analysis of Tests of independence for 2 × 2 CT Scenario - I 

Nominal Level (α) 

=5%     
Measure of Untruthfulness [ MoU]  N=25 

Tests Name          0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.050 0.052 0.058 0.069 0.080 0.138 0.225 0.385 0.426 0.549 0.686 

𝐺2 Test 0.050 0.054 0.062 0.077 0.085 0.145 0.153 0.195 0.226 0.364 0.497 

𝐷2 Test 0.05 0.053 0.058 0.072 0.093 0.118 0.138 0.174 0.183 0.288 0.399 

|χ| MDS 0.05 0.051 0.056 0.068 0.094 0.126 0.273 0.32 0.406 0.517 0.596 

FES 0.05 0.051 0.168 0.276 0.384 0.518 0.666 0.814 0.892 0.96 1 

NMCS .050 
0.052 0.066 0.087 0.112 0.137 0.150 0.180 0.195 

0.240 0.374 

FTS .050 
0.051 0.062 0.077 0.089 0.127 0.175 0.186 0.199 

0.260 0.379 

CRS .050 
0.051 0.058 0.072 0.084 0.118 0.166 0.172 0.188 

0.197 0.398 

KLS .050 
0.051 0.059 0.075 0.088 0.121 0.156 0.183 0.192 

0.199 0.307 

              BPS .052 0.059 0.119 0.202 0.336 0.432 0.568 0.7817 0.858 0.958 0.99 

LMS .051 0.056 0.109 0.1812 0.316 0.382 0.538 0.73 0.848 0.951 0.979 

NPLT 0.05 0.09 0.19 0.3196 0.439 0.58 0.74 0.866 0.962 1 1 
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Figure 6.1: Shows Power of 2x2 CT. 

Figure 6.1 shows estimated results of maximum power of four selected tests out 

of eleven tests of independence for nominal data. Considering scenario I, we observe 

that other tests have low power compared to FES. Therefore, we choose the top three 

tests of independence with maximum power presented in Figure 6.1. The result 

indicates that FES is the powerful tests of independence in scenario I. Furthermore, we 

calculated the power envelope and compared the power of all eleven tests of 

independence. We found that FES has minimum shortcomings. FES beats all others test 

of independence in scenario I.
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Table 6. 2: Power Analysis of Tests of independence for 2 × 2 CT Scenario - II 

 

Nominal Level (α) 

=5%     
Measure of Untruthfulness [ MoU]  N=50 

   Tests Name 0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test .051 0.054 0.065 0.067 0.075 0.145 0.248 0.352 0.43 0.553 0.69 

𝐺2 Test 0.05 0.056 0.062 0.077 0.087 0.147 0.157 0.296 0.336 0.47 0.599 

𝐷2 Test .050 0.089 0.14 0.24 0.33 0.45 0.56 0.65 0.74 0.81 0.892 

|χ| MDS 0.05 0.053 0.058 0.072 0.099 0.137 0.167 0.228 0.31 0.329 0.422 

FES 0.05 0.14 0.245 0.407 0.494 0.6578 0.74 0.835 0.912 0.966 0.986 

NMCS 0.05 0.052 0.082 0.086 0.131 0.168 0.172 0.184 0.21 0.271 0.318 

FTS 0.05 0.052 0.061 0.07 0.092 0.147 0.184 0.198 0.221 0.277 0.380 

CRS 0.05 0.052 0.06 0.077 0.087 0.138 0.171 0.181 0.192 0.21 0.312 

KLS 0.05 0.051 0.062 0.071 0.086 0.132 0.173 0.188 0.192 0.223 0.382 

               BPS 0.05 0.11 0.205 0.25 0.38 0.51 0.67 0.75 0.83 0.9 0.970 

LMS 0.05 0.09 0.15 0.23 0.34 0.46 0.61 0.71 0.79 0.86 0.990 
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Figure 6.2: Shows Power Analysis of 2x2 CT. 

 

Table 6.2 results indicates that LMS has the most powerful test as compared to 

others tests of independence in scenario II. The results contradict with scenario I due to 

different DGP. FES performs best at second while BPS and D square at third and fourth 

but performs betters as compared to others tests of independence. 
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Table 6. 3: Power Analysis of Tests of independence for 2 × 2 CT Scenario - III 

Nominal Level (α) 

=5%            
Measure of Untruthfulness [ MoU]  N=100 

Tests Name   0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.056 0.068 0.069 0.077 0.149 0.152 0.255 0.332 0.455 0.599 

𝐺2 Test 0.05 0.058 0.061 0.079 0.089 0.148 0.158 0.299 0.346 0.482 0.512 

𝐷2 Test 0.05 0.052 0.069 0.071 0.098 0.12 0.415 0.527 0.648 0.758 0.831 

|χ| MDS 0.05 0.051 0.062 0.07 0.107 0.138 0.168 0.232 0.322 0.331 0.432 

FES 0.05 0.051 0.063 0.078 0.197 0.22 0.482 0.674 0.723 0.932 1 

NMCS 0.05 0.051 0.086 0.09 0.139 0.16 0.176 0.188 0.221 0.284 0.299 

FTS 0.05 0.051 0.063 0.078 0.107 0.122 0.282 0.374 0.423 0.462 0.532 

CRS 0.05 0.05 0.062 0.079 0.093 0.144 0.171 0.185 0.199 0.221 0.343 

KLS 0.05 0.051 0.081 0.091 0.113 0.162 0.181 0.189 0.231 0.234 0.357 

                BPS 0.051 0.065 0.096 0.139 0.262 0.348 0.562 0.712 0.781 0.892 0.95 

LMS 0.052 0.062 0.0097 0.121 0.23 0.311 0.528 0.641 0.757 0.83 0.957 
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Figure 6.3: Power Analysis of 2x2 CT 

Table 6.3 results of scenario –III indicates different result in contrast to scenario 

I-II. FES performs better as compared to LMS. BPS also shows better performance 

compared to others tests of independence. 
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Table 6. 4: Power Analysis of Tests of independence for 2 × 2 CT Scenario - IV 

Nominal Level (α) 

=5%     
Measure of Untruthfulness [ MoU]  N=200 

Tests Name          0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.053 0.063 0.088 0.097 0.148 0.172 0.201 0.335 0.485 0.574 

𝐺2 Test 0.05 0.055 0.067 0.075 0.125 0.155 0.164 0.296 0.326 0.456 0.588 

𝐷2 Test 0.05 0.051 0.062 0.078 0.093 0.221 0.437 0.757 0.806 0.847 0.856 

|χ| MDT 0.052 0.063 0.068 0.089 0.194 0.218 0.276 0.389 0.401 0.456 0.511 

FES 0.05 0.051 0.061 0.167 0.202 0.329 0.486 0.68 0.811 0.855 0.996 

NMCS 0.05 0.051 0.052 0.057 0.091 0.117 0.145 0.156 0.163 0.181 0.232 

FTS 0.05 0.052 0.057 0.062 0.094 0.126 0.156 0.169 0.176 0.189 0.278 

CRS 0.05 0.059 0.078 0.094 0.243 0.264 0.387 0.495 0.553 0.577 0.665 

KLS 0.052 0.094 0.1499 0.232 0.365 0.432 0.587 0.752 0.819 0.86 0.905 

  BPS 0.051 0.066 0.098 0.132 0.251 0.363 0.483 0.712 0.805 0.9011 0.929 

  LMS 0.052 0.094 0.1499 0.232 0.365 0.432 0.587 0.752 0.919 0.96 0.989 
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Figure 6.4: Shows Power Analysis of 2x2 CT. 

 

Table 6.4 analysis explains that FES performs better in scenario IV as compared 

to LMS, BPS and D Square. Here KLS seems to be more power full as compared to D 

square test and others tests of independence. 
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Table 6. 5: Power Analysis of Tests of independence for 2 × 2 CT Scenario - V 

Nominal Level (α) 

=5%     
Measure of Untruthfulness [ MoU]  N=400 

Tests Name          0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.058 0.079 0.082 0.097 0.125 0.158 0.167 0.259 0.275 0.394 

𝐺2 Test 0.05 0.066 0.069 0.091 0.094 0.131 0.163 0.216 0.271 0.294 0.419 

𝐷2 Test 0.05 0.066 0.0178 0.299 0.323 0.446 0.594 0.658 0.781 0.809 0.983 

|χ| MDT 0.05 0.055 0.067 0.081 0.112 0.14 0.179 0.229 0.346 0.387 0.482 

FES 0.05 0.063 0.08 0.19 0.349 0.389 0.509 0.685 0.853 0.932 1 

NMCS 0.05 0.058 0.071 0.098 0.142 0.168 0.195 0.198 0.251 0.298 0.382 

FTS 0.052 0.056 0.072 0.079 0.107 0.138 0.141 0.149 0.153 0.167 0.188 

CRS 0.051 0.057 0.08 0.083 0.093 0.099 0.108 0.14 0.205 0.281 0.3 

KLS 0.05 0.057 0.074 0.099 0.153 0.171 0.188 0.197 0.265 0.323 0.397 

LMS 0.051 0.069 0.132 0.148 0.262 0.392 0.54 0.633 0.841 0.918 0.976 

BPS 0.053 0.099 0.152 0.202 0.38 0.479 0.687 0.891 0.875 0.909 0.910 
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Figure 6.5: Shows Graph of PoT for 2x2 CT. 

 

 The results of scenario V in Table 6.5 indicates that FES have maximum power 

as compared to LMS, BPS and D Square tests of independence. This is the key point 

which makes confusion that which test is to be used for data in hand. Since different 

tests performs different under various DGP for 2x2 CT which leads us to evaluate the 

most stringent test using SC. The summary of different scenario is shown in Table 6.6.  

Table 6. 6: Summary of Power for 2×2 Contingency Table 

       2×2 Contingency table 

(Power) 

 

FES 

α = 0.05 

LMS 

 

BPS 

 

DSQS 

 

KLS 

Scenario I ++++ +++ ++ + - 

Scenario II +++ ++++ ++ + - 

Scenario III ++++ +++ ++ + - 

Scenario IV +++ ++ ++++ - + 

Scenario V ++++ ++ + +++ - 

          (Note: “+” shows the power of tests as it increases shows the most powerful tests).
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Graphical analysis of 2x2 CT under scenarios (I-V)  

 

 

 

 

 

 

 

Figure 6.6: Shows Power Analysis Graphs for Nominal Data for 2 × 2 CT. 
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Different tests perform different output in various scenarios under consideration. 

Therefore, we use Stringency criteria (SC) to decide about the most stringent tests of 

independence in 2x2 Contingency table. We computed maximum likelihood, draw the power 

envelope calculated shortcomings of the numerous tests of independence that is the difference 

which is maximum between powers envelop and power curve of tests of Independence to 

evaluate most stringent tests of independence for nominal data in 2 × 2 CT. 

S (T, θk)         =         P (Tθk , θk)   −       P (T , θk)  

            Shortcoming at specific alternative 

    S (T) = Max [P (Tθk , θk) − P (T, θk) 

Table 6. 7: Shortcoming of Tests of Independence for Nominal Data for 2 × 2 Contingency table 

 

CT 2 × 2  

α = 0.05 

 

Shortcomings  

 

 

Most 

Stringent 

Test 
Sample Size 𝜒2  

Test 
𝐺2 

𝑇𝑒𝑠𝑡 
𝐷2  

Test 

|χ| MD 

Test 

 

FES 

 

NMCS 

 

FTS 

 

CRS 

 

KLS 

 

LMS 

 

BPS 

      N=25 

 0.401 0.304 0.263 0.209 0.044 0.337 0.636 0.757 0.353 0.07 0.059 
 

FES 

 

 

N=50 0.427 0.331 0.273 0.265 0.045 0.246 0.43 0.69 0.32 0.08 0.093 

 

FES 

 

 

N=100 0.428 0.342 0.287 0.286 0.053 0.249 0.43 0.62 0.32 0.1 0.083 

 

FES 

 

 

N=200 0.432 0.363 0.288 0.294 0.052 0.243 0.48 0.69 0.15 0.09 0.073 

 

FES 

 

 

N=400 0.448 0.367 0.288 0.302 0.049 0.245 0.45 0.59 0.21 0.08 0.073 

 

FES 

 

 Thus, from above table 6.7 and figure 6.6 results; this can be found and concluded that 

FES has minimum shortcoming and thus this is concluded that the most stringent test is Fisher 

Exact Test Statistics (FES) in 2 × 2 CTs.  
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[Section II] 

6.2 Power Analysis of Tests of Independence for Nominal data in W × K CT 

We investigated the power of tests of independence for nominal data in different 

scenarios presented in Table 4.2 for different CTs and found the following results stated in 

Tables.  

Table 6. 8: Power Analysis of Tests of independence for 2× 3 CT 

Scenario - I 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=25 

Tests Name 0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.05 0.087 0.0798 0.145 0.252 0.289 0.398 0.421 0.577 0.689 

𝐺2 Test 0.05 0.05 0.077 0.089 0.093 0.142 0.178 0.285 0.399 0.421 0.543 

𝐷2 Test 0.05 0.058 0.098 0.102 0.177 0.249 0.352 0.455 0.532 0.678 0.788 

|χ| MDT 0.05 0.06 0.068 0.089 0.099 0.188 0.258 0.399 0.446 0.582 0.699 

FIT 0.05 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.58 0.698 0.723 

NMCS 0.05 0.06 0.068 0.089 0.099 0.188 0.258 0.399 0.446 0.582 0.699 

FTS 0.052 0.05 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.58 0.698 

CRS 0.051 0.05 0.05 0.051 0.089 0.091 0.153 0.162 0.281 0.389 0.431 

KLS 0.05 0.052 0.059 0.064 0.199 0.29 0.31 0.412 0.512 0.524 0.623 

BPS 0.052 0.058 0.059 0.167 0.267 0.398 0.487 0.587 0.724 0.876 0.965 

LMS 0.056 0.102 0.143 0.205 0.295 0.431 0.562 0.711 0.879 0.96 1.00 

NPLT 0.05 0.233 0.365 0.488 0.595 0.622 0.762 0.811 0.979 0.999 1.00 
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Figure 6.7: Shows Power Analysis of 2x3 CT (S-I) 

Table 6.8 shows power of selected tests of independence for nominal data considering 

scenario I. We see from the results that other tests have low power therefore; we took only the 

top four tests of independence which has the maximum power in scenario I and compare the 

results shown in figure 6.8. The results indicates that LMS tests has maximum power. We have 

also compared the power envelope shown by NPLT with LMS, BPS and ChiMtest (MDS) test 

having maximum power and are used in evaluation of most stringent tests for nominal data 

using SC based on power envelop.  

 

Table 6. 9: Power Analysis of Tests of independence for 3 × 3 Contingency table 

Scenario - I 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=50 

   Tests Name 0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.051 0.056 0.067 0.075 0.087 0.188 0.242 0.252 0.33 0.41 0.491 

𝐺2 𝑇𝑒𝑠𝑡 0.05 0.059 0.068 0.097 0.187 0.241 0.351 0.491 0.431 0.571 0.699 

𝐷2 Test 0.05 0.055 0.064 0.091 0.196 0.223 0.241 0.289 0.386 0.492 0.51 

|χ| MDT 0.05 0.057 0.059 0.073 0.199 0.188 0.199 0.328 0.412 0.521 0.629 

FES 0.05 0.056 0.068 0.175 0.287 0.327 0.471 0.499 0.527 0.611 0.65 
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NMCS 0.05 0.053 0.087 0.089 0.231 0.368 0.379 0.489 0.51 0.698 0.789 

FTS 0.05 0.056 0.068 0.098 0.192 0.257 0.398 0.499 0.598 0.698 0.732 

CRS 0.05 0.052 0.068 0.099 0.102 0.138 0.271 0.381 0.492 0.51 0.612 

KLS 0.05 0.051 0.087 0.089 0.186 0.198 0.273 0.381 0.492 0.523 0.612 

         LMS 0.052 0.068 0.091 0.178 0.276 0.387 0.599 0.756 0.877 0.899 1 

BPS 0.052 0.068 0.091 0.178 0.276 0.387 0.599 0.756 0.877 0.899 0.96 

 

 

Figure 6.8: Shows Power Analysis of 3x3 CT (S-I) 

 

Table 6.9 results indicates that LMS has the maximum power as compared to others 

tests of independence in scenario I for 3x3 CT. We also found the same result in scenarios – I 

for 2x3 CT that LMS, BPT and MDT tests performs betters as compared to other tests.  
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Table 6. 10: Power Analysis of Tests of independence for 4 × 4 Contingency table 

Scenario - I 

Nominal Level 

(α) =5%            
Measure of Untruthfulness [ MoU]  N=100 

Tests Name   0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.058 0.098 0.102 0.177 0.249 0.252 0.355 0.432 0.578 0.688 

𝐺2 Test 0.05 0.06 0.068 0.089 0.099 0.188 0.258 0.399 0.446 0.582 0.699 

𝐷2 Test 0.05 0.055 0.064 0.091 0.196 0.223 0.241 0.289 0.386 0.492 0.51 

|χ |MDT 0.05 0.057 0.059 0.073 0.199 0.188 0.199 0.328 0.412 0.521 0.629 

FIS 0.05 0.055 0.063 0.078 0.1 0.12 0.282 0.374 0.422 0.582 0.632 

NMCS 0.05 0.051 0.089 0.098 0.239 0.36 0.476 0.488 0.521 0.688 0.789 

FTS 0.05 0.05 0.087 0.0798 0.145 0.252 0.289 0.398 0.421 0.577 0.689 

CRS 0.05 0.05 0.077 0.089 0.093 0.142 0.178 0.285 0.399 0.421 0.543 

KLS 0.05 0.051 0.089 0.091 0.153 0.162 0.281 0.389 0.431 0.534 0.557 

LMS 0.051 0.078 0.092 0.21 0.312 0.4791 0.689 0.859 0.977 0.998 1 

BPS 0.052 0.068 0.091 0.178 0.276 0.387 0.599 0.756 0.877 0.899 0.96 

 

 

 

 

Figure 6.9:  Shows power Analysis of 4x4 CT (S-I) 
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Table 6. 11: Power Analysis of Tests of independence for 5 × 5 Contingency table 

Scenario - I 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=200 

Tests Name          0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.051 0.089 0.098 0.239 0.36 0.476 0.488 0.521 0.688 0.789 

𝐺2 𝑇𝑒𝑠𝑡 0.05 0.05 0.087 0.0798 0.145 0.252 0.289 0.398 0.421 0.577 0.689 

𝐷2 Test 0.05 0.05 0.077 0.089 0.093 0.142 0.178 0.285 0.399 0.421 0.543 

|χ| MDT 0.052 0.058 0.098 0.102 0.177 0.249 0.252 0.355 0.432 0.578 0.688 

FES 0.05 0.06 0.068 0.089 0.099 0.188 0.258 0.399 0.646 0.882 0.999 

NMCS 0.05 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.58 0.698 0.723 

FTS 0.05 0.055 0.068 0.09 0.198 0.238 0.368 0.432 0.522 0.631 0.732 

CRS 0.05 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.58 0.698 0.723 

KLS 0.05 0.05 0.051 0.089 0.091 0.153 0.162 0.281 0.389 0.431 0.534 

BPS 0.051 0.055 0.069 0.1199 0.298 0.311 0.499 0.512 0.624 0.823 0.923 

LMS 0.052 0.063 0.117 0.299 0.365 0.487 0.687 0.734 0.823 0.925 1 

 

 

 
 

Figure 6.10: Shows Power Analysis of 5x5 CT (SI) 
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Table 6.11 analysis explains that LMS and BPS performs better in scenario I for 4x4 

CT and 5x5 CT as compared to other statistics.  

Table 6. 12: Power Analysis of Tests of independence for 6 × 6 Contingency Table 

Scenario - I 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=400 

Tests Name          0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.059 0.099 0.111 0.197 0.225 0.358 0.361 0.387 0.475 0.598 

𝐺2 𝑇𝑒𝑠𝑡 0.05 0.069 0.076 0.098 0.099 0.145 0.269 0.312 0.472 0.598 0.699 

𝐷2 Test 0.05 0.068 0.099 0.193 0.223 0.346 0.494 0.552 0.681 0.688 0.698 

|χ| MDT 0.05 0.057 0.087 0.089 0.167 0.175 0.279 0.329 0.446 0.587 0.682 

FES 0.05 0.063 0.086 0.199 0.349 0.389 0.598 0.611 0.653 0.632 0.678 

NMCS 0.05 0.058 0.077 0.099 0.187 0.198 0.295 0.398 0.451 0.598 0.682 

FTS 0.052 0.056 0.078 0.099 0.198 0.154 0.187 0.234 0.353 0.467 0.5188 

CRS 0.051 0.057 0.08 0.083 0.093 0.099 0.134 0.24 0.305 0.481 0.521 

KLS 0.05 0.057 0.074 0.099 0.153 0.171 0.188 0.297 0.365 0.422 0.523 

BPS 0.051 0.071 0.144 0.155 0.262 0.392 0.54 0.634 0.741 0.818 0.912 

LMS 0.054 0.099 0.188 0.198 0.298 0.476 0.667 0.791 0.87 0.977 1 
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Figure 6.11: Shows Graph of PoT for 6x6 CT (SI) 

 

Table 6. 13: Power Analysis of Tests of Independence for 12 × 12 CTs Scenario - I 

Nominal Level 

(α) =5%     
A measure of Untruthfulness [ MoU]  N=400 

Tests Name          0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.05 0.087 0.0798 0.145 0.252 0.289 0.398 0.421 0.577 0.689 

𝐺2 𝑇𝑒𝑠𝑡 0.05 0.05 0.077 0.089 0.093 0.142 0.178 0.285 0.399 0.421 0.543 

𝐷2 Test 0.05 0.058 0.098 0.102 0.177 0.249 0.352 0.455 0.532 0.678 0.788 

|χ| 0.05 0.06 0.068 0.089 0.099 0.188 0.258 0.399 0.446 0.582 0.699 

FES 0.05 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.58 0.698 0.723 

NMCS 0.05 0.06 0.068 0.089 0.099 0.188 0.258 0.399 0.446 0.582 0.699 

FTS 0.052 0.05 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.58 0.698 

CRS 0.051 0.05 0.05 0.051 0.089 0.091 0.153 0.162 0.281 0.389 0.431 

KLS 0.05 0.052 0.059 0.064 0.199 0.29 0.31 0.412 0.512 0.524 0.623 

LMS 0.052 0.058 0.059 0.167 0.267 0.398 0.487 0.587 0.724 0.876 1 

BPS 0.056 0.102 0.143 0.205 0.295 0.431 0.562 0.711 0.879 0.96 0.97 
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Figure 6.12: Shows Power Analysis of 12x12 CT (SI) 

 

 The results of scenario I for Table 6.13 indicates that LMS has maximum power as 

compared to BPS, D Square, and ChiMtests of independence in 6x6 and 12x12 CTs. The 

summary of scenario I for several types of CTs is shown in Table 6.14. 

Table 6. 14: Summary of Power for w×k Contingency table Scenario - I 

 W×K Contingency table 

(Power) 

 

 

BPS 

α = 0.05 

LMS 

 

ChiMtest 

 

DSQ 

2x3 CT +++ ++++ ++ + 

3x3 CT +++ ++++ ++ + 

4x4 CT +++ ++++ ++ + 

5x5 CT +++ ++++ ++ + 

6x6 CT +++ ++++ ++ + 

12x12 CT     

 

(Note: “+” shows the power of tests as it increases and shows the most powerful tests). 

 

Graphical analysis of W x K CT under scenarios (I-V) 
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Scenario I: 4x4 CT  Scenario 5x5 CT  
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Figure 6.13: Shows Power Graph for W × K CTs 
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6.2.1 Summary of Power Analysis of CT – Scenario – I 

The power is computed for W × K CTs i.e., for CTs 2x3, 3x3,4x4,5x5,6x6, and 12x12, 

and was found that LMS has the maximum power in all W × K CTs. BPS performs second and 

the Modular test performs on third number the maximum power among the eleven tests selected 

under the study.  

 

6.3 Power Analysis of Tests of Independence for Nominal Data in W × K Contingency 

Table (Scenario II) 

 

We investigated power analysis of tests of independence for nominal data in different 

scenarios II presented in Table 4.2 for different CTs and found the following results stated in 

Tables.  

Table 6. 15: Power Analysis of Tests of Independence for 2 × 3 CT 

(Scenario II) 

Nominal Level 

(α) =5%     
A measure of Untruthfulness [ MoU]  N=25 

Tests Name          0.00 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

𝜒2 Test 0.051 0.059 0.045 0.087 0.099 0.197 0.256 0.287 0.345 0.455 0.498 

𝐺2 𝑇𝑒𝑠𝑡 0.050 0.064 0.098 0.102 0.197 0.241 0.397 0.498 0.431 0.586 0.699 

𝐷2 Test 0.050 0.058 0.067 0.098 0.197 0.267 0.367 0.494 0.554 0.667 0.717 

|χ| MDT 0.050 0.058 0.076 0.098 0.165 0.186 0.298 0.356 0.445 0.556 0.634 

FES 0.050 0.057 0.072 0.185 0.296 0.345 0.485 0.445 0.578 0.647 0.676 

NMCS 0.050 0.058 0.088 0.093 0.267 0.386 0.345 0.495 0.535 0.687 0.795 

FTS 0.050 0.057 0.074 0.099 0.197 0.276 0.399 0.499 0.598 0.699 0.745 

CRS 0.050 0.054 0.074 0.098 0.165 0.176 0.278 0.367 0.496 0.532 0.644 

 KLS 0.050 0.053 0.088 0.095 0.188 0.199 0.212 0.345 0.498 0.555 0.632 

LMS 0.053 0.073 0.096 0.157 0.268 0.333 0.504 0.649 0.889 0.931 0.98 

BPS 0.054 0.098 0.119 0.19 0.306 0.398 0.545 0.71 0.923 0.977 1 
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Figure 6.7: Shows the Power of 3x3 CT (SII) 

Table 6. 16: Power Analysis of Tests of Independence for 3× 3 Contingency table 

(Scenario II) 

Nominal Level 

(α) =5%     
A measure of Untruthfulness [ MoU]  N=50 

   Tests Name 0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.054 0.076 0.098 0.18 0.238 0.342 0.476 0.526 0.623 0.786 

𝐺2 𝑇𝑒𝑠𝑡 0.05 0.054 0.062 0.077 0.085 0.145 0.153 0.195 0.226 0.264 0.297 

𝐷2 Test 0.05 0.053 0.058 0.0972 0.1593 0.258 0.338 0.474 0.583 0.708 0.819 

|χ| MDT 0.05 0.051 0.056 0.108 0.134 0.243 0.324 0.4451 0.493 0.571 0.642 

FES 0.05 0.051 0.088 0.176 0.284 0.318 0.3738667 0.435 0.495 0.556 0.617 

NMCS 0.05 0.052 0.066 0.087 0.112 0.137 0.15 0.173 0.194 0.215 0.236 

FTS 0.05 0.051 0.062 0.077 0.089 0.127 0.1274 0.142 0.157 0.171 0.186 

CRS 0.05 0.051 0.058 0.072 0.084 0.118 0.1174667 0.130 0.143 0.156 0.169 

KLS 0.05 0.051 0.059 0.075 0.088 0.121 0.156 0.155 0.173 0.190 0.207 

LMS 0.052 0.059 0.099 0.122 0.206 0.332 0.468 0.58 0.71 0.85 0.95 

BPS 0.051 0.056 0.109 0.142 0.256 0.392 0.568 0.735 0.84 0.95 1 
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Figure 6.8: Shows Power of 3x3 CT (SII) 

Table 6. 17: Power Analysis of Tests of independence for 4 × 4 CT 

(Scenario II) 

Nominal Level 

(α) =5%            
Measure of Untruthfulness [ MoU]  N=100 

Tests Name   0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

𝜒2 Test 0.05 0.053 0.061 0.087 0.095 0.167 0.267 0.298 0.387 0.492 0.585 

𝐺2 𝑇𝑒𝑠𝑡 0.05 0.057 0.068 0.094 0.097 0.176 0.199 0.287 0.324 0.388 0.497 

𝐷2 Test 0.051 0.054 0.078 0.095 0.187 0.235 0.401 0.533 0.641 0.7123 0.763 

|χ| MDT 0.05 0.053 0.061 0.065 0.099 0.236 0.381 0.4521 0.59 0.65 0.721 

FES 0.05 0.052 0.093 0.185 0.276 0.321 0.467 0.598 0.634 0.787 0.754 

NMCS 0.05 0.056 0.079 0.099 0.165 0.187 0.195 0.197 0.298 0.345 0.498 

FTS 0.05 0.053 0.065 0.079 0.094 0.107 0.121 0.134 0.148 0.162 0.176 

CRS 0.05 0.054 0.066 0.091 0.165 0.234 0.238 0.274 0.311 0.347 0.384 

KLS 0.05 0.053 0.067 0.188 0.297 0.334 0.392 0.457 0.522 0.587 0.652 

BPS 0.054 0.067 0.144 0.176 0.235 0.387 0.551 0.75 0.89 0.98 1 

LMS 0.053 0.0691 0.1604 0.2165 0.289 0.469 0.75 0.94 1 1 1 
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Figure 6.9: Shows Power of 4x4 CT (SII) 

Table 6. 18: Power Analysis of Tests of independence for 5 × 5 Contingency Table 

(Scenario II) 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=200 

Tests Name          0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

𝜒2 Test 0.050 0.066 0.069 0.091 0.094 0.131 0.163 0.216 0.271 0.294 0.419 

𝐺2 𝑇𝑒𝑠𝑡 0.050 0.066 0.078 0.099 0.123 0.146 0.194 0.258 0.381 0.409 0.523 

𝐷2 Test 0.050 0.055 0.067 0.148 0.312 0.414 0.517 0.559 0.646 0.717 0.762 

|χ| MDT 0.050 0.063 0.08 0.12 0.249 0.338 0.459 0.511 0.612 0.699 0.741 

FES 0.050 0.058 0.071 0.098 0.142 0.168 0.184 0.209 0.234 0.259 0.284 

NMCS 0.052 0.056 0.072 0.079 0.089 0.098 0.108 0.118 0.127 0.137 0.147 

FTS 0.051 0.057 0.08 0.083 0.093 0.105 0.116 0.128 0.138 0.149 0.160 

CRS 0.050 0.057 0.074 0.099 0.153 0.171 0.202 0.233 0.264 0.295 0.325 

KLS 0.051 0.069 0.132 0.148 0.262 0.168 0.256 0.290 0.323 0.357 0.391 

LMS 0.053 0.099 0.152 0.172 0.338 0.449 0.531 0.631 0.775 0.891 0.971 

BPS 0.050 0.098 0.179 0.282 0.392 0.547 0.691 0.821 0.94 0.97 1 
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Figure 6.10: Shows Power of 5x5 CT (SII) 

Table 6. 19: Power Analysis of Tests of independence for 6 × 6 CT 

(Scenario II) 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=400 

Tests Name          0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.051 0.089 0.098 0.239 0.36 0.476 0.488 0.521 0.688 0.789 0.051 

𝐺2 𝑇𝑒𝑠𝑡 0.051 0.05 0.055 0.068 0.09 0.198 0.238 0.368 0.432 0.522 0.631 

𝐷2 Test 0.050 0.05 0.122 0.178 0.298 0.389 0.498 0.551 0.671 0.78 0.898 

|χ| MDT 0.052 0.05 0.1051 0.159 0.251 0.343 0.41 0.52 0.58 0.69 0.811 

FES 0.053 0.058 0.098 0.102 0.177 0.249 0.252 0.355 0.432 0.578 0.688 

NMCS 0.051 0.089 0.098 0.239 0.36 0.476 0.488 0.521 0.688 0.789 0.051 

FTS 0.050 0.087 0.0798 0.145 0.252 0.289 0.368 0.432 0.522 0.631 0.668 

CRS 0.055 0.05 0.077 0.089 0.093 0.159 0.258 0.33 0.38 0.48 0.57 

KLS 0.052 0.058 0.098 0.102 0.177 0.198 0.238 0.368 0.432 0.522 0.631 

BPS 0.050 0.07 0.187 0.2798 0.345 0.542 0.61 0.72 0.83 0.91 1 

LMS 0.051 0.115 0.219 0.329 0.498 0.651 0.75 0.891 0.971 0.995 1 
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Figure 6.11: Shows Power of 6x6 CT (SII) 

Table 6. 20: Power Analysis of Tests of independence for 12 × 12 CT (Scenario II) 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=400 

Tests Name          0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.06 0.068 0.089 0.099 0.188 0.258 0.399 0.446 0.582 0.699 

𝐺2 𝑇𝑒𝑠𝑡 0.052 0.05 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.58 0.698 

𝐷2 Test 0.051 0.05 0.095 0.121 0.189 0.291 0.353 0.412 0.4981 0.589 0.731 

|χ| MDT 0.05 0.06 0.078 0.109 0.159 0.258 0.33 0.38 0.48 0.57 0.69 

FES 0.05 0.052 0.059 0.064 0.199 0.29 0.31 0.412 0.512 0.524 0.623 

NMCS 0.051 0.089 0.098 0.239 0.36 0.476 0.488 0.521 0.688 0.789 0.811 

FTS 0.05 0.087 0.0798 0.145 0.252 0.289 0.398 0.421 0.577 0.689 0.75 

CRS 0.05 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.58 0.698 0.723 

KLS 0.05 0.05 0.063 0.086 0.199 0.349 0.44 0.47 0.51 0.55 0.62 

LMS 0.051 0.055 0.119 0.199 0.298 0.311 0.41 0.51 0.63 0.69 0.781 

BPS 0.052 0.053 0.167 0.399 0.465 0.587 0.661 0.75 0.81 0.93 1 

NPLT 0.052 0.134 0.286 0.417 0.556 0.718 0.851 0.96 0.998 1 1 

 

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

P
o

T

MoU

Power Analysis of 6x6 CT (Scenario -II)

'BPS', 'LMS', 'D2text', 'chiMtest'



91 
 

 

Figure 6.12: Shows Power of 3x3 CT (SII) 

 

 The results of scenario II for Table 6.15-20 indicates that BPS have maximum power 

as compared to LMS, D Square and MDT of independence in different specifications of w×k 

Contingency tables. The summary of scenario II for several types of CT are shown in Table 6.21.  

 

Table 6. 21: Summary of Power for w×k Contingency Table Scenario - II 

 W×K Contingency table 

(Power) 

 

 

LMS 

α = 0.05 

BPS 

 

DSQ 

 

MDT 

2x3 CT +++ ++++ ++ + 

3x3 CT +++ ++++ ++ + 

4x4 CT +++ ++++ ++ + 

5x5 CT +++ ++++ ++ + 

6x6 CT +++ ++++ ++ + 

12x12 CT +++ ++++ ++ + 

        

(Note: “+” shows the power of tests as it increases shows the most powerful test). 

 

 

Graphical analysis of WxK CT under scenarios (II) 
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Scenario II: 2x3 Scenario 4x4 
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6.3.1  Summary of Power Analysis of CT – Scenario – II 

The power is computed for w×k contingency tables and was found that BPS has the 

maximum power in all higher order contingency tables under scenario II. LMS performs at 

second and MDT performs on third number the maximum power among the eleven tests 

selected under the study. 

6.4 Power Analysis of Tests of Independence for Nominal data in W × K 

Contingency table (Scenario III) 

 

We investigated power analysis of tests of independence for nominal data in different 

scenarios III for different Contingency table and found the following results stated in tables.  
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Table 6. 22: Power Analysis of Tests of independence for 2 × 3 CTs (Scenario – III) 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=25 

Tests Name          0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

𝜒2 Test 0.05 0.053 0.061 0.087 0.095 0.167 0.267 0.298 0.387 0.492 0.585 

𝐺2 𝑇𝑒𝑠𝑡 0.051 0.057 0.068 0.094 0.097 0.176 0.199 0.287 0.324 0.388 0.497 

𝐷2 Test 0.051 0.054 0.078 0.095 0.187 0.235 0.301 0.433 0.501 0.623 0.723 

|χ| MDT 0.050 0.053 0.061 0.065 0.145 0.216 0.309 0.312 0.416 0.587 0.699 

         FES 0.052 0.052 0.093 0.185 0.276 0.321 0.367 0.498 0.534 0.579 0.604 

NMCS 0.050 0.056 0.079 0.099 0.165 0.187 0.195 0.197 0.298 0.345 0.498 

FTS 0.050 0.053 0.065 0.079 0.094 0.156 0.187 0.19 0.243 0.366 0.498 

CRS 0.050 0.054 0.066 0.091 0.165 0.234 0.387 0.398 0.499 0.565 0.601 

 KLS 0.052 0.053 0.067 0.188 0.297 0.334 0.423 0.587 0.623 0.712 0.834 

BPS 0.054 0.067 0.144 0.176 0.235 0.387 0.445 0.634 0.765 0.854 0.934 

LMS 0.053 0.069 0.154 0.165 0.289 0.399 0.545 0.787 0.898 0.931 1 

 

 

 

Figure 6.13: Power Analysis of Tests of independence for 3× 3 CTs (Scenario III) 
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Table 6. 23: Power Analysis of Tests of independence for 3× 3 Contingency table 

(Scenario III) 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=50 

   Tests Name 0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.051 0.059 0.045 0.087 0.099 0.197 0.256 0.287 0.345 0.455 0.498 

𝐺2 𝑇𝑒𝑠𝑡 0.051 0.064 0.098 0.102 0.197 0.241 0.397 0.498 0.431 0.586 0.699 

𝐷2 Test 0.050 0.058 0.067 0.098 0.197 0.267 0.267 0.294 0.354 0.467 0.587 

|χ| MDT 0.052 0.058 0.076 0.098 0.165 0.186 0.198 0.356 0.445 0.556 0.634 

FES 0.052 0.057 0.072 0.185 0.296 0.345 0.485 0.445 0.578 0.687 0.776 

NMCS 0.051 0.058 0.088 0.093 0.267 0.386 0.345 0.495 0.535 0.687 0.795 

FTS 0.050 0.057 0.074 0.099 0.197 0.276 0.399 0.499 0.598 0.699 0.745 

CRS 0.050 0.054 0.074 0.098 0.165 0.176 0.278 0.367 0.496 0.532 0.644 

KLS 0.050 0.053 0.088 0.095 0.188 0.199 0.212 0.345 0.498 0.555 0.632 

BPS 0.053 0.073 0.096 0.187 0.288 0.343 0.534 0.789 0.889 0.893 0.923 

LMS 0.054 0.098 0.099 0.19 0.276 0.398 0.545 0.824 0.923 0.977 1 

 

Figure 6.14: Power Analysis of Tests of independence for 3× 3 Contingency table 

(Scenario III) 
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Table 6. 24: Power Analysis of Tests of independence for 4 × 4 CT (Scenario III) 

Nominal Level 

(α) =5%            
Measure of Untruthfulness [ MoU]  N=100 

Tests Name   0.00 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

𝜒2 Test 0.051 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.58 0.698 0.723 

𝐺2 𝑇𝑒𝑠𝑡 
0.051 0.055 0.068 0.09 0.198 0.238 0.368 0.432 0.522 0.631 0.732 

𝐷2 Test 0.052 0.05 0.087 0.0798 0.145 0.252 0.289 0.398 0.421 0.577 0.689 

|χ| MDT 0.050 0.05 0.077 0.089 0.093 0.142 0.178 0.285 0.399 0.421 0.543 

FES 0.050 0.058 0.098 0.102 0.177 0.249 0.252 0.355 0.432 0.578 0.688 

NMCS 0.051 0.06 0.068 0.089 0.099 0.188 0.258 0.399 0.446 0.582 0.699 

FTS 0.050 0.051 0.089 0.091 0.153 0.162 0.281 0.389 0.431 0.534 0.557 

CRS 0.051 0.059 0.045 0.087 0.099 0.197 0.256 0.287 0.345 0.455 0.498 

KLS 0.050 0.064 0.098 0.102 0.197 0.241 0.397 0.498 0.431 0.586 0.699 

BPS 0.052 0.069 0.102 0.156 0.287 0.367 0.438 0.567 0.778 0.898 0.923 

LMS 0.052 0.076 0.109 0.187 0.234 0.388 0.556 0.798 0.835 0.987 1 

 

 

Figure 6.14: Shows Power of 4x4 CT (Scenario - III) 
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Table 6. 25:  Power Analysis of Tests of independence for 5 × 5 CTs (Scenario III) 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=200 

Tests Name          0.00 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

𝜒2 Test 0.05 0.05 0.055 0.068 0.09 0.198 0.238 0.368 0.432 0.522 0.631 

𝐺2 𝑇𝑒𝑠𝑡 0.05 0.05 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.58 0.698 

𝐷2 Test 0.05 0.05 0.051 0.089 0.091 0.153 0.162 0.281 0.389 0.431 0.534 

|χ| MDT 0.05 0.058 0.098 0.102 0.177 0.249 0.252 0.355 0.432 0.578 0.688 

FES 0.051 0.089 0.098 0.239 0.36 0.476 0.488 0.521 0.688 0.789 0.051 

NMCS 0.05 0.087 0.0798 0.145 0.252 0.289 0.398 0.421 0.577 0.689 0.05 

FTS 0.05 0.05 0.077 0.089 0.093 0.142 0.178 0.285 0.399 0.421 0.543 

CRS 0.052 0.058 0.098 0.102 0.177 0.249 0.252 0.355 0.432 0.578 0.688 

KLS 0.05 0.05 0.087 0.0798 0.145 0.252 0.289 0.398 0.421 0.577 0.689 

BPS 0.051 0.055 0.069 0.099 0.298 0.311 0.499 0.512 0.624 0.823 0.923 

LMS 0.052 0.053 0.067 0.299 0.365 0.487 0.687 0.734 0.823 0.925 1 

 

 

 

Figure 6.15: Shows Power of 5x5 CT (Scenario - III) 
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Table 6. 26: Power Analysis of Tests of independence for 6 × 6 CT (Scenario III) 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=400 

Tests Name          0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.05 0.057 0.087 0.089 0.167 0.175 0.279 0.329 0.446 0.587 

𝐺2 𝑇𝑒𝑠𝑡 0.05 0.05 0.063 0.086 0.199 0.349 0.389 0.598 0.611 0.653 0.632 

𝐷2 Test 0.05 0.051 0.068 0.099 0.193 0.223 0.346 0.494 0.552 0.681 0.688 

|χ| MDT 0.05 0.057 0.074 0.099 0.153 0.171 0.188 0.297 0.365 0.422 0.564 

FES 0.058 0.098 0.102 0.177 0.249 0.252 0.355 0.432 0.578 0.688 0.586 

NMCS 0.05 0.059 0.099 0.111 0.197 0.225 0.358 0.361 0.387 0.475 0.598 

FTS 0.052 0.069 0.076 0.098 0.099 0.145 0.269 0.312 0.472 0.598 0.699 

CRS 0.05 0.057 0.074 0.099 0.197 0.276 0.399 0.499 0.598 0.699 0.745 

KLS 0.05 0.054 0.074 0.098 0.165 0.176 0.278 0.367 0.496 0.532 0.644 

BPS 0.052 0.069 0.102 0.156 0.287 0.367 0.438 0.567 0.778 0.898 0.923 

LMS 0.052 0.076 0.109 0.187 0.234 0.388 0.556 0.798 0.835 0.987 1 

 

 

Figure 6.16: Shows Power of 6x6 CT (SIII) 
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Table 6. 27:  Power Analysis of Tests of independence for 12 × 12 CT (Scenario III) 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=400 

Tests Name          0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.06 0.068 0.089 0.099 0.188 0.258 0.399 0.446 0.582 0.699 

𝐺2 𝑇𝑒𝑠𝑡 0.052 0.05 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.58 0.698 

𝐷2 Test 0.051 0.05 0.05 0.051 0.089 0.091 0.153 0.162 0.281 0.389 0.573 

|χ| MDT 0.05 0.06 0.068 0.089 0.099 0.188 0.258 0.399 0.446 0.582 0.699 

FES 0.05 0.052 0.059 0.064 0.199 0.29 0.31 0.412 0.512 0.524 0.623 

NMCS 0.051 0.089 0.098 0.239 0.36 0.476 0.488 0.521 0.688 0.789 0.051 

FTS 0.05 0.087 0.0798 0.145 0.252 0.289 0.398 0.421 0.577 0.689 0.05 

CRS 0.05 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.58 0.698 0.723 

KLS 0.05 0.05 0.063 0.086 0.199 0.349 0.389 0.598 0.611 0.653 0.632 

BPS 0.051 0.055 0.069 0.099 0.298 0.311 0.499 0.512 0.624 0.823 0.923 

LMS 0.052 0.053 0.067 0.299 0.365 0.487 0.687 0.734 0.823 0.925 1 

NPL 0.052 0.164 0.256 0.376 0.488 0.582 0.687 0.776 0.851 0.947 1 

 

 

Figure 6.17: Shows Power of 12x12 CT (SIII) 
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 The results of scenario IV for table 6.22-25 indicates that BPS has maximum power 

compared to LMS and D Square and MDT of independence in 6x6 and 12x12 contingency 

table.  The summary of scenario I for several types of contingency table are shown in table 

6.26.  

Table 6. 28: Summary of Power for W×K Contingency table Scenario - III 

 
W×K Contingency table 

(Power) 

 

 

LMS 

α = 0.05 

BPS 

 

DSQ 

 

MDT 

2x3 CT ++++ +++ ++ + 

3x3 CT ++++ +++ ++ + 

4x4 CT ++++ +++ ++ + 

5x5 CT ++++ +++ ++ + 

6x6 CT ++++ +++ ++ + 

12x12 CT ++++ +++ ++ + 

(Note: “+” shows the power of tests as it increases shows the most powerful tests). 

 

From power analysis of of differents test of indepenence from scenerio 1-III, We observe that 

tests performs different under different DGP. There are some senerios where one test performs better 

while in other sceneraio other test performs better and thus there is confusion that which test ought to 

be used for better and reliable results. Therefore, we have used stringency cretion which are discussed 

in detail after analysis fo all sceneraios.  

We also presented power comparisons for numerous tests of independence through visualizations i.e., 

graphical analysis presented below   
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Scenario III 

 

Scenario 2X3 Scenario 3x3 

 

Scenario III 4x4 Scenario III 5x5 

 

 

 

Scenario III 6x6 Scenario III 12x12 
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6.5 Power Analysis of Tests of Independence for Nominal data in W × K Contingency 

table (Scenario IV) 

 

We investigated power analysis of tests of independence for nominal data in different 

scenarios IV for different Contingency tables and found the following results stated in tables.  

Table 6. 29: Power Analysis of Tests of independence for 2 × 3 Contingency table 

(Scenario IV) 

 

Nominal 

Level (α) =5%     
Measure of Untruthfulness [ MoU]  N=25 

Tests Name          0.00 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

𝜒2 Test 0.051 0.059 0.045 0.087 0.099 0.197 0.256 0.287 0.345 0.455 0.498 

𝐺2 𝑇𝑒𝑠𝑡 0.050 0.064 0.098 0.102 0.197 0.241 0.397 0.498 0.431 0.586 0.699 

𝐷2 Test 0.050 0.058 0.067 0.098 0.197 0.267 0.31 0.367 0.456 0.543 0.643 

|χ| MDT 0.051 0.058 0.076 0.098 0.165 0.186 0.198 0.243 0.365 0.51 0.578 

FES 0.052 0.057 0.072 0.185 0.296 0.345 0.485 0.445 0.478 0.511 0.576 

NMCS 0.053 0.058 0.088 0.093 0.267 0.386 0.345 0.495 0.535 0.687 0.795 

FTS 0.050 0.057 0.074 0.099 0.197 0.276 0.399 0.499 0.598 0.699 0.745 

CRS 0.051 0.054 0.074 0.098 0.165 0.176 0.278 0.367 0.496 0.532 0.644 

 KLS 0.052 0.053 0.088 0.095 0.188 0.199 0.212 0.345 0.498 0.555 0.632 

BPS 0.053 0.073 0.096 0.187 0.31 0.387 0.534 0.789 0.889 0.98 0.999 

LMS 0.054 0.098 0.099 0.19 0.276 0.325 0.455 0.499 0.593 0.765 0.813 
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Figure 6.18: Shows Power of 2x3 CT (SIV) 

 

Table 6. 30: Power Analysis of Tests of independence for 3× 3 Contingency table 

(Scenario IV) 

 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=50 

   Tests Name 0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.054 0.076 0.098 0.18 0.238 0.342 0.476 0.526 0.623 0.786 

𝐺2 𝑇𝑒𝑠𝑡 0.05 0.054 0.062 0.077 0.085 0.145 0.153 0.195 0.226 0.264 0.297 

𝐷2 Test 0.05 0.053 0.056 0.072 0.13 0.18 0.21 0.28 0.345 0.42 0.53 

|χ| MDT 0.05 0.054 0.079 0.068 0.14 0.198 0.256 0.398 0.456 0.587 0.713 

FES 0.05 0.051 0.088 0.176 0.284 0.318 0.566 0.64 0.702 0.76 0.813 

NMCS 0.05 0.052 0.066 0.087 0.112 0.137 0.15 0.18 0.195 0.24 0.274 

FTS 0.05 0.051 0.062 0.077 0.089 0.127 0.175 0.186 0.199 0.26 0.279 

CRS 0.05 0.051 0.058 0.072 0.084 0.118 0.166 0.172 0.188 0.197 0.298 

KLS 0.05 0.051 0.059 0.075 0.088 0.121 0.156 0.183 0.192 0.199 0.307 

BPS 0.052 0.059 0.122 0.189 0.298 0.467 0.768 0.937 0.998 0.998 1 

LMS 0.051 0.056 0.089 0.112 0.214 0.411 0.598 0.701 0.81 0.823 0.818 
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Figure 6.19: Shows Power of 3x3 CT (SIV) 

 

Table 6. 31: Power Analysis of Tests of independence for 4 × 4 CT (Scenario IV) 

Nominal Level 

(α) =5%            
Measure of Untruthfulness [ MoU]  N=100 

Tests Name   0.00 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

𝜒2 Test 0.05 0.053 0.061 0.087 0.095 0.167 0.267 0.298 0.387 0.492 0.585 

𝐺2 𝑇𝑒𝑠𝑡 0.05 0.057 0.068 0.094 0.097 0.176 0.199 0.287 0.324 0.388 0.497 

𝐷2 Test 0.05 0.053 0.061 0.065 0.076 0.156 0.245 0.312 0.416 0.587 0.699 

|χ| MDT 0.051 0.054 0.078 0.095 0.187 0.235 0.301 0.433 0.501 0.623 0.723 

FES 0.05 0.052 0.093 0.185 0.276 0.321 0.187 0.193 0.243 0.366 0.498 

NMCS 0.05 0.056 0.079 0.099 0.165 0.187 0.195 0.197 0.298 0.345 0.498 

FTS 0.05 0.053 0.065 0.079 0.094 0.156 0.187 0.19 0.243 0.366 0.498 

CRS 0.05 0.054 0.066 0.091 0.165 0.234 0.387 0.398 0.499 0.565 0.601 

KLS 0.05 0.053 0.067 0.188 0.297 0.334 0.423 0.587 0.623 0.712 0.834 

BPS 0.053 0.061 0.104 0.165 0.289 0.399 0.545 0.787 0.898 0.931 1 

LMS 0.054 0.067 0.144 0.176 0.235 0.387 0.445 0.634 0.788 0.854 0.885 
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Figure 6.20: Shows Power of 4x4 CT (SIV) 

Table 6. 32: Power Analysis of Tests of independence for 5 × 5 CTs (Scenario IV) 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=200 

Tests Name          0.000 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

𝜒2 Test 0.050 0.066 0.069 0.091 0.094 0.131 0.163 0.216 0.271 
0.294 0.419 

𝐺2 𝑇𝑒𝑠𝑡 0.050 0.066 0.078 0.099 0.123 0.146 0.194 0.258 0.381 
0.409 0.523 

𝐷2 Test 0.050 
0.055 0.067 0.081 0.112 0.140 0.179 0.229 0.346 

0.387 0.482 

|χ| MDT 0.050 
0.063 0.080 0.190 0.349 0.389 0.509 0.685 0.753 

0.832 0.978 

FES 0.050 
0.058 0.071 0.098 0.142 0.168 0.195 0.198 0.251 

0.298 0.382 

NMCS 0.052 
0.056 0.072 0.079 0.107 0.138 0.141 0.149 0.153 

0.167 0.188 

FTS 0.051 
0.057 0.080 0.083 0.093 0.099 0.108 0.140 0.205 

0.281 0.300 

CRS 0.050 
0.057 0.074 0.099 0.153 0.171 0.188 0.197 0.265 

0.323 0.397 

KLS 0.051 
0.069 0.132 0.148 0.262 0.168 0.199 0.194 0.251 

0.291 0.482 

BPS 0.053 
0.099 0.152 0.172 0.280 0.449 0.687 0.891 0.975 

0.999 1.000 

LMS 0.050 0.058 0.079 0.082 0.097 0.392 0.540 0.633 0.841 
0.918 0.976 
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Figure 6.21: Shows Power of 5x5 CT (SIV) 

Table 6. 33: Power Ana9ysis of Tests of independence for 6 × 6 CT (Scenario IV) 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=400 

Tests Name          0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.066 0.088 0.113 0.246 0.273 0.332 0.497 0.559 0.657 0.789 

𝐺2 𝑇𝑒𝑠𝑡 0.05 0.05 0.055 0.068 0.09 0.198 0.238 0.368 0.432 0.522 0.631 

𝐷2 Test 0.05 0.05 0.062 0.1 0.2 0.26 0.31 0.41 0.523 0.598 0.678 

|χ| MDT 0.05 0.064 0.06 0.11 0.24 0.27 0.332 0.494 0.556 0.618 0.78 

FES 0.05 0.058 0.098 0.102 0.177 0.249 0.252 0.355 0.432 0.578 0.688 

NMCS 0.051 0.089 0.098 0.239 0.36 0.476 0.488 0.521 0.688 0.789 0.051 

FTS 0.05 0.087 0.0798 0.145 0.252 0.289 0.398 0.421 0.577 0.689 0.05 

CRS 0.05 0.05 0.077 0.089 0.093 0.142 0.178 0.285 0.399 0.421 0.543 

KLS 0.052 0.058 0.098 0.102 0.177 0.249 0.252 0.355 0.432 0.578 0.688 

BPS 0.052 0.098 0.186 0.298 0.376 0.487 0.5443 0.654 0.854 0.93 1 

LMS 0.051 0.088 0.069 0.12 0.28 0.387 0.499 0.543 0.72 0.823 0.923 
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Figure 6.22: Shows Power of 6x6 CT (SIV) 

Table 6. 34: Power Analysis of Tests of independence for 12 × 12 CT (Scenario IV) 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=400 

Tests Name          0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.06 0.068 0.089 0.099 0.188 0.258 0.399 0.446 0.582 0.699 

𝐺2 𝑇𝑒𝑠𝑡 0.052 0.05 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.58 0.698 

𝐷2 Test 0.051 0.05 0.05 0.051 0.089 0.091 0.153 0.162 0.281 0.389 0.431 

|χ| MDT 0.051 0.087 0.078 0.095 0.187 0.235 0.301 0.433 0.501 0.623 0.723 

FES 0.05 0.052 0.059 0.064 0.199 0.29 0.31 0.412 0.512 0.524 0.623 

NMCS 0.051 0.089 0.098 0.239 0.36 0.476 0.488 0.521 0.688 0.789 0.051 

FTS 0.05 0.087 0.0798 0.145 0.252 0.289 0.398 0.421 0.577 0.689 0.05 

CRS 0.05 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.58 0.698 0.723 

KLS 0.05 0.05 0.063 0.086 0.199 0.349 0.389 0.598 0.611 0.653 0.632 

BPS 0.051 0.088 0.069 0.12 0.28 0.387 0.499 0.543 0.72 0.976 1 

LMS 0.052 0.053 0.067 0.299 0.365 0.487 0.687 0.734 0.823 0.925 1 

NPL 0.052 0.098 0.256 0.387 0.486 0.598 0.787 0.876 0.956 0.999 1 
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Figure 6.23: Shows Power of 12x12 CT (SIV) 

 

 The results of scenario I for table 6.4.5-6 indicates that BPS have maximum power as 

compared to LMS and D Square and ChiMtests of independence in 6x6 and 12x12 Contingency 

table.  The summary of scenario I for several types of Contingency table are shown in Table 

6.27. 

Scenario IV 12x12 

 

Table 6. 35: Summary of Power for W×K Contingency table Scenario - IV 
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 W×K Contingency table 

(Power) 

 

 

LMS 

α = 0.05 

BPS 

 

ChiMtest 

 

DSQ 

2x3 CT +++ ++++ ++ + 

3x3 CT +++ ++++ ++ + 

4x4 CT +++ ++++ ++ + 

5x5 CT +++ ++++ ++ + 

6x6 CT +++ ++++ ++ + 

12x12 CT +++ ++++ ++ + 

(Note: “+” shows the power of tests as it increases shows the most powerful tests). 

 

6.5.1 Summary of Power Analysis of CT – Scenario – IV 

The power is computed for higher order contingency table and was found that BPS has 

the maximum power in all the higher order contingency tables. LMS performs at second and 

MDT performs on third number the maximum power among the eleven tests selected under the 

study. 

6.6 Power Analysis of Tests of Independence in W × K CTs (Scenario V) 

We investigated power analysis of tests of independence for nominal data in different 

scenarios V for different Contingency table and found the following results stated in tables.  

Table 6. 36: Power Analysis of Tests of independence for 2 × 3 CTs (Scenario V) 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=25 

Tests Name          0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.050 0.054 0.076 0.098 0.18 0.238 0.342 0.476 0.526 0.623 0.786 

𝐺2 𝑇𝑒𝑠𝑡 0.050 0.054 0.062 0.077 0.085 0.145 0.153 0.195 0.226 0.264 0.297 

𝐷2 Test 0.051 0.066 0.078 0.124 0.253 0.31 0.429 0.59 0.632 0.699 0.71 

|χ| MDT 0.050 0.097 0.1765 0.376 0.3987 0.473 0.576 0.672 0.722 0.865 0.965 

FES 0.050 0.051 0.088 0.176 0.284 0.318 0.566 0.64 0.702 0.76 0.813 

NMCS 0.052 0.052 0.066 0.087 0.112 0.137 0.15 0.18 0.195 0.24 0.274 
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FTS 0.051 0.051 0.062 0.077 0.089 0.127 0.175 0.186 0.199 0.26 0.279 

CRS 0.050 0.051 0.058 0.072 0.084 0.118 0.166 0.172 0.188 0.197 0.298 

KLS 0.052 0.051 0.059 0.075 0.088 0.121 0.156 0.183 0.192 0.199 0.307 

BPS 0.053 0.099 0.124 0.346 0.4232 0.499 0.565 0.599 0.632 0.765 0.841 

LMS 0.051 0.098 0.145 0.287 0.42 0.567 0.673 0.875 0.898 0.965 0.979 

 

Figure 6.24: Power Analysis Graph 2x3 (SV) 

Table 6. 37: Power Analysis of Tests of independence for 3× 3 CTs (Scenario – V) 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=50 

   Tests Name 0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.051 0.054 0.065 0.067 0.075 0.145 0.148 0.152 0.23 0.253 0.29 

𝐺2 𝑇𝑒𝑠𝑡 0.051 0.056 0.062 0.077 0.087 0.147 0.157 0.196 0.236 0.27 0.299 

𝐷2 Test 0.052 0.063 0.068 0.089 0.194 0.218 0.276 0.389 0.401 0.456 0.511 

|χ| MDT 0.050 0.053 0.1 0.21 0.298 0.387 0.498 0.71 0.754 0.876 0.876 

FES 0.052 0.052 0.06 0.075 0.087 0.227 0.278 0.364 0.42 0.472 0.479 

NMCS 0.051 0.052 0.082 0.086 0.131 0.168 0.172 0.184 0.21 0.271 0.318 

FTS 0.053 0.052 0.061 0.07 0.092 0.147 0.184 0.198 0.221 0.277 380 

CRS 0.052 0.052 0.06 0.077 0.087 0.138 0.171 0.181 0.192 0.21 0.312 
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KLS 0.050 0.051 0.062 0.071 0.086 0.132 0.173 0.188 0.192 0.223 0.382 

                 BPS 0.050 0.06 0.098 0.132 0.244 0.331 0.41 0.523 0.654 0.699 0.765 

LMS 0.050 0.078 0.123 0.2876 0.309 0.435 0.567 0.731 0.887 0.99 1 

  

 

 

Figure 6.25: Power Analysis Graph 3x3 (SV) 

 

Table 6. 38: Power Analysis of Tests of independence for 4 × 4 CTs Scenario - V 

Nominal Level 

(α) =5%            
Measure of Untruthfulness [ MoU]  N=100 

Tests Name   0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.056 0.068 0.069 0.077 0.149 0.152 0.155 0.232 0.255 0.299 

𝐺2 𝑇𝑒𝑠𝑡 0.05 0.058 0.061 0.079 0.089 0.148 0.158 0.199 0.246 0.282 0.399 

𝐷2 Test 0.05 0.052 0.069 0.071 0.098 0.12 0.151 0.171 0.18 0.198 0.222 

|χ| MDT 0.05 0.051 0.062 0.07 0.107 0.138 0.168 0.232 0.322 0.331 0.432 

FES 0.05 0.051 0.063 0.078 0.197 0.22 0.482 0.674 0.723 0.882 0.932 

NMCS 0.05 0.051 0.086 0.09 0.139 0.16 0.176 0.188 0.221 0.284 0.299 

FTS 0.05 0.05 0.066 0.072 0.11 0.156 0.184 0.198 0.221 0.277 0.38 

CRS 0.05 0.05 0.062 0.079 0.093 0.144 0.171 0.185 0.199 0.221 0.343 
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KLS 0.05 0.051 0.081 0.091 0.113 0.162 0.181 0.189 0.231 0.234 0.357 

BPS 0.051 0.06 0.095 0.123 0.242 0.348 0.462 0.572 0.781 0.8982 1 

LMS 0.052 0.062 0.0097 0.136 0.26 0.341 0.578 0.741 0.877 0.93 1 

 

Figure 6.26: Power Analysis Graph 4x4 (SV) 

Table 6. 39: Power Analysis of Tests of independence for 5 × 5 CTs Scenario - V 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=200 

Tests Name          0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.053 0.063 0.088 0.097 0.148 0.172 0.201 0.235 0.285 0.274 

𝐺2 𝑇𝑒𝑠𝑡 0.05 0.055 0.067 0.075 0.125 0.155 0.164 0.196 0.226 0.256 0.288 

𝐷2 Test 0.052 0.063 0.068 0.089 0.194 0.218 0.276 0.389 0.401 0.456 0.511 

|χ| MDT 0.051 0.066 0.098 0.132 0.251 0.363 0.483 0.712 0.805 0.911 0.987 

FES 0.05 0.051 0.061 0.167 0.202 0.329 0.446 0.66 0.778 0.893 0.954 

NMCS 0.05 0.051 0.052 0.057 0.091 0.117 0.145 0.156 0.163 0.181 0.232 

FTS 0.05 0.052 0.057 0.062 0.094 0.126 0.156 0.169 0.176 0.189 0.278 

CRS 0.05 0.059 0.078 0.094 0.243 0.264 0.387 0.495 0.553 0.577 0.665 

KLS 0.05 0.062 0.081 0.097 0.251 0.272 0.397 0.499 0.571 0.584 0.687 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

P
o

T

MoU

Power Analysis of 5x5 CT ( Scenerio - V)

LMS ChiMtest BPS Dsquare



113 
 

BPS 
0.05 0.079 0.087 0.154 0.273 0.345 0.456 0.509 0.598 0.6554 0.699 

LMS 0.052 0.24 0.299 0.312 0.365 0.422 0.687 0.822 0.949 0.991 1 

 

Figure 6.27: Power Analysis of 5x5 CT (SV) 

Table 6. 40: Power Analysis of Tests of independence for 6 × 6 CTs Scenario - V 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=400 

Tests Name          0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.058 0.079 0.082 0.097 0.125 0.158 0.167 0.259 0.275 0.394 

𝐺2 𝑇𝑒𝑠𝑡 0.05 0.066 0.069 0.091 0.094 0.131 0.163 0.216 0.271 0.294 0.419 

𝐷2 Test 0.05 0.055 0.067 0.081 0.112 0.14 0.179 0.229 0.346 0.387 0.482 

|χ| MDT 0.051 0.069 0.132 0.148 0.262 0.392 0.54 0.633 0.841 0.918 0.976 

FES 0.05 0.063 0.08 0.19 0.349 0.389 0.509 0.685 0.753 0.832 0.978 

NMCS 0.05 0.058 0.071 0.098 0.142 0.168 0.195 0.298 0.351 0.498 0.582 

FTS 0.052 0.056 0.072 0.079 0.107 0.138 0.141 0.149 0.253 0.367 0.488 

CRS 0.051 0.057 0.08 0.083 0.093 0.099 0.108 0.14 0.205 0.381 0.4 

KLS 0.05 0.057 0.074 0.099 0.153 0.171 0.188 0.197 0.265 0.323 0.474 

BPS 0.05 0.066 0.078 0.099 0.123 0.146 0.194 0.258 0.381 0.409 0.523 

LMS 0.053 0.099 0.152 0.172 0.28 0.449 0.687 0.891 0.975 0.999 1 
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Figure 6.28: Power Analysis of 6x6 CT (SV) 

Table 6.41: Power Analysis of Tests of independence for 12 × 12 CT Scenario - V 

Nominal Level 

(α) =5%     
Measure of Untruthfulness [ MoU]  N=400 

Tests Name          0.000      0.020 0.040 0.060 0.080 0.100      0.120 0.140 0.160 0.180 0.200 

𝜒2 Test 0.05 0.058 0.079 0.082 0.097 0.125 0.158 0.167 0.259 0.275 0.394 

𝐺2 𝑇𝑒𝑠𝑡 0.05 0.066 0.069 0.091 0.094 0.131 0.163 0.216 0.271 0.294 0.419 

𝐷2 Test 0.05 0.066 0.078 0.099 0.123 0.146 0.194 0.258 0.381 0.409 0.523 

|χ| MDT 0.051 0.069 0.132 0.148 0.262 0.392 0.54 0.633 0.741 0.831 0.91 

FES 0.05 0.063 0.08 0.19 0.349 0.389 0.509 0.685 0.753 0.832 0.978 

NMCS 0.05 0.058 0.071 0.098 0.142 0.168 0.195 0.198 0.251 0.298 0.382 

FTS 0.052 0.056 0.072 0.079 0.107 0.138 0.141 0.149 0.153 0.167 0.188 

CRS 0.051 0.057 0.08 0.083 0.093 0.099 0.108 0.14 0.205 0.281 0.3 

KLS 0.05 0.057 0.074 0.099 0.153 0.171 0.188 0.197 0.265 0.323 0.397 

BPS 0.05 0.066 0.078 0.099 0.123 0.146 0.194 0.258 0.381 0.409 0.523 

LMS 0.058 0.088 0.156 0.278 0.384 0.449 0.587 0.691 0.775 0.899 1 

         NPLT 0.053 0.099 0.152 0.372 0.454 0.597 0.695 0.797 0.899 0.987 1 
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Figure 6.29: Power Analysis of 12x12 CT (SV) 

 

The results of scenario V for tables above indicates that LMS have maximum power as 

compared to BPS and D Square and MDT of independence in 6x6 and 12x12 Contingency 

table.  The summary of scenario V for distinct types of Contingency table are shown in Table 

6.42. 

Scenario V for 12x12 
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Table 6. 41: Summary of Power for W×K Contingency table Scenario - V 

 W×K Contingency table 

(Power) 

 

 

MDT 

α = 0.05 

LMS 

 

BPS 

 

DSQ 

2x3 CT +++ ++++ ++ + 

3x3 CT +++ ++++ ++ + 

4x4 CT +++ ++++ ++ + 

5x5 CT +++ ++++ ++ + 

6x6 CT +++ ++++ ++ + 

12x12 CT +++ ++++ ++ + 

              (Note: “+” shows the power of tests as it increases shows the most powerful tests).  

   Now, let me present power analysis in comparisons of selected tests of independence in 

scenario V.  

6.6.1  Summary of Power Analysis of CT – Scenario – V 

The power was computed for higher order contingency table it was found that LMS has 

the maximum power in all the higher order contingency tables. MDT performs at second and 

BPS performs on third number the maximum power among the eleven tests selected under the 

study.  

6.7 Conclusion 

The power analysis for different tests of independence shows different results as stated 

from the summary tables of scenarios (I-V). The central problem of the study is to investigate 

and evaluate the most stringent test of independence for nominal data in w x k contingency 

tables.  A special techniques of stringency criteria (SC) are used in this study to find out the 

most stringent test for w x k contingency table.  

We computed maximum likelihood, draw the power envelope curve and calculated 

shortcomings of the numerous tests of independence. Shortcomings are the difference of power 

of the test and power envelope curve. The procedure of shortcoming is explained in chapter 4 

as stated below.  

 S (T, θk)         =         P (Tθk , θk)   −       P (T , θk)  
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Shortcoming at specific alternative  

     S (T) = Max [P (Tθk , θk) − P (T, θk) 

Table 6.43 indicates a summary of shortcomings of tests of independence in different scenarios. 

 

Table 6. 42: Summary of Power for W×K Contingency Tables 

Scenarios  

(I-V) 

 W×K Contingency table 

(Shortcomings) 

 

MDT 

α = 0.05 

LMS 

 

BPS 

 

Scenario I 0.069 0.050 0.068 

Scenario II 0.782 0.054 0.061 

Scenario III 0.074 0.052 0.062 

Scenario IV 0.683 0.053 0.067 

Scenario V 0.071 0.051 0.063 

 

 Thus, from the above W × K contingency table analysis it is found that the most 

stringent test is Logarithmic Minimum Square (LMS) test of independence which has the 

minimum shortcomings in maximum scenarios. Based on solid estimation results of MCS we 

concluded that LMS is the most stringent test of independence in W × K contingency tables.   

 

 

 

 

 

 

  



118 
 

CHAPTER 7 

POWER COMPARISON OF TESTS OF INDEPENDENCE FOR 

ORDINAL DATA  

One of the key proposed objectives of this study is to evaluate the most powerful test 

of independence/measure of correlation in w × k contingency table for ordinal data. Seven tests 

of independence have been chosen and are compared using power criteria (PC). The power of 

a test is defined as the probability of rejecting null hypothesis when it is false i.e.   

𝑃𝑜𝑤𝑒𝑟 = 𝑃(𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝐻0/𝐻1 𝑖𝑠 𝑇𝑟𝑢𝑒) 

 

This study used small, medium and large sample size according to the size of CTs with 

nominal level (α level 5%). The study used simulated critical values (SCV) computed and 

presented in chapter five using numerous DGP explained in chapter 4.  

7.1 Power Analysis of Tests of Independence for Ordinal Data in 𝐖×𝐊 CTs.  

 

We investigated power analysis of tests of independence for ordinal data and found the 

following results stated in Tables 7.1.  

Since we know from section 4.2.1, equation 4.15 states that,  

𝑌 = 𝑎𝑋 + 𝑏𝑍      ; a + b = 1 

where, “a” determine strength of correlation in GDP. The result of table 7.1 indicates 

that as the strength of correlation increases, the power of the tests increases as well. The results 

further explains that Spearman , Goodman Kruskal γ and Novel 𝑘 has the maximum powers 

at nominal level (α = 5%) at sample size 25. The others test Kendall τ-a, Kendall τ-a, Kendall τ-a 

and Somers’d have lower power in this case. 
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Table 7. 1: Power Analysis of Tests of independence for Ordinal Data for 2 × 3 CT 

Nominal Level 

(α) =5%     
Strength of Correlation [ SoC]  N=25 

Tests Name          0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

Spearman  
0.051 0.075 0.175 0.292 0.343 0.418 0.533 0.672 0.781 0.881 0.911 

Kendall τ-a 
0.050 0.078 0.112 0.175 0.287 0.334 0.422 0.485 0.526 0.592 0.598 

Kendall τ-b  
0.053 0.066 0.089 0.179 0.214 0.308 0.366 0.484 0.502 0.561 0.567 

Kendall τ-c 
0.054 0.051 0.068 0.175 0.287 0.327 0.472 0.499 0.526 0.671 0.683 

Gd-Krskl γ 
0.051 0.067 0.159 0.269 0.399 0.478 0.572 0.692 0.703 0.967 0.982 

Somers’d  
0.050 0.058 0.079 0.099 0.187 0.297 0.382 0.496 0.595 0.543 0.574 

Novel 𝑘 
0.055 0.099 0.187 0.295 0.398 0.493 0.567 0.687 0.754 0.947 1.000 

 

 

 

Figure 7.1: Shows Graph of Powerful Tests 2x3 CT for Ordinal Data 
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The Figure 7.1 shows graphical analysis of power of tests (POT) at various levels of 

strength of correlation. This results also indicates that Novel 𝑘 has the maximum power while 

Goodman Kruskal γ performs at second and Spearman  at third.  

We computed the power of tests for seven tests of independence for ordinal data in 3 

× 3 contingency table shown in table 7.2.    

Table 7. 2: Power Analysis of Tests of independence for Ordinal Data for 3 × 3 Contingency table 

Nominal Level 

(α) =5%     
Strength of Correlation [ SoC]  N=50 

Tests Name          0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

Spearman  
0.050 0.055 0.163 0.278 0.332 0.423 0.582 0.674 0.722 0.882 0.921 

Kendall τ-a 
0.050 0.059 0.068 0.097 0.187 0.241 0.351 0.431 0.491 0.571 0.699 

Kendall τ-b  
0.051 0.055 0.064 0.091 0.196 0.223 0.241 0.286 0.389 0.492 0.516 

Kendall τ-c 
0.050 0.051 0.068 0.175 0.287 0.327 0.472 0.499 0.526 0.671 0.715 

  Gd Krskalγ 
0.052 0.055 0.168 0.29 0.398 0.438 0.568 0.632 0.722 0.831 0.932 

Somers’d  
0.050 0.053 0.084 0.089 0.238 0.368 0.379 0.489 0.518 0.697 0.789 

Novel 𝑘 
0.050 0.098 0.196 0.298 0.411 0.457 0.598 0.699 0.898 0.998 1.000 

 

The result of table 7.2 describes same situations as results of table 7.1 that as the 

strength of correlation increases, the power of the tests increases as well. The results further 

explains that Spearman, Goodman Kruskal γ and Novel 𝑘 has the maximum powers at 

nominal level (α) at sample size 50. The others test Kendall τ-a, Kendall τ-a, Kendall τ-a and 

Somers’s have lower power in this case. 
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Figure 7.2: Shows Graph of Powerful Tests 3x3 CT for Ordinal Data (N-50) 

The Figure 7.2 shows graphical analysis of power of tests (POT) at various levels of 

strength of correlation. This results also indicates that Novel 𝑘  has the maximum power while 

Goodman Kruskal γ performs at second and Spearman  at third.  

We computed power of tests for seven tests of independence for ordinal data in 4 × 4 

contingency table shown in table 7.3.    

Table 7. 3: Power Analysis of Tests of independence for Ordinal Data for 4 × 4 CTs 

Level (α) 

=5%     
Strength of Correlation [ SoC]  N=100 

Tests Name          0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

Spearman  
0.050 0.058 0.144 0.202 0.334 0.398 0.532 0.655 0.732 0.791 0.823 

Kendall τ-a 
0.053 0.064 0.068 0.089 0.099 0.188 0.258 0.399 0.446 0.582 0.699 

Kendall τ-b  
0.052 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.582 0.698 0.723 

Kendall τ-c 
0.051 0.055 0.167 0.275 0.387 0.488 0.542 0.601 0.633 0.712 0.791 

 Gd Krskalγ 
0.050 0.062 0.177 0.289 0.393 0.442 0.578 0.685 0.799 0.921 0.943 

Somers’d  
0.052 0.051 0.089 0.098 0.239 0.362 0.445 0.498 0.523 0.687 0.711 

Novel 𝑘 
0.050 0.076 0.187 0.349 0.365 0.452 0.589 0.698 0.721 0.977 1.000 
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The result of table 7.3 explains the same situations as results of table 7.2 that as the 

strength of correlation increases, the power of the tests increases as well. The results further 

explains that Spearman , Goodman Kruskal γ and Novel 𝑘  has the maximum powers at 

nominal level (α) at sample size 100. The others test Kendall τ-a, Kendall τ-a, Kendall τ-a and 

Somers’s have lower power in this scenario.  

The results further indicates that Novel 𝑘   has the maximum power as compared to 

others tests of independence. In this scenario it is seen that Goodman Kruskal γ performs better 

as compared to Spearman  and other tests.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Shows Graph of Powerful Tests 4x4 CT for Ordinal Data (N-100) 

 

The Figure 7.3 shows graphical analysis of power of tests (PoT) at various levels of strength 

of correlation. This results also indicates that Novel 𝑘 has the maximum power while Goodman 

Kruskal γ performs at second and Spearman  at third. We computed power of tests for seven 

tests of independence for ordinal data in 4 × 4 contingency table shown in table 7.4.    
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Table 7. 4: Power Analysis of Tests of independence for Ordinal Data for 5 × 5 CTs 

Nominal Level 

(α) =5%     
Strength of Correlation [ SoC]  N=200 

Tests Name 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

Spearman 
0.053 0.051 0.089 0.098 0.239 0.364 0.476 0.488 0.521 0.688 0.789 

Kendall τ-a 
0.052 0.054 0.087 0.099 0.145 0.252 0.289 0.398 0.421 0.577 0.689 

Kendall τ-b 
0.053 0.062 0.168 0.289 0.399 0.488 0.551 0.571 0.683 0.698 0.723 

Kendall τ-c 
0.050 0.068 0.099 0.193 0.223 0.346 0.494 0.552 0.681 0.688 0.698 

GdKrskalγ 
0.052 0.058 0.198 0.202 0.377 0.449 0.552 0.655 0.732 0.878 0.988 

Somers’d 
0.050 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.583 0.698 0.723 

Novel 𝑘 
0.050 0.061 0.168 0.293 0.398 0.438 0.568 0.632 0.722 0.931 1.000 

 

The result of table 7.4 explains the same situations as results of table 7.3 that as the 

strength of correlation increases, the power of the tests increases as well. The results further 

explains that Spearman, Goodman Kruskal γ and Novel 𝑘  has the maximum powers at 

nominal level (α) at sample size 200. The others test Kendall τ-a, Kendall τ-a, Kendall τ-a and 

Somers’s have lower power in this scenario. 

The results further indicates that Novel 𝑘   has the maximum power as compared to 

others tests of independence. In this scenario it is seen that Goodman Kruskal γ performs better 

as compared to Spearman  and other tests.  

 

 

 

 

 

 

 

Figure 7.4: Shows Graph of Powerful Tests 5x5 CT for Ordinal Data (N-200) 
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The Figure 7.4 shows graphical analysis of power of tests (POT) at various level of strength 

of correlation at sample size 200. This results also indicates that Novel 𝑘  has the maximum 

power while Goodman Kruskal γ performs at second and Spearman  at third.  

We computed power of tests for seven tests of independence for ordinal data in 6 × 6 

contingency table shown in table 7.5.    

Table 7. 5:  Power Analysis of Tests of independence for Ordinal Data for 6 × 6 CT 

Nominal Level 

(α) =5%     
Strength of Correlation [ SoC]  N=400 

Tests Name          0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

Spearman  
0.050 0.059 0.199 0.211 0.397 0.425 0.558 0.661 0.787 0.875 0.923 

Kendall τ-a 
0.053 0.069 0.076 0.098 0.099 0.145 0.269 0.312 0.472 0.598 0.699 

Kendall τ-b  
0.054 0.068 0.099 0.193 0.223 0.346 0.494 0.552 0.681 0.688 0.698 

Kendall τ-c 
0.052 0.056 0.077 0.089 0.093 0.142 0.178 0.285 0.399 0.421 0.543 

Gd Krskal γ 
0.050 0.063 0.186 0.299 0.349 0.489 0.598 0.611 0.753 0.832 0.978 

Somers’d  
0.055 0.058 0.077 0.099 0.181 0.197 0.292 0.397 0.452 0.598 0.682 

Novel 𝑘 
0.050 0.169 0.278 0.399 0.498 0.554 0.687 0.734 0.853 0.967 1.000 

 

The results indicates that Novel 𝑘   has the maximum power as compared to others 

tests of independence. In this scenario it is seen that Goodman Kruskal γ performs better as 

compared to Spearman  and other tests.  
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Figure 7.5: Shows Graph of Powerful Tests 6x6 CT for Ordinal Data (N-400) 

 The Figure 7.5 shows graphical analysis of power of tests (PoT) at various level of strength 

of correlation at sample size 400. This results also indicates that Novel 𝑘 has the maximum power 

while Goodman Kruskal γ performs at second and Spearman  at third.  

We computed power of tests for seven tests of independence for ordinal data in 12 × 

12 contingency table shown in table 7.6.    

Table 7. 6: Power Analysis of Tests of independence for Ordinal Data for 12 × 12 CTs 

Nominal Level 

(α) =5%     
Strength of Correlation [ SoC]  N=800 

Tests Name          0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

Spearman  
0.050 0.065 0.087 0.198 0.245 0.352 0.489 0.598 0.621 0.771 0.889 

Kendall τ-a 
0.050 0.058 0.077 0.089 0.093 0.142 0.178 0.285 0.399 0.421 0.543 

Kendall τ-b  
0.051 0.053 0.098 0.102 0.177 0.249 0.252 0.355 0.432 0.578 0.688 

Kendall τ-c 
0.054 0.062 0.078 0.098 0.109 0.298 0.351 0.471 0.582 0.698 0.723 

Gd - Kruskalγ 
0.052 0.064 0.168 0.289 0.399 0.488 0.558 0.699 0.746 0.882 0.924 

Somers’d  
0.052 0.063 0.068 0.089 0.099 0.188 0.258 0.399 0.446 0.582 0.699 

Novel 𝑘 
0.050 0.198 0.262 0.378 0.498 0.556 0.698 0.751 0.871 0.938 1.000 
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The results further indicates that Novel 𝑘 has the maximum power as compared to 

others tests of independence. In this scenario it is seen that Goodman Kruskal γ performs better 

as compared to Spearman  and other tests.  

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Shows Graph of Powerful Tests 12 x12 CT for Ordinal Data (N-800) 

 

The figure 7.6 shows graphical analysis of power of tests (PoT) at various level of strength 

of correlation at sample size 800. This results also indicates that Novel ∅k has the maximum power 

while Goodman Kruskal γ performs at second and Spearman  at third. The power analysis of 

tests of independence indicates that the Novel 𝑘   test of independence has maximum power 

as compared to others measure of correlation e.g. Spearman rank correlation, Somars’d, 

Kruskal Gamma. Goodman and Kruskal and Spearman rank correlation.  

The summary of power analysis of seven tests of independence for ordinal data are 

described from below line charts. The figure 7.7 shows line charts of the power of tests of 

independence / measure of correlation for ordinal data. The results which are stated in above 

tables and bar charts shows exactly same results in below line charts.   
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The power analysis of tests of independence indicates in w x k at various sample size ( small, 

medium and large) that the Novel 𝑘   test of independence has maximum power as compared 

to others measure of correlation e.g Spearman rank correlation, Somars D, Kruskal Gamma. 

Goodman and Kruskal and Spearman rank correlation.   

 

 

  

 

            

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7: Power analysis of Test for Ordinal Data 
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7.2 Summary of Power of Tests of Independence in Ordinal Data in W x K CTs 

 

All the above tests of independence are non-parametric, and we cannot find 

likelihood ratios for these measure of correlations. Therefore, we cannot use stringency 

criteria to evaluate most stringent test of independence. Thus, we used power analysis 

techniques (PC) through simulations and compared seven measure of correlation 

including a novel correlation known is Novel 𝑘 . The results indicate that novel tests 

of independence i.e., Novel 𝑘  shows better performance in W x K CTs. Goodman 

and Spearman rank correlation also perform reliable results compare to others measure 

of correlations. Table 7.7 summarizes results for the most powerful test of 

independence for ordinal data. 

Table 7. 7: Present Summary of Power for Ordinal Data in W×K   CT 

W×K Contingency table 

(Power) 

 N=50 

3×3   
N=100 

4×4 

N=200 

5×5 

N=400 

6×6 

N=800 

12 × 12 

Max 

Power of 

Test 

Spearman   .932 .823 .789 .923 .889 .932 

Kendall τ-a .699 .699 .689 .699 .543 .699 

Kendall τ-b  .510 .723 .723 .698 .688 .723 

Kendall τ-c .710 .791 .698 .543 .723 .791 

Gd - Kruskal γ .932 .943 .988 .978 .924 .988 

Somers’d  .789 .711 .723 .682 .699 .789 

Novel 𝒌 .100 .100 .100 .100 .100 .100 

 

In addition to above results, analysis based on Monte Carlo Simulation for 

ordinal data describes in table 7.8 that Novel 𝑘  test is the powerful test of 

independence for ordinal data. The good characteristic of this test is that it not only 

capture the linear association among the variables but it also captures the nonlinear 
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association among the variables. This Novel 𝑘 correlation can further be used either 

for nominal, ordinal, ratio interval or especially for mixed variables as well as performs 

optimal in multivariate contingency table.  

The calculation of the Novel 𝑘 correlation is a bit tough as described in chapter 

4. Therefore, Current study also found Kruskal Gamma and Spearman Rank 

correlations close to the Novel 𝑘  correlation in terms of power comparison for higher 

order contingency table in analysis of ordinal data.  

The study also concludes that in terms of powerful tests for ordinal data are 

ranked sequentially are Novel 𝑘, Gd - Kruskal γ, Spearman  , Somers’d, Kendall τ-c, 

Kendall τ-b and Kendall τ-a. 
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CHAPTER 8 

APPLICATION OF THE MOST STRINGENT TEST ON 

NOMINAL REAL DATA SET 

(NEXUS BETWEEN GIRLS ENROLLMENT IN EDUCATION) 

ACROSS 

PROVINCES OF PAKISTAN) 

 
8.1 Introduction  

Education is a prime requirement in this modern age of globalization. It does not only 

provide insights, but it has a significant role in building characters, grooming personality, 

giving skills, and inculcating moral values. The first stage for each human activity requires 

education in this phase of technological revolution. The welfare of the individuals and living 

standards is concerned with the vital role of education. The Education is a key factor that brings 

changes in human behavior. These changes insist that a human recognize his or her significant 

role in social, economic, and political life. To bring these changes, the equal opportunities of 

acquiring education to male and female are necessary. The education is a crucial tool to tackle 

the issues of income distribution and poverty along with facets of demographic, political and 

social developments. The human capital is important in developing countries as compared to 

developed countries because education is a core need for political, social, and economic 

transformation of institutions.  

The Gender and Development approach identified that relations and roles of gender are 

the main factor to improve the lives of women, with a term ‘gender’ suggests that there is need 

to focus on both men and women. Recently, the desire to recognize how gender traverses with 

some characteristics like sexuality, ethnicity and age has been renowned. The approach of 

Gender and Development identifies that it will be insufficient to include girls and women into 

prevailing development processes, but it is also necessary to ask the question about why women 

remained excluded, supporting that the emphasis ought to be on demonstrating the imbalances 

of supremacy based on this exclusion. The Gender and Development method also defines the 
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idea of ‘development’ and its gentle nature, indicating that there is need to transform narrow 

understanding of development as economic growth into social development. The projects by 

Gender and Development approach are holistic and try to eliminate the discriminated forms of 

institutions against women’s interest, for instance, acquiring land rights, and living violence 

free lifestyle (Molyneux, 1985; Moser, 1989). The international agencies and developing 

countries diverted their focus towards human investment in 1980s.  

The literacy rate of Pakistan was only 10%, when Pakistan came into existence. By 

then, Pakistan acquired only 10,000 elementary schools in inheritance. The number of the 

education institutions increased to 2, 65,538 (1, 14,302 women and 1, 51,236 for men) in 2019 

as the outcomes   of implementing different policies and reforms measures. The major task of 

the government was to enhance the education system in the elementary schools up to the 

economic, social, and ideological needs of the economy. An action plan contained on many 

reforms was developed during 1998-2010 to encourage higher education and literacy rate.  

The objective of these reforms was   to provide the facilities to those children who left 

schools due to unfavorable environment. In                         2006, Pakistan has been ranked at 134th in Human 

development index and quoted as an example among those countries where female education 

is less (OCSD, 2007). The number of boys going to         school is greater than the number of girls 

going to school with increasing age in Pakistan (Khan, 2008). The female higher education is 

the most effective education among primary, secondary, or higher secondary education because 

it is the level of education at which people pursue their pre - determined objectives. The higher 

education is defined as “all kinds of studies, training or training      for research at the post-secondary 

level, provided by universities or other educational establishments that are approved as 

institutions of higher education by the competent state authorities” (UNECSO, 1998). 

In Pakistan, the bachelor, Master, M.Phil., and Ph.D. are considered as higher education       

that starts very after the higher secondary education or twelve years of schooling. The higher 

education is the mean for people to pursue their goals of life that people aim to achieve from 
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their childhood (Yasmeen, 2005). The female education is a smart and most effective 

investment for the development and economic growth of any country in the world, but it 

remained    ignored. The formulated policies are required to empower women in education for 

decision making, employment and career development (Salik & Zhiyong, 2014).  

8.2 Literature Review  

 

Many studies have made efforts to identify the socio-economic factors that 

influence the female enrollment and their level of education. The socio-economic 

factors are too many so that it is a difficult task to include all factors in a single 

empirical study. Therefore, few studies analyzed the macroeconomic variables causing 

lower school enrollment in a country while few studies analyzed microeconomic and 

social factors at household level. Different socio-economic factors and 

macroeconomic variables have been identified by different studies that significantly 

affect women enrollment. 

There is lower participation of rural women in different types of employment in 

the India. The factor behind that is culture causing discouragement of female 

participation. The cultural aspect of joint family system insists female to opt agriculture 

employment but hinders the rural women to adopt non-farm employment. The joint 

family system decreases the working hours of rural women in non-farm employment. 

The social status of the women is not well defined due to lower education in the north 

India. The probability of rural women living in joint family system to work in non-farm 

sector is lower than the women living in nuclear family system. This gap has been 

lowered over the time but for those rural women who have tertiary education. The 

tertiary education of rural women overcomes the gender disparities prevailing in non-

farm sector employment. The women have more drop out ratio than male in initial stage 
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of education at 14 years’ age. In the joint family system, the unemployment rate of rural 

women with a young child is higher than the rural women living in nuclear family 

system (Dhanraj and Mahambare, 2019). The female enrollment in higher education in 

Pakistan is lower due to the cultural and socio-economic problems. The travel freedom, 

sexual harassment, feudalism, religious misconception, lack of higher education 

institutes and gender discrimination are the dominant perceived factors affecting female 

education.  

Most of the female have usually freedom to travel which means there is no much 

constraint of travel freedom. Sexual harassment is the mostly observed factor having 

negative influence on the female higher education. The parent permission for girls to 

acquire education has negligible outcome in lower female enrollment. The impact of 

feudalism is also an important factor behind lower female enrollment in higher 

education. Most of the people mis interpret the concept of religion regarding female 

education. So, religion misconception constraint adversely affects the female education. 

The security, lack of institutions and traditional customs are also important factors in 

determining the female education. The co-education causes a big challenge for female 

enrollment because parents oppose the co-education and do not allow girls to be enroll. 

The financial resources allow parents to bear the expenditures of female higher 

education but unfortunately, female higher education is restricted due to lower family 

income (Mehmood et al., 2018). Women's empowerment is complex and multifaceted, 

and its definition varies from community to community. Usually, female status refers 

to feelings of self-development among women, the ability to select from available 

choices as well as opportunities and the ability to manage your life outside and inside 

the house. The status of women is concerned with educational opportunities, labor 
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improvement, birth control, decision-making rights, access to resources and decision-

making on the reproductive process. Feminist economists indicate a masculine structure 

that increases gender inequality. To overcome these circumstances, women must 

challenge existing power relationships and exclude male dominant culture from society. 

The organizational development enhances the economic role of women. The 

communities need to raise awareness and to improve organizations to ensure equal 

opportunities and rights for both men and women. Recently, a large proportion of 

women occupy high posts in their workplaces, in trade unions, politics and the academic 

world. But gender inequality still prevails in most parts of the world. The discrimination 

between men and women affects economic development and partly true for human 

capital, but this view cannot explain the entire gender pay gap. The lives of women in 

Pakistan are governed by ancestral society. Such societies do not give women equal 

rights. It is widely evidenced that women face gender inequality in income, education, 

employment, healthcare, and control over assets.  

Pakistan is one of those countries which has largest gender gap and 

discrimination between man and women in all aspects of life. According to World 

Economic Forum, women of 58 countries were able to achieve gender equality in five 

different sectors such as health and educational achievements, wealth, economic 

opportunities, economic and political participation, while Pakistan was at 56th out of 

these countries. In Pakistan, the growth rate of labor force participation for women was 

15.9% in 2004 and increased to 18.9 percent for next two years (Ashraf & Ali, 2018). 

Access to higher education is probably going to turn out to be increasingly significant 

for developing nations but despite its pertinence this matter is understudied. In access 

to higher education, significant disparities exist between men and women emerging 
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from background of parent, location, and household wealth. These Disparities are 

significant regarding distributional worries as well as on the grounds that they may have 

suggestions for the economic and social prospects of the nations. With regards to a huge 

writing on the formation human capital, inequalities in accessing higher education 

appear early and are apparent in the relationship between later enrollment and early 

methods of learning in higher education. However, children and parent aspirations for 

acquiring education hardly affect female education but household wealth significantly 

determines female education as liquidity improves (Sanchez & Singh, 2018).  

Universities of Pakistan do not stand or secure position in the world ranking 

because their quality of education does not match international standard. The female 

education in rural areas of Pakistan is in very alarming situation. In developed countries, 

advanced infrastructure is provided to colleges and universities but in developing 

countries, even maintenance of schools is not possible. Government does not allocate 

desired and required budget for education in Pakistan. The government is focusing on 

the issues related to institutions and enrollment of the students since last decade whereas 

earlier state was unsatisfactory. Current state of country shows that government has 

taken few measures to improve education institutions for men and women at school and 

university levels. But these measures are not enough to get desired outcomes in the 

society. The findings in Pakistan show that female enrollment ratio, literacy rate and 

female participation of labor force have significant positive effects while fertility rate 

has negative and significant effect on economic growth in Pakistan. Hence, female 

literacy rate and female participation of labor force are necessary elements to achieve 

economic growth (Nosheen & Awan, 2018). 
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In most world communities, particularly in underdeveloped countries women 

are specified to household and men are specified to politics and public dealings. These 

dissimilarities between men and women are because of biological distinction. Women 

are born to give birth and house chores. Women give birth to children and keep 

themselves busy to feed up newly born babies/ children. They are deemed to be as 

domestic helper while men are physically strong and leave their children for extended 

periods. Therefore, men are more likely to be engaged in venture such as hunting and 

fighting and other socio-economic activity. There is greater gender discrimination in 

most developing countries. A girl-child has lower status and preferences, fewer rights, 

and benefits than a boy-child. Women at very young age are going through the 

inequality and facing difficulties. Women in Pakistan have been experiencing 

disadvantages since ages, their basic rights are being deprived. According to these 

social man-made norms, girls receive less food, less access to education, poor health 

care than a male child, and as a result, girls are more likely to die from childhood 

diseases. It has been reported that those girls who acquired training from vocational 

institutes have few chances to become teacher in vocational centers due to inefficiency 

of employment opportunities and lack of finances. According to Amnesty international, 

the girls’ school’s enrolment rate is very low, and according to the estimation of women 

organization groups, out of 28% of girls’ school’s enrolment at primary level, hardly 

11% girls go to high school. The drop rate is very high and girls are kept home to do 

house chores or to take care of younger siblings/children, when requested by family or 

if the financial situation is very viable. The 24% females are literate as compared to 

males who are at 49%. To take estimation of women organization group, only 12 to 15 

percent girls can read and write (Hirway & Mahadevia, 1996). 
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Keeping in view the empirical studies, it can be concluded that there are 

different socio-economic factors in different regions across the world that negatively 

influence the female enrollment in schools. In case of Pakistan, the findings of different 

studies illustrate that gender disparity, poverty, parent illiteracy, joint family system, 

lack of education institutes and facilities, poor health, family size, household income 

and assets, religion misconception and less travel freedom to women are the dominant 

constraints for female enrollment in Pakistan. 

 

 

This study includes targets four provinces of Pakistan named as Sindh, Punjab, 

Khyber Pakhtunkhwa and Baluchistan. The number of divisions, districts, Tehsils and 

union councils in Sindh are 7, 29, 119 and 1108, respectively. In Punjab, the number of 

 

Table 8. 1: Description of Nominal Variables for W × K CTs 

  Categorical Variable – Nominal Data 

Variable Name Type Description of the variable 

Female Enrollment Categorical 0=If Female is not enrolled or left 

the school  

1=If Female is currently 

enrolled 

  Other Variable 

Selected Provinces of Pakistan 

Province1   Categorical The province female belongs to (1=Punjab 0=else) 

Province2  Categorical The province female belongs to (1=KPK 0=else) 

Province3  Categorical The province female belongs to (1=Sindh 0=else) 

  Province4  Categorical The province female belongs to (1=Baluchistan 

0=else) 



138  
 

 

divisions, districts, Tehsils and union councils are 9, 36, 146 and 7602 respectively 

whereas in Khyber Pakhtunkhwa, the number of divisions, districts, tehsils and union 

councils are 9, 35, 82 and 986 respectively. The divisions, districts, Tehsils and union 

councils in Balochistan are 7, 33, 141 and 86 respectively (PSLM, 2019-20). The 

following tables shows the demographic characteristics of provinces in Pakistan.  

Table 8.2 : Demographic Characteristics of the Punjab 
 
 

  Urban Rural 
    

 Households in Millions 6.39 10.71 

 Male Population in Millions 20.76 35.20 

 Female Population in Millions 19.62 34.43 

 Total Population in Millions 40.39 69.63 

 Transgender 4585 2124 

 Sex Ratio 105.81 102.25 

 Household Size 6.3 6.5 

 

Table 8.3: Demographic Characteristics of the Sindh 
 
 

  Urban Rural 
    

 Households in Millions 4.4 4.19 

 Male Population in Millions 13.01 11.92 

 Female Population in Millions 11.9 11.06 
    

 Total Population in Millions 24.91 22.98 

 Transgender 2226 301 

 Sex Ratio 109.31 107.8 

 Household Size 5.7 5.5 
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Table 8.4: Demographic Characteristics of the Khyber Pakhtunkhwa 
 
 

  Urban Rural 
    

 Households in Millions 0.74 3.10 

 Male Population in Millions 2.97 12.50 

 Female Population in Millions 2.76 12.30 

 Total Population in Millions 5.73 24.79 

 Transgender 690 223 

 Sex Ratio 107.83 101.6 

 Household Size 6.3 6.53 

 

Table 8.5: Demographic Characteristics of the Balochistan 
 
 

  Urban Rural 
    

 Households in Millions 0.47 1.30 

 Male Population in Millions 1.79 4.69 

 Female Population in Millions 1.61 4.25 

 Total Population in Millions 3.40 8.94 

 Transgender 69 40 

 Sex Ratio 111.59 110.27 

 Household Size 7.2 6.93 

 

This study utilized the secondary data from Pakistan Rural Household Panel 

Survey (PRHPS) conducted and provided by International Food Policy Research 

Institute (IFPRI) and Innovative Development Solution (IDS) in 2020. 



140  
 

 

The thesis has concluded based on a solid result of simulation that logarithmic 

minimum square test (LMS) is the most stringent test of Independence for nominal data 

sets. Therefore, we apply: 

 LMS tests and few others of independence on real nominal data set. 

 Computational details are given in chapter 3 while MATLAB 

Programing codes are presented in Appendix- B.    

 Hypothesis are presented as below.  

𝐻0= School enrolment and provincial domicile are statistically independent.  

𝐻1= School enrolment and provincial domicile are statistically dependent.   

The objective is to assess evidence against the null hypothesis that the two 

variables Girl’s school enrolment and provincial domicile are statistically independent.  

8.3 Results and Discussion 
 

We applied the most stringent tests of independence in read nominal data set 

arranged in w × k CT.  

Table 8. 6: Results for W × K Contingency Table (Nominal Data) 

Tests Application of Logarithmic Minimum Square Test 

α = 5%, LMS 

P Value (0.0443) 

 Decision: P value of Logarithmic Minimum Square test is less than 5% 

therefore, we reject null hypothesis and concludes that there is significant 

difference in girl’s enrollment in education among different provinces in 

Pakistan.  
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8.4 Conclusion and Recommendations 

 

The results of previous chapter i.e., Chapter 6 prove through a variety of Data 

Generating Process through Monte Carlo Simulations that the most stringent test for 

w × 𝑘 CTs for nominal data is logarithmic minimum square (LMS). Therefore, we are 

confident to apply LMS test on real nominal data set.  

There is much discussion on gender differences in education but most of the 

discussion is without any statistical evidence. This study suggests that there is 

significant differences in gender enrollment in education.  
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CHAPTER 9 

APPLICATION OF THE POWERFUL TEST ON ORDINAL REAL 

DATA 

 (NEXUS BETWEEN CORRUPTION PERCEPTION INDICES  

AND COUNTRIES BY 

PER CAPITA INCOME) 
 

9.1 Introduction 

 

Transparency International (TI) claim themselves to be a movement with a 

vision of corruption free world. Established in 1993, TI currently has chapters in 100 

countries. The first ever Corruption Perception Index (CPI) was issued in 1995, since 

then every year Governments, Politicians, Civil Society, and Institutions anxiously 

started to wait for the new issue. Transparency International divides countries in six 

regions, AMERICAS (AME), ASIA PASIFIC (AP), EASTERN EUROPE & 

CENTRAL ASIA (ECA), WESTERN EUROPE & EUROPIAN UNION (WE-EU), 

MIDDLE EASTERN & NORTH AFRICA (MENA) and SUB-SAHARAN AFRICA 

(SSA).  

In its current issue (2019) the CPI index ranks 180 countries divided into six 

regions. The index score varies from 0 to 100 from highly corrupt to very honest (dark 

RED to pale YELLOW in color scheme, see Fig# 9.1 below). About 67% of countries 

scored below 50; according to TI report no significant improvement is observed from 

previous years. 
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Figure 9.1: shows dark RED to pale YELLOW in color scheme. 

Figure #9.1 above sign posts a strong link between ranks and Region. Another 

connotation can be observed between Rank and per capita income of the countries. To 

establish the fact, we sort the countries concerning scores in descending order (best 

performer to worst); we separate the group of countries with scores 50 and above and 

observe a pattern of regions.  Figure # 9.2 below reveals the combination of better 

performing countries (50 & above score). About 44% of this group belong to 

WESTERN EUROPE & EUROPIAN UNION (WE-EU) region, proportion of other 

regions can be seen from figure # 9.2 below. Point to note that Region Americas (AME) 

includes Canada & USA, and the region Asia and Pacific contains Australia and New 

Zealand are among countries having score 50 and above.  

Figure 9.2: reveals the combination of better performing countries (50 & above score). 

AME
19%

AP
17%ECA

2%

MENA
8%SSA

10%
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To establish the fact further, we simultaneously sort the countries below the 

median income per capita and above the median income per capita. We assign 1 point 

for countries performing well (50 and above score in CPI) and zero for bad performance 

(less than 50 score in CPI). In the similar fashion country having above median per 

capita income gets 1 point and zero for below median per capita income. Hence a 

country with 2 points is in the Best Performing Group (BPG) and the country with zero 

points belongs to Worst Performing Group (WPG).  

The Best Performers:  

In the best performing group 49% are from Western Europe and European Union (WE-

EU) region; unfortunately no country from Eastern Europe and Central Asian group 

(ECA) qualify in this group. Proportion of other regions in this group can be seen in 

Figure#9.3 below. USA, Canada, Australia and New Zealand also belong to best 

performing group. 

 

Figure 9.3: Reveals the proportion of distinct regions in best performing group. 
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To zoom in further it is observed that 84% countries, considered in 2019 CPI index, 

from WE-EU region fall in best performing group. No country from Eastern Europe 

and Central Asian Region (ECA) belongs to the best performing group. The proportions 

of other regions can be seen in Fig# 9.4 below 

 

Figure 9.4: Proportion of Countries from distinct Regions in Best Performing Group 

The Worst Performers: 

In the worst performing group 46% are from Sub-Saharan Africa Region (SSA), as 

expected no country from Western Europe and European Union (WE-EU) Region in 

this group.  

To zoom in deep it is observed that no country from WE-EU region fall in the worst 

performing group. About 79% countries, considered in 2019 CPI index, from Sub-
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Saharan Africa (SSA) fall in the worst performing group. The proportions of other 

regions can be seen in Fig# 9.5 below. 

Further it is observed that 62% countries with above median per capita income are also 

having good score (50 and above) in CPI. 

Without using sophisticated statistical tools, a clear association can be established 

between CPI score and Region, per capita income. That is a country belongs to 

(WE/EU) Region and better income per capita might have good chance to score higher 

in CPI index. 

 

Figure 9.5: Proportion of Distinct Regions in Worst Performing Group 
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Figure 9.6:  Proportions of other Regions in Worst Performing Group 

9.2 Literature Review  

 

There is an ongoing debate in the literature about the nature and direction of the 

link between corruption and income. There are two opposing views on the nature of the 

relationship, namely the efficiency-enhancing and the efficiency-diminishing view 

(Rehman and Naveed, 2007). The efficiency-enhancing view holds that corruption has 

positive effects on economic growth, which in turn increases per capita income (Leff, 

1964; Huntington, 1968; Acemoglu and Verdier, 1998). According to the Efficiency 

Fette Hypothesis, corruption leads to greater efficiency (Mustapha, 2014). This is 

because it acts as a lubricant, motivating bureaucrats to be more productive and 

allowing investors to bypass time-consuming regulations or other transaction costs (Pak 

Hung Mo, 2001). Consistent with this, da Silva et al. (2001) the importance of the 

economic theory of bribery in studying corruption and income relations. Bureaucrats 

receive bribes, and firms accept the payment, both wanting to maximize their utility. 

However, the opposing view is that corruption has negative effects on the economy 
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(Kaufman and Wei, 1998; Aidt, 2009 and Mauro, 1995). Rehman and Naveed (2007) 

made it clear that corruption has a negative impact on efficiency due to what they 

consider to be an efficiency-reducing aspect. This is usually accompanied by a 

disincentive for investors to invest, leading to losses in productivity (Pak Hung Mo, 

2001). In addition, corruption widens the gap between rich and poor and destroys any 

incentive to innovate. In addition, corruption increases the level of insecurity and 

political instability that hamper economic growth and development (da Silva et al., 

2001). In summary, the impact of corruption on income can be viewed as a rent-seeking 

problem. According to Gyimah-Brempong (2002), corruption leads to misallocation of 

resources, loss of innovation, shift from productive activities to profit-oriented 

activities, and the creation of additional production costs, which in turn discourage 

investment. Da Silva et al. (2001) also emphasized that the level of corruption varies 

according to the type of institutional structure and the number of regulations. 

Between these two opposing views, a third school of thought developed. This 

school deviates somewhat from the rather rigid ideology of the positive impact of 

corruption on income. It does this by tracking the impact of corruption on allocation 

efficiency. According to Rehman and Naveed (2007), allocation efficiency can be 

realized in the presence of corruption. Because although bureaucrats ignore the 

principle of bidding and award contracts to the highest bidder, it is usually the case that 

those who can afford to pay the highest bribes are those with the lowest costs. At the 

empirical level, the debate is still pronounced. For example, in their study of 65 

countries, Li and Wu (2010) showed that trust offsets the negative impact of corruption 

on income. Furthermore, Blackburn and Forgues-Puccio (2009) examined the reason 

for the uneven impact of corruption in different countries in a dynamic general 
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equilibrium model. Their results showed that countries with a well-organized 

corruption network will lead to lower bribery rates and higher growth rates. In addition, 

Rock et al. (2004) studied the relationship between corruption and economic growth in 

four different corruption data sets. Their findings showed that corruption slows growth 

in developing countries but boosts it in the newly industrialized large East Asian 

countries. In contrast, Mauro (1995) examined the relationship between investment and 

corruption in 58 countries. His findings revealed that corruption negatively impacts 

investment, which in turn negatively impacts the economy. Accordingly, Kaufman and 

Wei (1998) examined the impact of bribery payments on time and capital costs. 

Their result contradicted the efficient grease hypothesis, as they found that those 

who pay bribes spend more time negotiating with bureaucrats, leading to higher capital 

costs. In addition, Aidt (2009) showed that growth and corruption exhibit a strong 

negative correlation. Igwike, Hussain and Noman (2012) came to the same conclusion 

in their study. They showed that there is an inverse relationship between corruption and 

economic development as measured by the annual growth rate of gross domestic 

product. Regarding the direction of the relationship between corruption and income, the 

debate is still ongoing, both at a theoretical and empirical level. On the one hand, as 

already mentioned, corruption affects income. Therefore, the direction of the 

relationship is from corruption to income. On the other hand, income can also affect 

corruption, leading to an ongoing debate as to whether corruption and income are 

unidirectionally or mutually related. According to Seldadyo and de Haan (2006), per 

capita income is one of the main determinants of corruption. The economic logic behind 

this is that corruption varies according to income level.  
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There are many studies that confirm this finding (Damania et al., 2004; Persson 

and Tabellini, 2003; and van Rijckeghem and Weder, 1997). However, there is further 

evidence that income has a negative impact on corruption, such as the case of Kunicova 

and Ackerman (2005), Lederman et al. (2005), Braun and Di Tella (2004), Chang and 

Golden (2004), Damania et al. (2004) and many others. Cole (2007) examined the 

relationship between income, corruption, and the environment. In his research, he 

acknowledged the existence of a reciprocal link between income and corruption. To do 

this, he used an IV estimation to avoid problems related to endogeneity. Therefore, the 

theoretical and empirical studies confirm that the debate on corruption income is not 

over yet.  

9.3 Data and Methodology 

The study include data on corruption perception index and countries categorized 

by per capita income for all counties listed in Transparency International reports in the 

year 2019 and Word Development Indicator (WDI).  

Thus, hypothesis for w × k CT for this study is given below: 

𝐻0: CPI and Countries Categorized by income per capita are statistically independent.   

𝐻1: CPI and Countries Categorized by per capita income are statistically dependent.   

9.4  Results and Discussion 

Based on results of the current study implies that 𝑁𝑜𝑣𝑒𝑙 ∅𝑘  is the most powerful 

test of independence for ordinal data. The test’s findings are stated below.  
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Table 9. 1: Results for W × K Contingency Table (Ordinal Data) 

                                             

9.5 Conclusion and Recommendations 

We applied Novel Phi_K (𝑘 ) measure of correlation on real data set of 

corruption perception index (CPI) and per capita income.  From above analyses one can 

safely conclude that, there is fair chances to get high score in CPI if a Country belong 

to Western Europe and European Union (WE/EU) Region and have better income per 

capita. The other top four tests’ results are also included which reject null hypothesis 

and same concludes as discussed above.  

There is a lot of discussion about the relationship of corruption and 

development. We found that the relation is significant, however causal direction is not 

clear and the paper shows that high corruption is associated with lower level of income.   

Based on the solid estimation of MCS presented in chapter # 07, we can 

recommend the Novel Phi_K (𝑘 ) test of independence to be used for ordinal data

Tests Application of Powerful Test of Independence for Ordinal Data – 

Novel Phi_K (𝑘) 

α = 5%, Novel 𝑘  

P Value (0.032) 

Decision: P value of Novel ∅k test is less than 5% i.e. (0.032) therefore, we reject 

null hypothesis and concludes that there is significant difference in corruption 

perception index and countries categorized by income per capita which are 

dependent. 
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CHAPTER 10 

CONCLUSION, RECOMMENDATION AND FUTURE 

DIRECTIONS 

10.1 Conclusion 

 

This dissertation describes the performance of tests of independence for nominal 

and ordinal data in w × k CTs. Keeping in view analysis of the chapters 5, 6 and 7; we 

are now able to draw some conclusions from our Monte Carlo simulations (MCS) 

results18.  

Tests of independence for nominal data have been examined and we found 

negligible distortion at various nominal level (α = 0.01, α = 0.05) at different sample 

size [small, medium and large]. Simulated critical values (SCV) have been computed 

for Fisher exact test, Neyman modified chi squared test and Kullback - Leibler test. 

Besides, simulated critical values are computed for seven tests of independence for 

ordinal data analysis in w× k  CTs.  

The analysis of chapter 5 concludes that there is no significant size distortion 

for selected eight tests of independence for nominal data at significance level (α = 0.05) 

at different sample size [small, medium and large] for 2 × 2 and w× k   CTs. Simulated 

critical values are computed for various tests of independence which does not follow 

                                                           
18 The study is based on Monte Carlo simulations under numerous data generating process (DGP) 

described in chapter 4. It is possible that if the DGP of real data is not matching with DGP used, then 

results are not generalizable. However, we have created a large number of scenario to maximize the 

generalizability of results.  
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standard distribution for nominal and ordinal data which are further used in power 

computations.  

Chapter 6 concludes power analysis that have been computed for different 

sample size [small, medium and large] at a specific MoU under several scenarios from 

I-V have been discussed in chapter 4. The results indicate for 2 ×2 order CTs that FES 

performs best among others tests of independence for nominal data in limitations IV 

and V. We also see that BPS tests performs best in scenario I, II and V. LMS performs 

in scenario III only. Similarly, the results for W × K CTs indicates that LMS performs 

better in scenario I, II and III. BPS performs better in scenario I and II. It is also 

concluded from chapter 6 results that tests performance are different in scenarios from 

I-V in W × K CTs such as Modular test (MDT), Likelihood ratio Test (𝐺2) and NMCS.  

Thus, this study solves this complex problem by using the Stringency Criteria 

(SC) and it is finally concluded from shortcoming results that Fisher exact statistics 

(FES) has the lowest shortcomings and thus performs the best in small sample size of 2 

x 2 order of CTs among the eleven sets of tests taken under current study. Similarly, 

LMS test has minimum shortcomings and performs best amongst others tests of 

independence for nominal data in W x K CTs.  

Chapter 7 concludes based on MCS for ordinal data that Novel 𝑘 test is the 

powerful test of independence for ordinal data. The good characteristic of this test is 

that it not only capture the linear association among the variables but it also captures 

the nonlinear association among the variables. This Novel 𝑘 correlation can further be 

used either for nominal, ordinal, ratio interval or especially for mixed variables as well 

as performs optimal in W x K CTs.  
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The computation of the Novel 𝑘 correlation is a bit tough as discussed in 

chapter 4. Therefore, Current study also found Kruskal-Gamma and Spearman Rank 

correlations close to the Novel 𝑘 correlation in terms of power comparison for W x K 

CTs in analysis of ordinal data.  

Even though the study has some limitations, however we believe that our 

findings should prove beneficial for researchers and practitioner. In this regard 

following are some recommendations.  

10.2 Recommendation 

 

This dissertation gives very clear-cut recommendation to the practitioner 

regarding utilization of tests of independence for nominal and ordinal data. Results of 

Monte Carlo simulations indicates that:  

 There is no significant size distortion for eight specific tests of 

independence for categorical data at significance level (α = 0.05) at 

different sample size [small, medium and large] for 2 × 2 and w× k   

contingency table. 

 The study recommends based on solid estimation of Monte Carlo 

simulation and algorithm for a variety of DGP in 2 × 2  CT. We came to 

conclusion and recommended clearly that Fisher exact statistics (FES) is 

the most stringent test and no other test can beat it for nominal data in 2 ×

2  CTs. 

 Practitioners should know about the scenarios behind their data; however, 

we see from our results in maximum scenarios that LMS tests performs 

better than others test of independence for nominal data in w× k CTs. LMS 
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have the lowest shortcomings amongst others tests and therefore this test 

is recommended as the most stringent test for w × k CTs.  

 We are also able to rank test according to their shortcomings and we found 

minimum shortcomings of tests of independence sequentially; are LMS, 

BPS, MDS, D square, and G square for nominal data. The poorest test is 

KLS, CRS and NMCS.  

 Moreover, it may be noted that in analysis of measure of correlations/ tests 

of independence in ordinal data, the most powerful test of independence is 

Novel k , which is recommended to be used for w× k CTs for ordinal 

data.  

 We are also able to rank test according to their powers which concludes 

that in terms of powerful tests for ordinal data are ranked sequentially are 

Novel 𝑘, Goodman - Kruskal γ, Spearman  , Somers’d, Kendall τ-c, 

Kendall τ-b and Kendall τ-a. 

10.3 Practical Implications  

 

This research is specifically helpful to the statisticians/econometricians 

and other researchers who are connected and working directly or indirectly in 

national and international Research and Development (R&D) departments in 

educational sector, medical sector, agriculture sector, technological sector and 

any other sector in Pakistan or across the globe which are enabling them to apply 

the most appropriate test of independence for categorical data in 2 × 2  or 𝑤 ×

𝑘 CTs.  
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This research is specifically helpful to the National Institute of Health, 

Islamabad (NIH), National Agriculture Research Center Islamabad (NARC), Higher 

Education Commission of Pakistan (HEC) and generally in education, medical and 

agriculture sector including all others Research and Development (R&D) departments 

of numerous industries in Pakistan and across the globe which are enabling ‘them ‘to 

‘apply ‘the ‘most ‘appropriate test ‘of ‘independence ‘for categorical data in 2 ×

2‘or‘w × k CTs.  

The importance of the use of tests of independence for categorical data is 

common practice in many fields mostly due to its importance and application in 

statistics, education, biological and social science for example when a pharmacist of 

the field of medical science are interested to find Covid-19 vaccine effect for corona 

virus disease. He collects the data into two groups before and after the use of vaccine 

of corona disease. The two groups are called treatment and control group. The first one 

is to whom the vaccine is given and the other one those to whom vaccine have not been 

given. In both circumstances to find whether the vaccine has some effect or not. The 

researcher ought to use the most stringent test i.e., Fisher Exact Statistics (FES) in 2 ×

2‘CTs and Logarithmic Minimum Square test (LMS) to find the correlation in nominal 

data in w × k CTs. 

In ‘education ‘field ‘when ‘a ‘researcher ‘is ‘interested ‘to ‘find ‘the ‘effect ‘of 

‘some ‘new ‘developed ‘techniques ‘of ‘teaching ‘methodology, ‘that ‘whether ‘the 

‘new ‘methodology ‘is ‘effective ‘or ‘not. ‘The ‘researcher ‘accumulates ‘the ‘student’s 

‘grades ‘before ‘and ‘after ‘the ‘implementation ‘of ‘new ‘methodology ‘and ‘do 

‘assessments ‘of ‘the ‘independence ‘using ‘any ‘of ‘the ‘test ‘statistics ‘to ‘find ‘out 



157  
 

 

‘the ‘effectiveness ‘of ‘the ‘new ‘techniques ‘in ‘positive ‘or ‘negative ‘sense  

Similarly, ‘in ‘field ‘of ‘Biological ‘Science ‘when ‘a ‘biologist ‘is ‘interested 

‘to ‘know ‘the ‘fertilizer’s ‘effect ‘for ‘a ‘particular ‘crop. ‘The ‘researcher ‘takes ‘the 

‘data ‘and ‘divide ‘it ‘into ‘two ‘groups ‘called ‘treatment ‘group ‘and ‘control ‘group. 

‘Thus ‘here is again ‘two ‘groups, ‘the ‘first ‘one ‘is ‘the ‘class ‘of ‘plant ‘which ‘are 

‘fertilized ‘and ‘the ‘other ‘is ‘that ‘which ‘is ‘not. ‘In ‘both ‘of ‘the ‘circumstances 

‘the ‘researcher ‘uses ‘different ‘tests ‘statistics ‘to ‘find ‘out ‘the ‘effect ‘of ‘the 

‘fertilizer ‘that ‘whether ‘the ‘fertilizer ‘has ‘a ‘substantial ‘effect ‘or ‘not ‘for 

‘particular ‘crop. 

The ‘above ‘examples ‘and ‘discussion ‘shows ‘that ‘the ‘tests ‘of 

‘independence ‘are ‘commonly ‘used ‘and ‘their ‘result ‘and ‘conclusion ‘has ‘a ‘vital 

‘role ‘in ‘many ‘fields ‘and ‘in ‘social ‘life. ‘If ‘the ‘conclusion ‘is ‘wrong ‘of ‘a ‘test 

‘of ‘independence ‘then ‘it ‘might ‘have ‘a ‘very ‘bad ‘effect ‘on ‘a ‘human ‘life ‘as 

‘well ‘as ‘on ‘society. 

10.4 Future Research 

The study can be further improved to analyze tests of independence for Three - 

dimensions i.e., W x K x P CTs. There are many scenarios exists in analysis of the 

independence in three-fold CTs i.e., full independence, boundary independence, partial 

independence, total independence and conditional independence. In future research this 

can be carried out to investigate the most powerful test of independence for categorical 

data.   

The study for tests of independence for ordinal data can be further modified and 

investigated through developing of a new test of independence that is free of sample 
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size and table dimensions in three-fold CTs.   
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Appendix A 

This is an extension of this study by including and investigating the most 

stringent tests for 2 × 2 CTs for nominal data based on SC. Therefore, the 

computational formula for eleven tests of independence for nominal data for 2 × 2 

CTs are given below.  

Table A. 1: Computational Formulas for Test of Independence for 2 × 2 CTs 

 

S. 

No 

Test of 

Independence 

 

Formula for 𝟐 × 𝟐 CTs 

Standard 

Distribution 

 

References 

 

1 

Chi Square Test 

( 𝝌𝟐)              χ2×2
2 =

𝑛(𝑎𝑑 − 𝑏𝑐)2

(𝑎 + 𝑏)(𝑐 + 𝑑)(𝑎 + 𝑐)(𝑏 + 𝑑)
 

Chi Square Sulewski, 

P. (2017) 

 

2 

Likelihood Ratio 

(G2) Test G2×2
2 =∑𝑆𝑖

4

𝑖=1

 
Non - Central 

Chi Square  
Sulewski, 

P. (2017) 

 

 
 

3 

Fisher Exact 

Test Statistics 
(FES) 

𝐹𝐸𝑆 =
(
𝑎 + 𝑏
𝑎

) (
𝑐 + 𝑑
𝑐

)

(
𝑛

𝑎 + 𝑐
)

 

=
(𝑎 + 𝑏)! (𝑐 + 𝑑)! (𝑎 + 𝑐)! (𝑏 + 𝑑)!

𝑛! 𝑎! 𝑏! 𝑐! 𝑑!
           

 

Does not 

follow any 
Known 

/Standard 

Distribution 

Sulewski, 

P. (2017) 

 

 
    4 

Nyman Modified 

Chi Square Test 
Statistics 

(NMCS) 

𝑁𝑀𝐶𝑆2×2 =
(𝑎 − 𝑒1)

2

𝑎
+
(𝑏 − 𝑒2)

2

𝑏
+
(𝑐 − 𝑒3)

2

𝑐

+
(𝑑 − 𝑒4)

2

𝑑
                          

Does not 

follow any 
Known 

/Standard 

Distribution 

Sulewski, 

P. (2017) 

 
5 

Kullback and 
Libeler Test 

Statistics (KLS) 

𝐾𝐿𝑇2×2 = 2 [𝑒1 ln (
𝑒1
𝑎
) + 𝑒2 ln (

𝑒2
𝑏
) + 𝑒3 ln (

𝑒3
𝑐
)

+ 𝑒4 ln (
𝑒4
𝑑
)]                         

Does not 
follow any 

Known 

/Standard 
Distribution 

Sulewski, 

P. (2017) 

 

6 

Freeman and 

Tuckey Test 
Statistics (FTS) 

𝐹𝑇𝑇2×2 = 4 [(√𝑎 − √𝑒1)
2
+ (√𝑏 − √𝑒2)

2
+ (√𝑐 − √𝑒3)

2

+ (√𝑑 − √𝑒4)
2
] 

Non - Central 

Chi Square 
Sulewski, 

P. (2017) 

 

7 

Cressie and 

Read Test 
Statistics (CRS) 

𝐶𝑅𝑇2×2 =
9

5
[𝑎𝑆1 + 𝑏𝑆2 + 𝑎𝑆3 + 𝑑𝑆4] 

 

Non - Central 

Chi Square 
Sulewski, 

P. (2017) 

 

8 
D Square (𝑫𝟐) 
Test Statistics 

(DSquare) 

                            𝐷2×2
2 =∑∑

(𝑛𝑖𝑗
∗ − 𝑒𝑖𝑗

∗ )2 − 𝑛𝑖𝑗
∗

𝑒𝑖𝑗
∗

2

𝑗=1

2

𝑖=1

 

Non - Central 

Chi Square 
Sulewski, 

P. (2017) 

 

9 

Modular Test |χ| 

(|χ|Mtest) 𝑀𝐷𝑇2×2 = |χ| =∑∑
|𝑛𝑖𝑗

∗ − 𝑒𝑖𝑗
∗ |

𝑒𝑖𝑗
∗

2

𝑗=1

2

𝑖=1

 

Non - Central 

Chi Square 
Sulewski, 

P. (2017) 

10 BP Tests 

Statistics (BPS) 
𝐵𝑃𝑇2×2 = 𝑛(𝑝∗ − 𝑝0)

𝑡𝐴(𝑝∗ − 𝑝0) Non - Central 

Chi Square 
Sulewski, 

P. (2017) 
 

11 

Logarithmic 

Minimum 
Square Test 

(LMS) 

𝐿𝑀𝑆2×2 = −∑∑ln

2

j=1

[
min(𝑛𝑖𝑗

∗ , 𝑒𝑖𝑗
∗ )

max(𝑛𝑖𝑗
∗ , 𝑒𝑖𝑗

∗ )
]

2

𝑖=1

 

Non - Central 

Chi Square 
Sulewski, 

P. (2017) 
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Appendix B 

This section contains “MATLAB Programing” used in dissertation for Tests of 

Independence for nominal and ordinal data. The dissertation consists of eleven tests of 

independence for nominal data and seven tests of independence/ Measure of correlation for 

ordinal data. Additionally, the dissertation consists of a variety of Data Generating Process 

(DGP) for various order of contingency tables. Thus, a sample of MATLAB programing codes 

for tests of independence for higher order contingency table, computation of empirical size, 

computation of finite sample critical value (F.S.C.V) and computation of power are presented 

below.  

Table B. 1: Codes for tests of independence / Measure of correlation for Nominal data 

1. Chi Square Test 2. Logliklihood Test (𝑮𝟐) 
function Chisq=ConTbale(A) 

A2=A/sum(sum(A)); 

[n, k]=size(A); 

RT=sum(A,2);  

CT=sum(A,1); 

GT=sum(CT); 

TT=zeros(n,k); 

for i=1:n 

    for j=1:k 

        TT(i,j)=CT(1,j)*RT(i,1)/GT; 

    end 

end 

  

Diff=((A-TT).*(A-TT)); 

Diff2=Diff./TT; 

Chisq=sum(sum(Diff2)); 

 

function Gstat=Gtest(A) 

  

[n, k]=size(A); 

RT=sum(A,2);  

CT=sum(A,1); 

GT=sum(CT); 

TT=zeros(n,k); 

for i=1:n 

    for j=1:k 

        TT(i,j)=CT(1,j)*RT(i,1)/GT; 

    end 

end 

  

    p1=A./(TT+eps) 

    p2=log(p1+eps) 

    p3=A.*p2 

    p4=sum(sum(p3)) 

     

    Gstat=2*p4 

3. Fisher Exact Test (FES) 4. Kullber Liaber Test (KLS) 

function fet2=fetest(A) 

A2=A/sum(sum(A)); 

CT=sum(A,1); 

  

RT=sum(A,2); 

  

GT=sum(RT); 

  

[n,k]=size(A); 

  

for i=1:n 

    f(i,1)=log(factorial(RT(i,1))); 

end 

  

FACT1=sum(f); 

  

for j=1:k 

    f2(j,1)=log(factorial(CT(1,j))); 

end 

  

FACT2=sum(f2); 

f3=log(factorial(A)); 

FACT4=sum(sum(f3)); 

fet2=FACT1+FACT2-log(factorial(GT))-log(FACT4); 

 

function KLTest=KLT(A) 

A2=A/sum(sum(A)); 

[n, k]=size(A); 

RT=sum(A2,2);  

CT=sum(A2,1); 

GT=sum(CT); 

TT=zeros(n,k); 

for i=1:n 

    for j=1:k 

        TT(i,j)=CT(1,j)*RT(i,1)/GT; 

    end 

end 

     

Div=TT./(A2+eps); 

  

KLTest=2*sum(sum(TT.*log(Div+eps))); 

  

5. Freeman and Tuckey Test (FTS) 6. Crecent and Read  Test (CRS) 
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function FTTEST=FTEST(A) 

A2=A/sum(sum(A)); 

[n, k]=size(A); 

RT=sum(A,2);  

CT=sum(A,1); 

GT=sum(CT); 

TT=zeros(n,k); 

for i=1:n 

    for j=1:k 

        TT(i,j)=CT(1,j)*RT(i,1)/GT; 

    end 

end 

M= sqrt(A)- sqrt(TT); 

M2=M.*M; 

  

FTTEST= 4*sum(sum(M2)); 

 

function CRTEST=CRT(A) 

[n, k]=size(A); 

RT=sum(A,2);  

CT=sum(A,1); 

GT=sum(CT); 

TT=zeros(n,k); 

for i=1:n 

    for j=1:k 

        TT(i,j)=CT(1,j)*RT(i,1)/GT; 

    end 

end 

  

k=A./TT; 

k2=A.^(2/3)-1 

K3=A.*k2 

 

7. LMS Test 8. BP Test (BPS) 9. NMCS Test 

function LMSTest=LMST(A) 

[n, k]=size(A); 

RT=sum(A,2);  

CT=sum(A,1); 

GT=sum(CT); 

TT=zeros(n,k); 

for i=1:n 

    for j=1:k 

        TT(i,j)=CT(1,j)*RT(i,1)/GT; 

    end 

end 

M= min(A,TT); 

M2=max(A,TT); 

M3= M./M2; 

LMSTest= -(sum(sum(log(M3))); 

function BPTest=BPT(A) 

[n, k]=size(A); 

RT=sum(A,2);  

CT=sum(A,1); 

GT=sum(CT); 

TT=zeros(n,k); 

for i=1:n 

    for j=1:k 

        TT(i,j)=CT(1,j)*RT(i,1)/GT; 

    end 

end 

P1= A./n 

P0 = A*TT 

A=sum(po)^-1 

SP= diag(p)-p^'p 

BPTEST= n(P1-Po)'*A(P1-Po) 

 

function NMCTEST=NMC(A) 

A2=A/sum(sum(A)) 

[n, k]=size(A) 

RT=sum(A,2) 

CT=sum(A,1) 

GT=sum(CT) 

TT=zeros(n,k) 

for i=1:n 

     

    for j=1:k 

        TT(i,j)=CT(1,j)*RT(i,1)/GT; 

    end 

end 

  

TT 

U=(A2 - TT) 

Dif=((A2-TT).*(A2-TT)) 

Dif2=Dif./(A2) 

NMCTEST= sum(sum(Dif2)) 

[A2 TT] 

10. D Square Test 11. Modular Test (MDS) ***19NPLT/Point Optimal Test 

function Dsquare=DSQT(A) 

A2=A/sum(sum(A)); 

[n, k]=size(A); 

RT=sum(A,2);  

CT=sum(A,1); 

GT=sum(CT); 

TT=zeros(n,k); 

for i=1:n 

    for j=1:k   

TT(i,j)=CT(1,j)*RT(i,1)/GT; 

 end 

end 

Diff=((A-TT).*(A-TT)); 

Diff2=Diff-A; 

Diff3=Diff2./TT; 

Dsquare=sum(sum(Diff3)); 

 

function MDTest=MDT(A) 

A2=A/sum(sum(A)); 

[n, k]=size(A); 

RT=sum(A,2);  

CT=sum(A,1); 

GT=sum(CT); 

TT=zeros(n,k); 

for i=1:n 

    for j=1:k 

        TT(i,j)=CT(1,j)*RT(i,1)/GT; 

    end 

     

    Z1= A - TT 

    Z2= abs(Z1)./TT 

    MDTest=sum(sum(Z2)) 

end 

 

 

function NPS=nptest(X,TTh0,TTH1) 

  

Lh1=LikelihoodCT(X,TTH1); 

Lh0=LikelihoodCT(X,TTh0); 

  

NPS=Lh1-Lh0; 

 

Table A2.2: Codes for Data Generating Process for W × K CTs for Nominal Data 

                                                           
19 Nyman Pearson lemma or point optimal test is used in power computations in comparison of  tests of independence for 

nominal and ordinal data.   
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DGP 2 × 3 CT DGP 3 × 3 CT 

function CT=CT23(n,TT23) 

nn=sum(sum(TT23)); 

TT=TT23/nn; 

OB=zeros(2,3); 

    for i=1:n 

        x=rand; 

        if x<TT(1,1) 

            OB(1,1)=OB(1,1)+1; 

        elseif x<TT(1,1)+TT(1,2) 

                OB(1,2)=OB(1,2)+1; 

        elseif  x<TT(1,1)+TT(1,2)+TT(1,3) 

                OB(1,3)=OB(1,3)+1; 

        elseif  x<TT(1,1)+TT(1,2)+TT(1,3)+TT(2,1) 

                    OB(2,1)=OB(2,1)+1; 

        elseif 

x<TT(1,1)+TT(1,2)+TT(1,3)+TT(2,1)+TT(2,2) 

                        OB(2,2)=OB(2,2)+1; 

        else 

                OB(2,3)=OB(2,3)+1; 

        end 

    end 

CT=OB 

function CT=CT33(n,TT33) 

nn=sum(sum(TT33)); 

TT=TT33/nn; 

OB=zeros(3,3); 

    for i=1:n 

        x=rand; 

        if x<TT(1,1) 

             OB(1,1)=OB(1,1)+1 

         elseif x<TT(1,1)+TT(1,2) 

            OB(1,2)=OB(1,2)+1; 

         elseif  x<TT(1,1)+TT(1,2)+TT(1,3) 

               OB(1,3)=OB(1,3)+1; 

         elseif  x<TT(1,1)+TT(1,2)+TT(1,3)+TT(2,1) 

                    OB(2,1)=OB(2,1)+1; 

         elseif x<TT(1,1)+TT(1,2)+TT(1,3)+TT(2,1)+TT(2,2) 

                         OB(2,2)=OB(2,2)+1; 

         elseif x<TT(1,1)+TT(1,2)+TT(1,3)+TT(2,1)+TT(2,2)+TT(2,3) 

                            OB(2,3)=OB(2,3)+1; 

         elseif 

x<TT(1,1)+TT(1,2)+TT(1,3)+TT(2,1)+TT(2,2)+TT(2,3)+TT(3,1) 

                         OB(3,1)=OB(3,1)+1; 

         elseif 

x<TT(1,1)+TT(1,2)+TT(1,3)+TT(2,1)+TT(2,2)+TT(2,3)+TT(3,1)+TT(3,2) 

                                        OB(3,2)=OB(3,2)+1; 

         else 

             OB(3,3)=OB(3,3)+1; 

        end  

    end  

    CT=OB 
 

Data Generating Process for 4 × 4 Contingency Table – [Sample Pattern] 

function CT=CT44(n,TT44) 

nn=sum(sum(TT44)); 

TT=TT44/nn; 

OB=zeros(4,4); 

    for i=1:n 

        x=rand; 

        if x<TT(1,1) 

            OB(1,1)=OB(1,1)+1; 

        else if x<TT(1,1)+TT(1,2) 

                OB(1,2)=OB(1,2)+1; 

        elseif  x<TT(1,1)+TT(1,2)+TT(1,3) 

                OB(1,3)=OB(1,3)+1; 

        elseif  x<TT(1,1)+TT(1,2)+TT(1,3)+TT(1,4) 

                    OB(1,4)=OB(1,4)+1; 

        elseif x<TT(1,1)+TT(1,2)+TT(1,3)+TT(1,4)+TT(2,1) 

                        OB(2,1)=OB(2,1)+1; 

        elseif x<TT(1,1)+TT(1,2)+TT(1,3)+TT(1,4)+TT(2,1)+TT(2,2)+TT(2,2) 

                                OB(2,2)=OB(2,2)+1; 

        elseif x<TT(1,1)+TT(1,2)+TT(1,3)+TT(1,4)+TT(2,1)+TT(2,2)+TT(2,3) 

                                OB(2,3)=OB(2,3)+1; 

        elseif x<TT(1,1)+TT(1,2)+TT(1,3)+TT(1,4)+TT(2,1)+TT(2,2)+TT(2,3)+TT(2,4) 

                                OB(2,4)=OB(2,4)+1; 

        elseif x<TT(1,1)+TT(1,2)+TT(1,3)+TT(1,4)+TT(2,1)+TT(2,2)+TT(2,3)+TT(2,4)+TT(3,1) 

                                OB(3,1)=OB(3,1)+1; 

        elseif x<TT(1,1)+TT(1,2)+TT(1,3)+TT(1,4)+TT(2,1)+TT(2,2)+TT(2,3)+TT(2,4)+TT(3,1) 

                                OB(3,2)=OB(3,2)+1; 

        elseif x<TT(1,1)+TT(1,2)+TT(1,3)+TT(1,4)+TT(2,1)+TT(2,2)+TT(2,3)+TT(2,4)+TT(3,1)+TT(3,2)+TT(3,3) 

                                OB(3,3)=OB(3,3)+1; 

        elseif 

x<TT(1,1)+TT(1,2)+TT(1,3)+TT(1,4)+TT(2,1)+TT(2,2)+TT(2,3)+TT(2,4)+TT(3,1)+TT(3,2)+TT(3,3)+TT(3,4) 
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                                OB(3,4)=OB(3,4)+1; 

        elseif x<TT(1,1)+TT(1,2)+TT(1,3)+TT(2,1)+TT(2,2)+TT(2,3)+TT(3,1)+TT(3,2)+TT(3,3)+TT(3,4)+TT(4,1) 

                                OB(4,1)=OB(4,1)+1; 

        elseif 

x<TT(1,1)+TT(1,2)+TT(1,3)+TT(1,4)+TT(2,1)+TT(2,2)+TT(2,3)+TT(2,4)+TT(3,1)+TT(3,2)+TT(3,3)+TT(3,4)+TT(4,1

)+TT(4,2) 

                                OB(4,2)=OB(4,2)+1; 

        elseif 

x<TT(1,1)+TT(1,2)+TT(1,3)+TT(1,4)+TT(2,1)+TT(2,2)+TT(2,3)+TT(2,4)+TT(3,1)+TT(3,2)+TT(3,3)+TT(3,4)+TT(4,1

)+TT(4,2)+TT(4,3) 

                                OB(4,3)=OB(4,3)+1; 

        elseif 

x<TT(1,1)+TT(1,2)+TT(1,3)+TT(1,4)+TT(2,1)+TT(2,2)+TT(2,3)+TT(2,4)+TT(3,1)+TT(3,2)+TT(3,3)+TT(3,4)+TT(4,1

)+TT(4,2)+TT(4,3)+TT(4,4) 

        else 

                                OB(4,4)=OB(4,4)+1 

            end 

        end 

    end 

    CT=OB 

Table A2.3: Codes for Computation of Empirical Size for Tests of Independence in W × K CTs for 

Nominal Data 

TT2=[4 5 6  

    8 10 12]; 

[r k]=size(TT2); 

df=(r-1)*(k-1); 

N=sum(sum(TT2)); 

TT=TT2/N; 

Rejchisq=0; 

RejGtest=0; 

RejCRT=0; 

RejFTEST=0; 

RejKLT=0; 

for j=1:20000 

OB=zeros(2,3); 

    for i=1:40 

        x2=randn; 

        x=normcdf(x2); 

        if x<TT(1,1) 

            OB(1,1)=OB(1,1)+1; 

        else if x<TT(1,1)+TT(1,2) 

                OB(1,2)=OB(1,2)+1; 

            else if  x<TT(1,1)+TT(1,2)+TT(1,3) 

                OB(1,3)=OB(1,3)+1; 

                else if  x<TT(1,1)+TT(1,2)+TT(1,3)+TT(2,1) 

                    OB(2,1)=OB(2,1)+1; 

                    else if x<TT(1,1)+TT(1,2)+TT(1,3)+TT(2,1)+TT(2,2) 

                        OB(2,2)=OB(2,2)+1; 

                        else 

                            OB(2,3)=OB(2,3)+1; 

                        end 

                    end 

                end 

            end 

        end 

    end 

    a=ConTbale(OB); 

    b= Gtest(OB); 

    c= CRT(OB); 

    d= FTEST(OB); 

    e=KLT(OB); 
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    CV= chi2inv(.95,df); 

    if a>CV   

        Rejchisq=Rejchisq+1; 

    end 

    if b>CV     

        RejGtest=RejGtest+1; 

    if c>CV 

        RejCRT=RejCRT+1; 

    if d>CV 

        RejFTEST=RejFTEST+1; 

    if e>CV 

        RejKLT=RejKLT+1; 

    end 

end 

    end  

    end 

end 

size_chisq= Rejchisq/20000 

  

size_Gtest= RejGtest/20000 

  

size_CRT= RejCRT/20000 

  

size_FTEST= RejFTEST/20000 

  

size_KLT= RejKLT/20000 

 

Table A2.4: Codes for Power Curve for Tests of Independence in W × K CTs for Nominal Data 

% Program for calculating power curve of PO test 

% Null ; MoU=0 

% alternative; MoU=.01 

  

TTH0_0 = [3 5  6 

          6 10 12 ]; 

TTH0=TTH0_0/sum(sum(TTH0_0)); 

MCSS=1000; 

SCT=50 

TTH1=[0.0759146 0.1190476   0.1406141 

0.1428571   0.2380952   0.2834713] 

for i=1:MCSS 

 CTBL=CT23(SCT,TTH0); 

  

    b(i,1)=nptest(CTBL,TTH0,TTH1); 

end 

CV=prctile(b,95) 

pTp01atp001=0 

  

for j=1:MCSS 

    CTBLE=CT23(SCT,TTH1); 

    b2=nptest(CTBLE,TTH0,TTH1); 

    if b2>CV 

        pTp001atp001=pTp01atp001+1; 

    end 

end 

PowerPTp001atp001=pTp001atp001/MCSS; 

  

TTH1p002=[0.0804373 0.1190476   0.1383528 

0.1428571   0.2380952   0.2812099] 

pTp001atp002=0 

  

for j=1:MCSS 

    CTBLE=CT23(SCT,TTH1p002); 
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    b2=nptest(CTBLE,TTH0,TTH1); 

    if b2>CV 

        pTp001atp002=pTp001atp002+1; 

    end 

end 

PowerPTp001atp002=pTp001atp002/MCSS; 

  

TTH1p003=[0.0849974 0.1190476   0.1360728 

0.1428571   0.2380952   0.2789299] 

pTp001atp003=0 

  

for j=1:MCSS 

    CTBLE=CT23(SCT,TTH1p003); 

    b2=nptest(CTBLE,TTH0,TTH1); 

    if b2>CV 

        pTp001atp003=pTp001atp003+1; 

    end 

end 

PowerPTp001atp003=pTp001atp003/MCSS; 

TTH1p004=[0.0895958 0.1190476   0.1337735 

0.1428571   0.2380952   0.2766306] 

pTp001atp004=0; 

  

for j=1:MCSS 

    CTBLE=CT23(SCT,TTH1p004); 

    b2=nptest(CTBLE,TTH0,TTH1); 

    if b2>CV 

        pTp001atp004=pTp001atp004+1; 

    end 

end 

PowerPTp001atp004=pTp001atp004/MCSS; 

TTH1p005=[0.0942337 0.1190476   0.1314546 

0.1428571   0.2380952   0.274311] 

        

pTp001atp005=0; 

  

for j=1:MCSS; 

    CTBLE=CT23(SCT,TTH1p005); 

    b2=nptest(CTBLE,TTH0,TTH1); 

    if b2>CV 

        pTp001atp005=pTp001atp005+1; 

    end 

end 

PowerPTp001atp005=pTp001atp005/MCSS; 

TTH1p006=[0.0989120 0.1190476   0.1291154 

0.1428571   0.2380952   0.271972] 

pTp001atp006=0; 

  

for j=1:MCSS; 

    CTBLE=CT23(SCT,TTH1p006); 

    b2=nptest(CTBLE,TTH0,TTH1); 

    if b2>CV 

        pTp001atp006=pTp001atp006+1; 

    end 

end 

  

PowerPTp001atp006=pTp001atp006/MCSS; 

  

TTH1p007=[0.1036319 0.1190476   0.1267555 

0.1428571   0.2380952   0.269612] 

        

pTp001atp007=0; 

  

for j=1:MCSS; 



173  
 

 

    CTBLE=CT23(SCT,TTH1p007); 

    b2=nptest(CTBLE,TTH0,TTH1); 

    if b2>CV 

        pTp001atp007=pTp001atp007+1; 

    end 

end 

PowerPTp001atp007=pTp001atp007/MCSS; 

  

PowerPTp001atp007=pTp001atp007/MCSS; 

  

TTH1p008=[0.1083943 0.1190476   0.1243743 

0.1428571   0.2380952   0.2672314] 

        

pTp001atp008=0; 

  

for j=1:MCSS; 

    CTBLE=CT23(SCT,TTH1p008); 

    b2=nptest(CTBLE,TTH0,TTH1); 

    if b2>CV 

        pTp001atp008=pTp001atp008+1; 

    end 

end 

PowerPTp001atp008=pTp001atp008/MCSS; 

  

TTH1p009=[0.1132006 0.1190476   0.1219711 

0.1428571   0.2380952   0.2648283] 

        

pTp001atp009=0; 

  

for j=1:MCSS; 

    CTBLE=CT23(SCT,TTH1p009); 

    b2=nptest(CTBLE,TTH0,TTH1); 

    if b2>CV 

        pTp001atp009=pTp001atp009+1; 

    end 

end 

PowerPTp001atp009=pTp001atp009/MCSS; 

TTH1p010=[0.1180522 0.1190476   0.1195453 

0.1428571   0.2380952   0.2624025] 

        

pTp001atp010=0; 

  

for j=1:MCSS; 

    CTBLE=CT23(SCT,TTH1p010); 

    b2=nptest(CTBLE,TTH0,TTH1); 

    if b2>CV 

        pTp001atp010=pTp001atp010+1; 

    end 

end 

PowerPTp001atp010=pTp001atp010/MCSS; 

  

  

TTH1p011=[0.1229495 0.1190476   0.1170967 

0.1428571   0.2380952   0.2599538] 

        

pTp001atp011=0; 

  

for j=1:MCSS; 

    CTBLE=CT23(SCT,TTH1p011); 

    b2=nptest(CTBLE,TTH0,TTH1); 

    if b2>CV 

        pTp001atp011=pTp001atp011+1; 

    end 

end 
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PowerPTp001atp011=pTp001atp011/MCSS; 

TTH1p012=[0.1278948 0.1190476   0.1146240 

0.1428571   0.2380952   0.2574812] 

pTp001atp012=0; 

  

for j=1:MCSS; 

    CTBLE=CT23(SCT,TTH1p012); 

    b2=nptest(CTBLE,TTH0,TTH1); 

    if b2>CV 

        pTp001atp012=pTp001atp012+1; 

    end 

end 

PowerPTp001atp012=pTp001atp012/MCSS; 

  

TTH1p013=[0.1328893 0.1190476   0.1121268 

0.1428571   0.2380952   0.2549839] 

        

pTp001atp013=0; 

  

for j=1:MCSS; 

    CTBLE=CT23(SCT,TTH1p013); 

    b2=nptest(CTBLE,TTH0,TTH1); 

    if b2>CV 

        pTp001atp013=pTp001atp013+1; 

    end 

end 

PowerPTp001atp013=pTp001atp013/MCSS; 

  

  

TTH1p014=[0.1379343 0.1190476   0.1096043 

0.1428571   0.2380952   0.2524614] 

        

pTp001atp014=0; 

for j=1:MCSS; 

    CTBLE=CT23(SCT,TTH1p014); 

    b2=nptest(CTBLE,TTH0,TTH1); 

    if b2>CV 

        pTp001atp014=pTp001atp014+1; 

    end 

end 

PowerPTp001atp014=pTp001atp014/MCSS; 

  

TTH1p015=[0.1430314 0.1190476   0.1070557 

0.1428571   0.2380952   0.2499129] 

        

pTp001atp015=0; 

  

for j=1:MCSS; 

    CTBLE=CT23(SCT,TTH1p015); 

    b2=nptest(CTBLE,TTH0,TTH1); 

    if b2>CV 

        pTp001atp015=pTp001atp015+1; 

    end 

end 

PowerPTp001atp015=pTp001atp015/MCSS; 

  

PowerCurvePOp001=[ 

    .01  PowerPTp001atp001 

    .02  PowerPTp001atp002 

    .03  PowerPTp001atp003 

    .04  PowerPTp001atp004 

    .05  PowerPTp001atp005 

    .06  PowerPTp001atp006 

    .07  PowerPTp001atp007 
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    .08  PowerPTp001atp008 

    .09  PowerPTp001atp009 

    .10  PowerPTp001atp010 

    .11  PowerPTp001atp011 

    .12  PowerPTp001atp012 

    .13  PowerPTp001atp013 

    .14  PowerPTp001atp014 

    .15  PowerPTp001atp015] 

The Following table A2.2 presents complete set of Matlab Programming codes for tests of 

independence / Measure of correlations, Computation for finite sample critical values and Power 

analysis for ordinal data.  

Table B. 2: Codes for tests of independence / Measure of correlation for ordinal data 

1. Goodman Kruskal Test 2. Kendal Tau (a) 

function gk=goodmankruskal(X) 

  

[Nc Nd]=NcNd(X) 

  

gk=(Nc-Nd)/(Nc+Nd); 

function Kta=kandaltaua(X) 

  

[a1 a2 a3 a4 a5 a6]=NcNd(X) 

p1=2*(a1-a2); 

p2=a6*(a6-1) 

 

Kta= (p1/p2); 

 

3. Kendal Tau b 4. Kendal Tau C 

function ktb=kendalltaub(x) 

  

[Nc Nd Tx Ty]=NcNd(x) 

  

k1= Nc-Nd 

k2=(Nc+Nd+Tx) 

k3=(Nc+Nd+Ty) 

 

k4=sqrt(k2*k3) 

ktb= k1/k4; 

 

function ktc=kendaltauc(x) 

  

[Nc Nd]=NcNd(x) 

  

m=min(n,k) 

  

f1= Nc-Nd 

f2=2*m*(f1) 

f3=n*n*(m-1) 

 

ktc=f2/f3; 

 

5. Spearman Rho Correlation Test 6. Novel k 

n=100 

   a=0.5 

   b=0.5 

for i=1:n 

    x=randn 

    

   if x  <-.8 

       x1=1 

   elseif x  <0.8 

       x1=2 

    else 

     x1=3 

   end 

    y=a*x+b*randn 

   if y <-.8 

       y1=1 

   elseif  y <0.8 

       y1=2 

   else 

     y1=3 

   end 

     X(i)= x1 

     Y(i)= y1 

end 

Rnk_x=tiedrank(X) 

Rnk_y=tiedrank(Y) 

function rho=Phi_k(A) 

A2=A/sum(sum(A)); 

[n, k]=size(A); 

RT=sum(A,2);  

CT=sum(A,1); 

GT=sum(CT); 

TT=zeros(n,k); 

n_empty=0  

% By default c=0  

c=1 

for i=1:n 

    for j=1:k 

        TT(i,j)=CT(1,j)*RT(i,1)/GT; 

        if TT(i,j)==0 

           n_empty = n_empty +1 

        end 

             

    end 

end 

  

Diff=((A-TT).*(A-TT)); 

Diff2=Diff./TT; 

Chisq=sum(sum(Diff2)); 

nsdof = (n-1)*(k-1)-n_empty 

Chise_ped = nsdof + c*sqrt(2*nsdof) 

if Chisq < Chise_ped 
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cov_Rnk_x_Rnk_y=cov(Rnk_x,Rnk_y) 

  

sperman_correlation=cov_Rnk_x_Rnk_y(1,2)/ 

(sqrt(cov_Rnk_x_Rnk_y(1,1))*sqrt(cov_Rnk_x_Rnk_y(2,2))) 

    rho=0 

else 

    rho=1   

Novel k = Invert(Chisq) % (N,r,K fixed ) 

End 

 
 

7. Somer’s D 

 

function somd=somersd(x) 

  

[Nc Nd Ty]=NcNd(x) 

  

z1= Nc-Nd 

z2=Nc+Nd+Ty 

  

somd= z1/z2; 

 

Program for Data Generating Process 

(DGP) for CT20 

Data Generating Process (DGP) for Numerous Order CT 

[ Sample / Pattern] 

 

function T=OT23(n,a) 

% a blongs to (-1,1) 

b=1-a; 

for i=1:n; 

    x=randn; 

    if x<-.8 

        k=1; 

    elseif x<.8 

        k=2; 

    else 

        k=3; 

    end 

    w=randn; 

     

    y=a*x+b*w;  

    if y<-.8 

        l=1; 

    elseif y<.8 

        l=2; 

    else 

        l=3; 

    end 

    CT(i,:)=[k l] 

end 

T=CT 

function T=OT_CT55(n,a) 

  

% a blongs to (-1,1) 

b=1-a; 

for i=1:n 

    x=randn 

    if x<-1.66 

        k=1 

    elseif x<-0.83 

        k=2 

    elseif x < 0.83 

        k=3 

    elseif x < 1.66 

        k=4 

 

function T=OT_CT44(n,a) 

% a blongs to (-1,1) 

b=1-a; 

for i=1:n 

    x=randn 

    if x<-1.5 

        k=1 

    elseif x<0.5 

        k=2 

    elseif x < 1.5 

        k=3 

    else 

        k=4 

    end  

    w=randn 

     

    y=a*x+b*w  

    if y<-.8 

        l=1 

    elseif y<.8 

        l=2 

    else 

        l=3 

    end 

    CT(i,:)=[k l] 

end 

T=CT 

 

for i=1:n 

    x=randn 

    if x< -1.7857 

        k=1 

    elseif x<-1.0714 

        k=2 

    elseif x <  -0.3571  

        k=3 

    elseif x < 0.3571  

        k=4 

    elseif x<1.0714 

                                                           
20 We did programing for numerous order of CTs that is for 3 × 3, 4 × 4, 5 × 5, 6 × 6, 12 × 12 CTs, Since in ordinal data orders 
matters therefore, separate programing is coded for DGP in comparison of Tests of Independence in Ordinal data.  
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    else 

        k=5 

    end 

    w=randn 

    y=a*x+b*w  

    if y<-.8 

        l=1 

    elseif y<.8 

        l=2 

    else 

        l=3 

    end 

    CT(i,:)=[k l] 

end 

T=CT 

 

        k=5 

    else 

        k=6 

    

     end 

    w=randn 

    y=a*x+b*w  

    if y<-.8 

        l=1 

    elseif y<.8 

        l=2 

    else 

        l=3 

    end 

    CT(i,:)=[k l] 

end 

T=CT 

 

 

 

The dissertation consists of multidimensional analysis in comparison of tests of independence 

for nominal and ordinal data. During Programing in MATLAB, We conducted separate programing for 

each test, DGP for several order of CTs namely 2 × 2, S × 2, 2 × S, W × K, i.e., 2 × 2, 2 × 3, 3 × 2, 3 × 

3, 4 × 4, 5 × 5, 6 × 6, 12 × 12 CTs.  

Programing are presented as a sample / pattern for size distortions, Computation of Simulated 

Critical Values, Power Computation for above mentioned CTs for selected tests of independence / 

Measure of correlation in nominal and ordinal data. For details and comprehensive complete codes folder 

sequentially, please contact me at shakeelshahzad_16@pide.edu.pk / shakeeleconometrics@gmail.com .  

 

 

Program for simulated Critical Values for Ordinal data 

tests of independence 

 

Power Comparison for Tests of Independence/ Measure of 

Correlation for Ordinal Data 

for i=1:20; 

    CT=OT1(25,0); 

    GK(i,1)=goodmankruskal(CT); 

    Kta(i,1)=kendalltaub(CT); 

end 

CV5pgk=prctile(GK,95); 

CV5pKta=prctile(Kta,95); 

[CV5pgk CV5pKta] 

 

function Power=Powerkgtest(NSimul,SS,a) 

RegGK=0; 

for i=1:NSimul; 

    T=OT1(SS,a); 

    ts=goodmankruskal(T); 

    if ts>0.35 

        RegGK=RegGK+1; 

    end 

end 

Power=RegGK/NSimul; 
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