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ABSTRACT 

The most important feature that directed to the development of new time series 

econometrics was the spurious regression. It is a phenomenon known to 

econometricians since the times of Yule (1926) who attributed this problem to missing 

variable. A spurious regression occurs when two independent series come up with 

significant regression results. For a long time, missing variables were considered as root 

cause of spurious regression. However, Granger and Newbold (1974) challenged this 

wisdom and presented unit root as one of the causes of spurious regression. The 

extensive literature considers the nonstationarity as the only cause of spurious 

regression. The researchers frequently employed unit root and co-integration 

procedures for the treatment of spurious regression in case of nonstationarity but these 

procedures are equally unreliable because of uncertainty about various specification 

decisions like choice of the deterministic part, structural breaks, choice of 

autoregressive, lag length and distribution of error term. On the other hand Granger et 

al. (2001) show that unit root is not the only reason for spurious regression. They show 

the possibility of spurious regression in stationary time series. Whereas unit root and 

cointegration are unable to deal with this problem because they deal only nonstationary 

series. Such amount of conventional econometric literature is inadequate to deal with 

the problem of spurious regression in stationary time series. The objective of this study 

is to provide an alternative solution of spurious regression for both stationary and 

nonstationary time series. So, this study makes two contributions in this particular 

setup. First, spurious regression occurs due to missing variable and can be avoided by 

including missing lag values. Therefore, an alternative way to look at the problem of 

spurious regression takes us back to the missing variable (lag values) which further 

leads to ARDL model. Second, it significantly reduces the probability of spurious 

regression in both stationary and nonstationary time series case. This study mainly 

focusing on Monte Carlo simulations and real data is also used for performance 

comparison of ARDL model and conventional procedures. Our results indicate that 

conventional methods are significantly suffering in size and there is power problems 

but the performance of ARDL in both cases is far better than conventional methods. 

ARDL model significantly reduced the probability of spurious regression in stationary 

and nonstationary time series case. 

Key words: Spurious regression, Cointegration, Unit root and ARDL. 
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CHAPTER 1  

INTRODUCTION 

Time series econometrics experienced a revolution during last four decades. 

Econometricians and economists realized that inadequate consideration was being 

given to trending in time series in late seventies. Nelson and Plosser (1982) found that 

most of the time series are better characterized as nonstationary. The theory of 

nonstationary time series is remarkably different from the stationary time series which 

was used previously. The most important feature linked to nonstationary that led to 

development of new time series econometrics was spurious regression. The spurious 

regression occurs when two independent series produce significant regression results. 

Granger and Newbold (1974) argued that the spurious regression is due to nonstationary 

time series but they are not intended that it is only cause of spurious regression. 

Spurious regression has performed a vital role in the construction of contemporary time 

series econometrics and large number of tools of time series econometrics were devised 

to avoid the possibility of spurious regression.  

The spurious regression can exist for many reasons (Aldrich, 1995). However, the 

widespread literature assumes the non-stationarity as the ‘only’ reason for spurious 

regression (Harris, 1995; Thomas, 1997; Gaughan, 2009; Song & Witt, 2012). A great 

number of studies are available on spurious regression that occurs in nonstationary time 

series. To deal with the problem of spurious regression, the most common situation is 

the use of unit root and co-integration testing.  

Unfortunately, the non-stationarity is not the only cause of spurious regression in time 

series. Granger et al. (2001) have shown the possibility of spurious regression in 

stationary time series as well. In such case where spurious regression exists between 
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stationary series, the unit root and cointegration procedures fail to deal with this 

problem. The cointegration analysis is the way to deal with spurious regression based 

on the assumption of nonstationarity. It means that literature on spurious regression is 

insufficient to deal with the problem of spurious regression in stationary time series.  

Suppose that the spurious regression occurs due to non-stationarity while the unit root 

and cointegration testing are used as a remedy for this purpose, even then it is very hard 

to find reliable inference. There is no test of unit root with good size and power in small 

sample. The unit root and cointegration procedures involve many prior specification 

decisions e.g. lag length, trend and structural stability etc. If we do a data based decision 

making, it will involve a large battery of tests. Each test is having specific statistical 

error (type I and type II error). The cumulative probability of error in all tests needed 

for cointegration analysis leave the results of unit root test unreliable. Because, of these 

reasons, the literature is still developing after four decades without reaching any 

conclusion. It would be interesting to see the example of US, GNP which has been 

examined by large number of researchers. About 40 years of investigation of the series, 

the stationarity of this series is still undecided. The cointegration is a step that comes 

after unit root testing and therefore undecided with greater level of uncertainty. 

An alternative way to look at the problem of spurious regression takes us back to 

missing variable which further leads as to ARDL. Suppose, we have two independent 

autoregressive nonstationary series: 

𝑦𝑡 = 𝑦𝑡−1 + 휀𝑦𝑡 (1.1) 

𝑥𝑡 = 𝑥𝑡−1 + 휀𝑥𝑡 (1.2) 
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where 𝑋𝑡and 𝑌𝑡 both are expressed by their own lag values. There is no third variable 

involved in the construction of both variables. Granger and Newbold (1974) shown the 

spurious regression by estimating of regression of the type: 

𝑦𝑡 = 𝑎 + 𝛽1𝑥𝑡 + 휀𝑦𝑡 (1.3) 

but we know that true data generating process (DGP) of yt contains lag of yt which is 

missing in Granger and Newbold experiment, taking the lag into account of yt we get: 

𝑦𝑡 = 𝑎 + 𝛽1𝑥𝑡 + 𝛽2𝑦𝑡−1 + 휀𝑦𝑡  (1.4) 

which is an ARDL model. If we miss the yt-1 and estimate the equation (1.3) because 

of the missing variable, the coefficient of 𝑥𝑡 is expected to be biased. But if we estimate 

equation (1.4), due to presence of right determinant of 𝑦𝑡  estimate of equation (1.4), it 

is expected to be unbiased. It is observed in our study (chapter 5, page 49) that this kind 

of model significantly reduces the probability of spurious regression and the model 

works for both stationary and nonstationary series. The ARDL model also works for 

the correction of serially correlated errors. It means it can also be used for the correction 

of serial correlation of errors.  

1.1 Gap of study  

This study is to explore ARDL model as an alternative solution of problem of spurious 

regression in both stationary and non-stationary time series case. The ARDL had never 

been used before for the treatment of spurious regression. On the other hand, all the 

method which have been proposed before for treatment of spurious regression in case 

of nonstationary series are having size distortion and power loss problems due to 

cumulative errors of pre-specification decisions. Also, these procedures are unable to 
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deal with the problem of spurious regression when the series are stationary because they 

only deal with nonstationary series.  

After the study of Granger and Newbold (1974) most of the literature assumed that the 

spurious regression is only due to unit root. They offered cointegration procedure to 

tackle the problem of spurious regression. While after reviewing lot of literature we 

find even the series are nonstationary or stationary the spurious regression is because 

of relevant missing variables. So, for the treatment of spurious regression just 

introduces the lag value of dependent and independent variables in the model at the 

place of missing variable, it significantly reduces the probability of spurious regression, 

this further leads to ARDL model. 

We investigate that, is it possible to use ARDL model to avoid the spurious regression 

by passing the very complicated and ambiguous unit root and cointegration analysis 

and associated specification decisions. The properties of ARDL model for avoiding of 

spurious regression shall be investigated via Monte Carlo Simulations, with various 

sample sizes and various specifications of deterministic components. The case of 

spurious regression in stationary time series shall also be considered since it has been 

shown by Granger et al. (2001) that spurious regression is also possible in stationary 

series. 

1.2 Motivation 

Since it was pre assumed that spurious regression occurs due to nonstationary, therefore 

numerous studies proposed different methods for the treatment of spurious regression 

in case of nonstationary time series. Granger et al. (2001) have proven that spurious 

regression can also exist in stationary time series. The unit root and cointegration 

procedures do not offer any solution to this problem.  



5 
 

Even in non-stationary world, the unit root and cointegration testing involve many 

specification decisions and output cannot be trusted because of multiple testing and 

huge cumulative error probabilities. On the other hand, the cointegration solutions deal 

with nonstationary cases and don’t offer any solution for spurious regression in 

stationary series. The study explores an alternative solution that is expected to perform 

well for both stationary and nonstationary series.   

1.3 Objective of Study 

The study explores following objectives: 

1. To investigate the performance of ARDL to avoid spurious regression in the 

following cases: 

i. Spurious regression in stationary time series. 

ii. Spurious regression in non-stationary time series. 

iii. Trend misspecification. 

2. To evaluate the robustness of ARDL and cointegration methods. 

3. To evaluate the forecast performance of ARDL by using real data and to compare it 

with commonly used cointegration methods.  

4. To assess the performance of ARDL model and GARCH models for Volatility 

modelling.  

1.4 Significance of Study 

The spurious regression is an issue of great importance which leads to the development 

of new time series econometrics. Many researchers offered their methods with different 

specifications for the treatment of this problem. These procedures involve many phases 

for testing cointegration which leads to huge cumulative probability of error and 
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unreliable output. There are number of studies indicating the possibility of spurious 

regression in stationary time series so in case unit root and cointegration can’t offer any 

solution. However, it can be shown that spurious regression in nonstationary and 

stationary time series indicate an autoregressive problem and that autoregressive 

problem can be handled by using ARDL. This study analyzes the performance of 

ARDL to avoid spurious regression in different scenarios (specifications). If the 

performance of ARDL model is found good, then it will simplify the modern 

econometrics practice. 

1.5 Outline of the Thesis 

Chapter 2 provides a brief discussion on theoretical and empirical tools used for the 

handling of problem of spurious regression in time series econometrics literature.  It 

offers comprehensive review of cointegration procedures used in the conventional time 

series econometrics and some are employed in this study.  

Chapter 3 provides a brief discussion on theoretical background of problem of spurious 

regression in time series econometrics literature. It consists of brief discussion on 

spurious regression theories. It also contains comprehensive discussion on the causes 

of spurious regression. The asymptotic theory of spurious regression and other relevant 

information of spurious regression is also given in this chapter.  

Chapter 4 contains discussion on methodologies which are being used for empirical 

analysis. The methodology is based on two components, first is the data generating 

process and second is the Monte Carlo simulations.  

Chapter 5 contains discussion on empirical results which are obtained by using ARDL 

model and conventional econometric tools. First comparison is made between ARDL 
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and OLS model in term of size and power. Second, comparison is made among ARDL 

and cointegration procedures in term of size and power under different specifications.  

Chapter 6 encompasses conclusion and discussion of study. It also discusses the real 

application of this study in econometrics. The directions for future research have also 

been provided in last section of this chapter.    

Chapter 7 provides a brief discussion on the comparison of forecasting between ARDL 

model and Engle-Granger and Johnson and Juselius procedures.  

Chapter 8 consists on the comparison of Hendry ARDL model and Pesaran bound 

testing procedures on the basis of size and power. The comparison is also based on 

robustness to misspecification.  

Chapter 9 based on the comparison ARDL model and GARCH type model in term of 

volatility modeling.  

Chapter 10 provide on the conclusion, discussion and future recommendations.  
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CHAPTER 2  

REVIEW OF LITERATURE 

An immense amount of studies is available on spurious regression in time series 

econometric literature. In this chapter we briefly discuss the proposed theoretical and 

empirical methods for the treatment of spurious regression in literature. In classical 

econometrics literature, it was assumed that the spurious regression exists due to 

missing variables. For detail see (Section, 2.1). Granger and Newbold (1974) showed 

that if the series are nonstationary then the results would be significant, for further detail 

(Section, 2.1.1). However, Nelson and Plosser (1982) examined that most of the 

macroeconomic series of US economy are having unit root (Section, 2.1.2.3). Hendry 

(1980) and Plosser and Schwert (1978) argued that the spurious regression provides 

nonsense or invalid results (Section, 2.1.2.1). To avoid the problem of spurious 

regression caused by the non-stationarity, researchers frequently employed unit root 

and co-integration testing (Section 2.1.2.5). The unit root and cointegration testing 

involve many specification decisions which cut the reliability of results. The existing 

unit root and cointegration testing procedures do not provide any reasonable criteria 

regarding these specification decisions: choice of the deterministic part; the structural 

breaks; autoregressive lag length choice and innovation process distribution. For further detail 

see (Sections, 2.3.1 and 2.3.2).  It is a common misconception that the spurious regression 

only prevails due to unit root. Nevertheless, the missing relevant variable is a major 

cause of spurious regression. Even it can be shown that the spurious regression in 

Granger and Newbold (1974) experiment was also due to missing variable, see 

(Section, 2.2). This review emphasizes to point out the unreliability of existing 

methods. The literature review is arranged as follows  
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2.1 Spurious Regression in Classical Econometrics 

There is long historical debate on nonsense correlation (spurious regression) in 

econometrics literature. For example, we see back to the well-known study of Yule 

(1926). In his study, Yule found the presence of a strong correlation of 0.95 between 

mortality rate and proportion of marriages of the Church of England to all marriages 

during 1866 to 1911.Yule thought that the spurious regression is a consequence of 

missing relevant variables. Zeisel (1948) concluded that the key cause of spurious 

correlation is missing variable. Zeisel measured correlation between three variables as 

experiment, X is the married female employee’s percentage in group, Y is the average 

absence of per employee per week and Z is average housework hours consumed per 

employee per week. High correlations have been found between X and Y, X and Z, but 

when Z held constant the correlation between X and Y was found   close to zero. The 

correlation between X and Y is spurious and it’s due to joint effect produced by the 

variation in Z. It is common that married female perform more housework hours and 

that is why more absences came into being.  The spuriousness of this relation depends 

upon purpose if we want to estimate regression then it can be spurious. If the purpose 

is forecasting then it is not spurious.   

Kendall and Lazarsfeld (1950) also found that that the missing relevant variable is the 

mian cause of spurious correlation like two variables X and Y are correlated due to 

intervening Z variable. Simon (1954) also supported the idea that the missing variable 

is a source of spurious correlation. Simon described that if we are uncertain that the 

perceived correlation is spurious, we have to introduce extra variable which could be 

observed in the genuine correlation.  
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2.1.1 Granger and Newbold’s Experiment 

Granger and Newbold (1974) showed that if two serially independent nonstationary 

series are regressed onto each other than the results would be significant. They 

suggested that if the time series are nonstationary, then the results would be significant. 

In their experiment they generated independent autoregressive series, where 𝑋𝑡and 𝑌𝑡 

both are expressed by their own lag values: 

yt = yt−1 + εyt (2.1) 

xt = xt−1 + εxt (2.2) 

There is no third variable involved in the construction of these two variables. They 

regressed xt on yt and yt on xt.. Since the two series are independent of each other, 𝛽1and 

𝛽2, the coefficients of regressors should be insignificant. On contrary, they found that 

the probability of getting significant coefficient varies high and they also found that this 

probability increases with increase in sample size. This was contrary to the perception 

of Yule (1926) who thought that the spurious regression will reduce with large samples.  

yt = a1 + β1xt + εyt (2.3) 

xt = a2 + β2yt + εxt (2.4) 

This alternative explanation of spurious regression become more popular in literature 

and other explanations went to the darkness.  

2.1.2 Aftermath of Granger and Newbold’s Experiment 

After the Granger and Newbold’s Experiment researcher considered nonstationarity as 

key cause of spurious regression. The research after Granger and Newbold (974) 

focused on finding the more details, what is spurious regression and what are its 

implications? The solution for spurious regression was also developed.  
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2.1.2.1 Why is Spurious Regression a Problem? 

To find the relationship between the economic variables has been the core objective of 

economic studies. The spurious regression offers deceptive statistical evidence of 

strong relationship even though the variables are independent. There are many well-

known examples of spurious regression like; Hendry (1980) demonstrated a spurious 

correlation between cumulative rainfall and price level in UK. He inspected that all 

these time series were nonstationary except unemployment rate. Plosser and Schwert 

(1978) claimed that, the regression without taking difference of nonstationary series 

most probably come up with invalid or nonsense results. The reasoning behind this 

claim is that if we run regression without taking difference of difference stationary 

series, the estimator properties and the distribution of test statistics are no more reliable.  

Phillips (1986) examined the asymptotic properties of least square regression model 

and endorsed the findings of Granger and Newbold (1974) simulation results, via 

theoretical calculations that the misspecification of level of series is the key element of 

spurious correlation. 

2.1.2.2 Example of Spurious Regression in Classical Literature  

Mostly, the nominal economic variables are correlated, even there is no relationship 

between them, and the mutual presence of price level in data series develops correlation 

between them. It was also shown that many time series are nonstationary and that’s why 

the probability of spurious regression is very high. We are presenting here some 

examples of spurious regression from time series econometrics literature.  

Chaouachi (2013) inspected that Dar et al. (2012) in their study provided spurious 

strong positive relationship among usage of nass chewing, hookah smoking and many 

other habits with oesophageal squamous cell carcinoma (ESCC) risk. They conducted 

a case control study in valley of Kashmir, India. They considered 702 historical cases 
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of oesophageal squamous cell carcinoma (ESCC) and 1663 hospital based controls, 

exclusively matched to the cases for sex, age and residence district from Sep, 2008 to 

Jan, 2012. They used monthly data from Sep, 2008 to Jan, 2012. They concluded that 

nass chewing and hookah smoking are strongly positively associated with (ESCC) risk, 

which is based on severe misinterpretation. According to Chaouachi (2013) all the 

relevant studies showed that there is feeble or insignificant association among nass 

chewing, hookah smoking with (ESCC) risk.  Chaouachi (2013) stated that Dar et al. 

(2012) came up with spurious results because they did not incorporate the very 

significant element which is filtering factor of water. 

Roger and Jupp (2006) described an example of spurious positive relationship between 

human baby’s birth and stork nesting in the sequence of spring, because these two 

variables are correlated to a third variable. According to the Roger and Jupp (2006) the 

sequence of Dutch statistics is showing a positive relationship between stork nesting in 

the sequence of spring and human baby’s birth at that time, it is due to that the both 

variables are associated to the state of weather. It means that both variables are 

independent, but they have relation with the state of weather. This shows that both 

variables are spuriously correlated because of third missing variable. According to the 

Hofer et al. (2004) this spurious correlation is due to lack of statistical information.  

2.1.2.3 Nelson and Plosser Experiment and Implications 

Nelson and Plosser (1982) examined that most of the macroeconomics series of U.S.A 

economy are having unit root. They employed Dickey Fuller test for unit root detection 

to fourteen historical macroeconomics series for U.S.A economy, including GNP, 

wage, employment, prices, stock prices and interest rate and they found that twelve out 

of fourteen series were having unit root. In fact Nelson and Plosser, (1982) study is a 
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noteworthy contribution in time series econometric literature which enhanced the 

interest of researchers in unit root tests. It has fashioned the development in the unit 

root theory. On the other hand, Granger and Newbold (1974) showed in their well-

known study that the nonstationarity is the key cause of spurious regression. After that 

for the treatment of spurious regression many researcher developed their unit root and 

cointegrating testing procedures. So, the idea of cointegration came into being in 1982 

and was published in 1987 which is discussed in the next section.   

2.1.2.4 Revival of Time Series-Cointegration 

The theory of cointegration is a huge innovation in time series econometric literature. 

That’s why it has attained the attention of the economists in the last decades. The unit 

root time series are cointegrated, if their linear combination is a stationary process. The 

cointegration analysis created hope for reliable inference in time series when series are 

nonstationary.  

2.1.2.4.1 Granger Explanation of Cointegration  

According to Granger (1981) the mechanism of cointegration is as follows, suppose we 

have equation: 

D(B)yt = mxt + nzt + h(B)εt (2.5) 

For convenience, initially we assumed no lag case: 

m(M) = m and n(B) = n (2.6) 

Where B is a backward lag operatoryt, xt  and zt ~ I(d).  

dy > 0, ℎ(B)εt is I(d) and Var(εt) = 1. The right hand side spectrum will be: 

{m2fx(ω)+n2fz(ω)}+mn[mr(ω)+mn(ω)]}+|h(z)|2

2π
 (2.7) 
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𝑚𝑟(𝜔) is cross spectrum between variables yt and  xt . The special conditions are 

following: 

(i)  fx(ω) = 𝑎2fz(ω), when (ω) is small, and so, dx = dz 

(ii) mn(ω) = 𝑎fz(ω), when (ω) is small, and so the coherence C(ω)= 1. The phase 

∅(ω) = 0 when (ω) is small.  

Engle and Granger (1987) adopted the definition of cointegration form Granger (1981) 

and Granger and Weiss (1983) which is given as follows: 

“The components of vector 𝑥𝑡  are said to be cointegrated of order (d, 

b), if (i) all components of 𝑥𝑡 are I(d); (ii) there exists a vector 𝑎(≠ 0) 

𝑧𝑡 = 𝑎′𝑥𝑡 ~ 𝐼(𝑑, 𝑏), b>0. The vector 𝑎 is called the cointegrated vector.”  

In other words, the two unit root series like, Xt and Yt are cointegrated if their linear 

combination Zt is stationary.  

2.1.2.5 Development of Cointegration Tests 

A great number of tests were developed which can be categorized in the following 

classes 

i. Residual based tests 

ii. Tests with cointegration as null 

iii. Multiple equation cointegration tests 

2.1.2.5.1 Residual based Cointegration Tests 

Engle and Granger (1987) introduced residual based tests for co-integration testing to 

avoid spurious regression in nonstationary series. According to Engle and Granger: 
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Consider a vector of time series xt  and each element of xt  achieves stationarity after 

differencing, but their linear combination 𝑎′xt  is stationary with cointegrating vector 

𝑎, then the series said to be cointegrated.   

Since 𝑎 is quantified as only multiplicative constant and normalize the first variable in 

time series vector xt to get coefficient 1. So, if we write a as (1, −δ′)′ and partition of 

xt into (x1t , x2t ): 

x1t − δ′x2t  (2.8) 

then both have cointegration (long run) relationship. The residual based test use the 

equation: 

x1t = δ′x2t + 휀𝑡 (2.9) 

After that employ the unit root test on 휀𝑡, if it is stationary, it shows variables are 

cointegrated. if 휀𝑡 has unit root then variables are not cointegrated. It means non-

stationary time series are cointegrated if their linear combination is a stationary process. 

It is a residual based testing procedure. The first drawback of EG (Engle and Granger) 

cointegration test is that it only deals with one cointegrated vector. Second, it depends 

upon two step estimator, first step is to produce series of residuals and second, to check 

the stationarity of residuals series.  Third, the major limitation is the distributions of the 

estimators are non-standard.   

Phillips and Ouliaris (1990) proposed residual based tests under the null hypothesis of 

no cointegration in time series. In which the asymptotic distributions of residual based 

tests depend upon number of variables and deterministic trend terms.  They compared 

the asymptotic properties of many residual based tests for cointegration. There are two 

Phillips and Ouliaris tests first 𝑍�̂� test and 𝑍�̂� test.  
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The residuals of cointegration regression are being used for the construction of 𝑍�̂� test. 

Consider an equation: 

x1t =∑ βit̂x2it 
m
i=1 +Ut̂ (2.10) 

where t = 1, ..., T. The x1t  and x2it  are integrated of order 1 and their residual series 𝑈�̂� 

is stationary at level then the time series are cointegrated. If 𝑈�̂� is stationary at integrated 

level 1 then the time series are not cointegrated. 

Furthermore, regress : 

𝑈�̂� = �̂�𝑈𝑡−1̂ + 𝐾�̂� (2.11) 

now compute the 𝑍�̂� 

𝑍�̂� = T(�̂� − 1) − (
1

2
) (𝑆𝑇𝑙

2 − 𝑆𝑘
2(𝑇−2 ∑ 𝑈�̂�𝑡−1

2𝑇
2 )−1) (2.12) 

where,  

𝑆𝑘
2 = 𝑇−1 ∑ 𝑘�̂� .

2𝑇
1  (2.13) 

𝑆𝑇𝑙
2 = 𝑇−1 ∑ 𝑘�̂� .

2𝑇
1 + 2𝑇−1 ∑ 𝑊𝑠𝑙

𝑙
𝑠=1 ∑ 𝑘�̂� .

.𝑇
𝑡=𝑠+1 𝑘𝑡−𝑠

̂
.

.
 (2.14) 

and  

𝑊𝑠𝑙 = 1 − 𝑠/(𝑙 + 1)4 (2.15) 

The spectral density matrix of Kt error is expressed as 𝑓𝑘𝑘(𝜆) under the null hypothesis 

of cointegration. Phillips and Ouliaris substantiated that for 𝑓𝑞𝑞(0) > 0 

𝑍�̂� = 𝑂𝑝(𝑇) (2.16) 

and 
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𝑍�̂� = 𝑂𝑝(𝑇
1/2) (2.17) 

They also proved the 𝑍�̂� test and augmented dickey fuller (ADF) test have same limiting 

distribution, that is why they have same critical values. 

Engle and Yoo (1991) proposed three step procedure to evade the limitations of EG 

model, which is an extension of EG model. Engle and Yoo (EY) procedure confirms 

that the estimators yield the normal distribution.  It is also only useful for one 

cointegrated vector. These residual base procedures have low power because in first 

step they use static regression and ignore the dynamic equation and use error dynamics 

(Kremers et al., 1992; Zivot, 1994; Banerjee, 1995).  

First step is to estimate the cointegration regression and estimate the residual series: 

x1t = θx2t + 휀𝑡 (2.18) 

Where  

휀�̂� = x1t − 휃̂x2t  (2.19) 

The second step is to estimate error correction model by using estimated residual series:  

Δx1t = αΔx2t − 𝛽휀�̂�−1 + 𝑣𝑡 (2.20) 

Δx1t = αΔx2t − 𝛽(x1t − 휃̂x2t )𝑡−1 + 𝑣𝑡 (2.21) 

The third step is to correct the errors: 

𝑣𝑡 = 휂(−𝛽x2t ) + 𝜇𝑡 (2.22) 

Now the correction of estimator of first regression is so easy: 

휃𝑐𝑜𝑟 = 휃̂ + 휂 (2.23) 
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The corrected standard error for 휃𝑐𝑜𝑟 are provided by the standard errors for 휂 in last 

step of regression. 

Now the problem is that how to estimate the long run equilibrium relationship 

parameters. For this purpose Kremers et al. (1992) presented an error correction 

mechanism (ECM). The residuals of equilibrium regression are used for error 

correction model. The error correction mechanism has been provided in last Engle and 

Yoo procedure. 

2.1.2.5.2 Tests with Cointegration as Null 

Park and Choi (1988) and Park (1990) proposed a cointegration test which can be 

performed under null hypothesis of cointegration or no cointegration. In this test they 

introduce superfluous (extra) regressor in the cointegration regression, after that run the 

test for coefficients of auxiliary superfluous (extra) regressors.  

Consider following cointegration equation: 

x1t = δ′x2t + θ1
′ S1t + θ1

′ S1t + εt (2.24) 

The S1t  extra variable shows the qnon-stationary deterministic functions vector which 

have higher integrated order as compare to other variables in cointegration regression 

equation. If we include drift 1 and trend t in equation, then S1t might include regressors 

{𝑡2, …… , 𝑡𝑞+1}. The S2t added variable shows the pnon-stationary variables vector 

integrated of order one. Park (1990) introduced the J1 test under the null hypothesis of 

cointegration. This test is basically based on comparison of two residual sum of squares 

(RSS).  

J1 =
RSS1−RSS2

w
 (2.25) 
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The RSS1 is the residual sum of square of simple cointegration equation after 

transforming the nuisance parameters for independence. The RSS2 is residual sum of 

square from the transformed cointegration regression with superfluous independent 

variables. The w is a normalized variance corresponding to the test statistics. The Park 

indicates that the J1 test under the null hypothesis has limiting Chi square 𝒳2 

distribution and the degree of freedom is equal to the added independent variables. 

When the value of J1 is high, it indicates that there is no cointegration or in other words 

rejection of null hypothesis of cointegration.  

Leybourne and McCabe (1993) proposed a cointegration test (LBI) in favor of null 

hypothesis of cointegration versus the alternative hypothesis of no cointegration. They 

conducted a small Monte Carlo simulation experiment and concluded that test did not 

show any size distortion when sample size is 100 and 200. They did not compare LBI 

test with other test in term of power and robustness because of different type of null 

and alternative hypotheses.  

Consider the cointegration regression:  

x1t = 휃′x2t + 휀𝑡 (2.26) 

where  

휀𝑡 = 𝜙𝑡 + 𝜇𝑡          𝜇𝑡~𝐼𝑁(0, 𝜎2 ) (2.27) 

𝜙𝑡 = 𝜙𝑡−1 + 𝑣𝑡      𝑣𝑡~𝐼𝑁(0, 𝜎𝑣
2 )   (2.28) 

The null hypothesis of cointegration and the alternative hypothesis of no cointegration 

are: 

𝐻0: 𝜎𝑣
2 = 0 (2.29) 
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𝐻1: 𝜎𝑣
2 > 0 (2.30) 

The test statistics of LBI test is following: 

𝐿𝐵𝐼 = 𝑇−2𝜎 2휀̂′𝑉휀̂ (2.31) 

휀̂ is the ordinary least square residual’s vector under H0 from cointegration equation 

and V is the with T x T dimension matrix with ijth elements. The Newey-West 

estimator are being used for the estimation of variance 𝜎 2
.  

Shin (1994) proposed cointegration test which is an extensive form of the KPSS test 

which is commonly used for unit root testing. In context of multivariate testing, the null 

hypothesis of cointegration versus alternative hypothesis of no cointegration is 

examined. Shin comprehensively used the procedure of parametric correction of 

quantification of cointegrating regression. The final correctly cointegration regression 

is:  

x1t = 휃′x2t + ∑ 𝑐𝑗
𝑘2
𝑗=−𝑘1 Δx2t−j + 휀𝑡 (2.32) 

Now estimate the residuals and used it for the construction of test statistics: 

𝐶 = 𝑇−2 ∑𝑆𝑡
2 /�̂�2 (2.33) 

Where  

𝑆𝑡 = ∑ 휀�̂�
2𝑡

𝑖=1  (2.34) 

The �̂�2 is the semi-parametric consistent estimator of long run variance of 휀𝑡
2.  

The asymptotic distribution of the shin test statics is defined as:  

𝐶 ⇒ ∫ 𝑃21

0
 (2.35) 
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and  

𝑃 = 𝑉1 − (∫ 𝑉2
′𝑟

0
) (∫ 𝑉2

1

0
𝑉2

′) (∫ 𝑉2
.𝑟

0
𝑑𝑉1) (2.36) 

The V1 and V2 are the standard Brownian motions which are independent and 

corresponding to scalar variable x1t  and n-vector variable x2t . The limiting distribution 

of test statistics has been affected by inclusion of deterministic components. The 

asymptotic distribution of the test depends upon the n dimensions of the cointegration 

equation system.  

Harris and Inder (1994) proposed same test but they used procedure of nonparametric 

correction of estimation of regression of cointegration. In both tests similar LM test 

statistic has been used.  

x1t = 𝛾0 + 휃′x2t + 휀𝑡 (2.37) 

Now estimate residual 휀�̂� and find out: 

π̂𝑡 = [휀�̂� , Δ𝑥𝑡
′] (2.38) 

Λ̂ = [
�̂�11 �̂�12

�̂�21 �̂�22
] (2.39) 

=
1

𝑇
[∑ π̂𝑡�̂�𝑡

′𝑇
𝑡=1 + ∑ 𝑤(𝑘, 𝑙) ∑ (π̂𝑡−𝑘�̂�𝑡

′) + (π̂𝑡�̂�𝑡−𝑘
′ )𝑇

𝑡=𝑘+1
𝑙
𝑘=1 ] (2.40) 

Γ̂ = [
�̂�11 �̂�12

�̂�21 �̂�22
] (2.41) 

=
1

𝑇
∑ ∑ π̂𝑡�̂�𝑡−𝑘

′𝑇
𝑡=𝑘+1

𝑙
𝑘=0  (2.42) 

w(k, l) = 1 − k/(l + 1) (2.43) 
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after that estimate:   

x+
1t = x1t − ω̂12Λ̂22

−1Δx2t (2.44) 

and   

φ+
t 

= �̂�21 − Γ̂22Λ̂22
−1ω̂21 (2.45) 

Now again estimate the cointegration regression with modified estimators:  

θ̂+ = (x′x)−1(x′y+ − ekTφ̂12
+ ) (2.46) 

where  

𝑒𝑘 = [0, 𝐼𝑘]
′ (2.47) 

estimate residual 휀�̂�
+ 

𝑆2
+ =

𝑇−2 ∑ (𝐿𝑡
+)2𝑇

𝑡=1

�̂�1.2
2  (2.48) 

𝐿𝑡
+ = ∑ 휀�̂�

+𝑡
𝑖=1  (2.49) 

�̂�1.2
2 = �̂�11

2 − �̂�12
. Λ̂22

−1�̂�21
.  (2.50) 

The number of regressors excluding intercept determine the critical values of this Harris 

and Inder test statistics. The asymptotic critical values can be found by employing 

Monte Carlo simulations. 

2.1.2.5.3 Multiple Equation Cointegration Tests 

When we have more than two variables then there is the possibility of more than one 

cointegrated vector. In this case these cointegration procedures do not provide any 

solution. So, to overcome this problem Johansen and Juselius (1990) introduced the 
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multivariate cointegration test. The Johansen and Juselius (JJ) used two test statistics 

for detection of cointegration. First one is trace test with the null hypothesis that there 

are no more than “r” cointegrating vectors. The second is maximum eigen value test 

with the null hypothesis that there are no more than “r+1” cointegrating vectors against 

the alternative “r” cointegrating vectors.  

Suppose we have vector of variables with each element have same order of integration:  

Xt~I(1) 

Here Xt denotes n x 1 vector of regressors. The JJ cointegration testing procedure starts 

from vector autoregressive (VAR) model and we have VAR model of order p: 

Xt = γ + A1Xt−1 + A2Xt−2 + A3Xt−3 + ⋯+ ApXt−p + μt (2.51) 

It can be written as: 

Δ𝑋𝑡 = 𝛾 + Ψ𝑋𝑡−1 + ∑ Φ𝑖Δ
𝑝−1
𝑖=1 𝑋𝑡−𝑖 + 𝜇𝑡 (2.52) 

where  

Ψ = ∑ 𝐴𝑖 − Ι
𝑝
𝑖=1  (2.53) 

Φ𝑖 = −∑ 𝐴𝑗
𝑝
𝑗=𝑖+1  (2.54) 

If Ψ the coefficient matrix reduces its rank r < n, then there is n x r matrices of 𝑎 and 

𝛽and each of them has’ r’ rank such that Ψ = 𝑎𝛽′while  𝛽′𝑋𝑡 is stationary. In the error 

correction model 𝑎 is representing the adjustment parameter and every column of the 

𝛽 is showing cointegrating vector. The r is representing the cointegration relationships. 

They used two likelihood ratio test statistics for cointegration.  

Trace test: 
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𝑇𝑟𝑎𝑐𝑒 =  −𝑇∑ 𝑙𝑛𝑛
𝑖=𝑟+1 (1 − �̂�𝑖)` (2.55) 

Maximum eigenvalue test: 

M. E =  −Tln(1 − λ̂r+1) (2.56) 

The �̂�𝑖 shows the ith high canonical correlation and T represents the number of 

observations. The JJ test allows to find out more than one cointegrated vectors such that 

it is generally more applicable than EG and EY cointegration tests. We know that EG 

and EY single equation procedures ignore short run dynamics, when the relationships 

are estimated. But, the JJ procedure also considers the short run dynamics. Johansen 

(1992) and Perron and Campbell (1993) proposed an extensive form of JJ test which 

includes the trends for the treatment of stochastic cointegration in data series. 

Podivinsky (1990) explored that the asymptotic critical values are not applicable when 

the sample size is 100 or less than 100. The JJ test suffers in size and power problem 

when sample size is small. Phillips and Ouliaris (1988), Stock and Watson (1988) and 

Harris (1997) estimated cointegration by employing principle component analysis.  

Pesaran et al. (1996) and Pesaran (1997) proposed a single equation ARDL 

(autoregressive distributed lag) approach for cointegration as an alternative of EG and 

EY.  The first advantage is the ARDL cointegration approach provides explicit tests for 

the presence of a single cointegrating vector, instead of assuming uniqueness.  

Suppose we have two variables x1t and x2t  and both are first difference stationary, then 

the cointegration regression equation of ARDL is following: 

Δx1t = θ10 + θ11x1t−1 + θ12x2t−1 + ∑ βi
p−1
i=1 Δx1t−1 + ∑ δi

q−1
i=0 Δx2t−1 + ε1t (2.57) 

Δx2t = θ20 + θ21x2t−1 + θ22x2t−1 + ∑ βi
p−1
i=1 Δx2t−1 + ∑ δi

q−1
i=0 Δx1t−i + ε2t (2.58) 
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The F test is employed to find out joint significance for short run and long run 

relationships. The hypotheses for long run relationship are following: 

𝐻0:  θ11 = θ12 = 0                                        (There is no long run relationship) 

𝐻1:  At least one of them is nonzero           (There is long run relationship)  

The hypotheses for short run relationship are following: 

𝐻0:  βi = δi = 0                                                      (There is no short run relationship)  

𝐻1:  At least one of them is nonzero                     (There is short run relationship) 

The F statistic (Wald test) for these hypotheses tested in each of the models can be 

denoted as:  

𝐹𝑥1(x1t |x2t ) (2.59) 

𝐹𝑥2(x2t |x1t ) (2.60) 

The distribution of Wald test is non-standard asymptotically under the null of no 

cointegration. Pesaran and Shin (1995) revealed that asymptotically valid inference on 

short run and long run parameters could be made by employing ordinary least square 

estimations of ARDL model. So, the ARDL model order is properly augmented to grant 

for contemporary correlation among the stochastic elements of the data generating 

processes involved in estimation.  Pesaran et al. (2001) provided critical values of two 

bounds upper and lower which are being used for cointegration. The lower bound 

considers variables are stationary and they have no long run relationship. The upper 

bound considers variables are difference stationary and they have long run relationship.  

When the F-stat values lines in upper bound critical region, then it rejects H0. It means 

variables are cointegrated.  
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2.1.2.6 Problems in Cointegration Analysis 

The cointegration testing involves many specification decisions which cut the reliability 

of results. The existing cointegration testing procedures do not provide any reasonable 

criteria regarding these specification decisions: choice of the deterministic part; the 

structural breaks; autoregressive lag length choice and innovation process distribution. 

For further detail (section, 2.3.2).   

2.2 Conceptual Flaws in Understating of Spurious Regression 

It is a common misconception that the spurious regression only prevails due to unit root. 

Nevertheless, the missing relevant variable is a major cause of spurious regression. 

Yule (1926) first time anticipated that the nonsense correlations could prevail due to 

missing variable.  

Simon (1954) argued that the missing variable is a cause of spurious correlation. Simon 

has described this problem in following tactic that if we are uncertain that the observed 

correlation is spurious, we should introduce another (extra) variable which may observe 

the true correlation. Frey (2002) argued that the spurious regression could probably be 

due to missing variable. 

Even it can be shown that the spurious regression in Granger and Newbold (1978) 

experiment was also due to missing variable. In their experiment they generated 

independent autoregressive series like,𝑋𝑡 and 𝑌𝑡. Where 𝑋𝑡and 𝑌𝑡 both are expressed by 

their own lag values: 

yt = yt−1 + εyt (2.61) 

xt = xt−1 + εxt (2.62) 

There is no third variable involved in the construction of both variables. They regressed 

𝑋𝑡on 𝑌𝑡 or vice versa without involving their lag values in regression analysis. 
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yt = a + β1xt + εyt (2.63) 

xt = a + β1yt + εxt.  (2.64) 

They came up with spurious results due to missing variable because they did not include 

the lag values of variables as an independent variable. It is obvious that on determinant 

of 𝑌𝑡 that is 𝑌𝑡−1is missing in equation (2.63) and similarly one determinant of 𝑋𝑡 i.e. 

𝑋𝑡−1 is missing in equation (2.64). Taking these missing variables into account the 

equation shall become: 

yt = a + β1xt + β2yt−1 + εyt (2.65) 

Therefore, equation (2.65) shall not have spurious regression, if our supposition of 

missing variable problem is true. It is shown in section (4) that it is actually true.  

The stationary variables are also lag dependent at some extent that is why we would 

come up with spurious regression. For detail see, Granger et al. (2001) and Rehman and 

Malik (2014). The missing variable phenomena also solve the mystery observed by 

Granger et al. (2001) i.e. spurious regression in stationary series.  

In our experiment which is explained in section 4, we generated independent 

autoregressive series like,𝑋𝑡 and 𝑌𝑡. Where 𝑋𝑡and 𝑌𝑡 both are expressed by their own 

lag values: 

yt = ρyt−1 + εyt 𝜌 < 1 (2.66) 

xt = ρxt−1 + εxt 𝜌 < 1 (2.67) 

There is no third variable involved in the construction of both variables. They regressed 

𝑋𝑡on 𝑌𝑡 or vice versa without involving their lag values in regression analysis: 

yt = a + β1xt + εyt (2.68) 

xt = a + β1yt + εxt (2.69) 
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We came up with spurious results due to missing variable because we did not include 

the lag values of variables as an independent variable. 

The reason behind the spurious regression is that when the potential variable is missing 

from the regression, then the irrelevant variable acts as a proxy of potential variable. It 

captures the effect of potential variables and then the results would become significant. 

If we start with ARDL model, it will overtake the problem of missing variable.  

2.3 Problems in Prevailing Treatments 

The most popular procedures to evade the spurious regression is unit root and 

cointegrating analysis. These methods are equally capricious because of a large number 

of specification decisions needed before application of unit root and cointegration tests 

like, choice of the deterministic part; the structural breaks; autoregressive lag length choice and 

innovation process distribution. For detail see section (2.3.1.1). The cointegration analysis 

which is employed as a tool to avoid spurious regression, also experience specification 

decisions problems. For detail see section (2.3.2). It involves unit root testing which is 

also unreliable. The tests of unit root are unreliable that is why it is very hard to 

conclude something reasonable. For detail see section (2.3.1).  

2.3.1 Unit Root Testing 

Granger and Newbold (1974) argued that unit root leads to spurious regression and 

Nelson and Plosser (1982) found that most of economic time series are in fact unit root 

Numerous financial and economic series exhibit nonstationary or trending behavior 

like, Stock prices, exchange rate, Gross Domestic Product (GDP) and many others. It 

is unlikely to get accurate results from trendy series. The most common procedures to 

avoid the spurious regression are unit root and cointegrating testing. These procedures 

are equally unreliable due to specification decisions. The cointegration analysis which 
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is used as a tool to avoid spurious regression, suffer from numerous problems. It 

involves unit root testing and then testing for cointegration. The tests of unit root are so 

unreliable that is why it is very hard to conclude something reasonable. The United 

States (US) GNP is the series used by the large number of researchers as a guinea pig 

for the tests of unit root. However, nothing reasonable could be said about the unit root 

in series. Rehman and Zaman (2008) summarized findings of researchers in US GNP 

as follows: 

“Trend Stationary: Perron (1989), Zivot and Andrews (1992), Diebold and Senhadji (1996), 

Papell and Prodan (2003), 

Difference stationary: Nelson and Plosser (1982), Murray and Nelson (2002), Kilian and 

Ohanian (2002), 

Don’t know; Rudebusch (1993)”. 

2.3.1.1 Why Unit Root Tests are so Unreliable  

 The important task in econometrics is to determine the most suitable arrangement of 

trend in time series. There are two common procedures to eradicate the trend of data 

are regression with time trend and differencing.  The unit root testing procedure offers 

an idea which can be adopted to render the time series stationarity. Besides, the 

precision and specification of unit root procedures are still a paradox, though, since 

mid-eighties the literature on unit root testing has been raised stormily.  

Rehman and Zaman (2008) investigated that the two main causes for inadequate 

performance of unit root tests are observational equivalence and model 

misspecification. They mainly targeted four specification decisions: choice of the 

deterministic part; the structural breaks; autoregressive lag length choice and 

innovation process distribution, and examine their role in an inference from unit root 
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tests. They explored that these specification decisions seriously affect the performance 

of unit root tests. They also investigated that the existing unit root tests do not provide 

any set criteria regarding these specification decisions. That is why, they came up with 

unreliable results. 

DeJong et al. (1992) found that Choi and Philips (1991) and Philips and Perron (1988) 

unit root procedures suffer from size distortion and low power issues in the presence of 

moving average (MA). While, Augmented Dicky Fuller (ADF) behaved well. Schwert 

(2002) investigated that the Dicky Fuller (1979, 1981) is responsive to pure 

autoregressive process assumption. It means the data generating process of series is 

pure autoregressive (AR). When the moving average competent is involved in 

fundamental process, then the Dicky Fuller reported distribution and test statistic 

distribution can be quite different. Many other unit root tests are being proposed and to 

some extent they all are facing similar problems.  

2.3.2 Problems with Cointegration Testing 

Like unit root tests the cointegration testing also involves many specification decisions 

which cut the reliability of results. The existing cointegration testing procedures do not 

provide any reasonable criteria regarding these specification decisions, and that leads 

to their results unreliable. 

For example, Lag length specification is a significant practical question about the 

application of any econometric analysis. Like, in case of unit root test, if the lag length 

is too short then the serial correlation remains in errors and the results will be biased. If 

the lag length is too large this will reduce the power of the test. In the same way, the 

cointegration tests are also very sensitive to lag length selection. Agunloye et al. (2014) 

explored that the Engle Granger (EG) cointegration test is extremely sensitive to lag 
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length. Carrasco et al. (2009) examined that the lag length misspecification may 

significantly affect the cointegration results. In case of the under specification, it could 

undermine the cointegration results and in over specification, it may diminish the power 

of test. Similarly, trend specification is also a very significant issue in econometric 

literature.  

Ahking (2002) explored that the deterministic linear time trend included in Johansen’s 

cointegration test provides disproving results but after exclusion of deterministic linear 

time trend  robust results are attained. He also suggested that great attention must be 

taken in trend specification in cointegration analysis. There are lot of studies available 

in literature on this issue but most of them provide with different results. Leybourne 

and Newbold (2003) used three cointegration tests for independent integrated series and 

each series has a structural break. They found cointegration among them until structural 

breaks are not properly treated. Choi et al. (2004) examined that the economic models 

for cointegration are often provided erroneous results. The main reason is the errors are 

unit root non-stationary owing one of the variables has non-stationary measurement 

error. They stated that “If the money demand function is stable in the long-run, we have 

a cointegrating regression when money is measured with a stationary measurement 

error but have a spurious regression when money is measured with a nonstationary 

measurement error”. 
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CHAPTER 3  

CONCEPTUAL FRAMEWORK 

Spurious regression is an issue of great concern, especially when two economic time 

series are regressed without any theoretical basis and results are most expectedly 

significant. More or less all the nominal variables are correlated with each other, 

without having any theoretical link because they have dominant inflationary 

component. This component usually overshadows the true underlying relationship. This 

type of regression is known spurious regression which is due to missing variable but 

according to modern econometrics the mian reason is nonstationarity even though there 

is no missing variable. The focus of this chapter is to discuss different concepts 

regarding spurious regression. The chapter is arranged as follows 

3.1 What is Spurious Regression? 

The foremost problem with time series is that two independent variables can seem to 

highly significant than they are in true relation. The spurious regression happens when 

independent series come up with significant results.  

3.1.1 Spurious Regression 

There are many well-known definitions of spurious regression and some most famous 

are quoted here: 

According to Yule (1926)  

“We  sometimes  obtain  between  quantities  varying  with  the  time  

(time-variables)  quite  high  correlations  to  which  we  cannot  attach  

any  physical  significance  whatever, although  under  the  ordinary  test  

the  correlation  would be  held  to be certainly  "significant"”. 
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According to Granger and Newbold (1974)  

“It  is  very  common  to  see  reported  in  applied  econometric  literature  

time  series regression  equations  with  an  apparently  high  degree  of  

fit,  as  measured  by  the coefficient  of  multiple  correlation  R2  or  the  

corrected  coefficient  �̅�2,  but  with an extremely  low  value  for  the  

Durbin-Watson  statistic”. 

According to Phillips’s (1986)  

“A spurious regression occurs when a pair of independent series, but 

with strong temporal properties, is found apparently to be related 

according to standard inference in a Least Squares regression”. 

3.1.1.1 Granger and Newbold Explanation of Spurious Regression 

According to Granger and Newbold (1974), the spurious regression arises by relating 

the levels of independent nonstationary time series. They describe this phenomenon as 

following: 

Let us suppose we have linear regression model with one dependent variable Y and X 

matrix containing one series and (K-1) independent variables. The u is an error term 

independently distributed. 

Y = Xβ + u (3.1) 

where YTx1 vector consists on regressand observations, XT×K matrix comprising 1’s 

series and stochastic independent variables and βKx1 vector of coefficients.  

E(u) = 0 (3.2) 

E(uu′) = σ2Ι (3.3) 
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Then the joint significance test is employed to estimate the joint effect of all stochastic 

regressor on dependent variable. The null hypothesis is formed as  

H0: β1 = β2 = ⋯ = βk−1 = 0 (3.4) 

F =
R2

1−R2
×

T−K

K−1
 (3.5) 

The R2is coefficient of variation which describes that how much independent variables 

explain the dependent variable, K is number of regressors and T is number of 

observations.  F test statistic compare with critical values of F distribution with “K-1” 

and “T-K” degrees of freedom by assuming normality. It is quite possible that there 

does prevail some β’s.  

Y − Xβ = u (3.6) 

In case u satisfies the white noise conditions. However, suppose if Yt’s are not a white 

noise process then the null hypothesis of F test cannot be true and its tests are not 

suitable.  

Suppose we run a regression with economic time series at levels, as we know that most 

of the economic series are nonstationary and highly correlated. In this case F test will 

not pursue Fisher’s F distribution under the null of all the β’s are equal to zero. Under 

this null hypothesis the residual series can be obtained as  

Yt − β0 = ut            t = 1, 2, 3, … , T (3.7) 

Now if some distributional problem involved, it can be attained by consideration 

following regression case: 

Yt = β0 + β1Xt + ut (3.8) 



35 
 

where it is supposed that both Yt and Xt follow independent autoregressive process of 

order one.  

Yt = b10 + ρ1Yt−1 + uyt (3.9) 

Xt = b20 + ρ2Xt−1 + uxt (3.10) 

In this case the coefficient of determination R2 is equal to the ordinary correlation 

between Xt and Yt which is provided by (Kendall, 1954): 

Var(R) =
T−1(1+ρ1ρ2)

(1−ρ1ρ2)
 (3.11) 

Since it is constrained that the value of “R” must lies in region -1 ≤ R2 ≤+1 and if the 

variance of “R” larger than 1/3 then the distribution of “R” cannot be a unimodal at 

zero. The essential condition is ρ1ρ2 > (𝑇 − 3)/(𝑇 + 3). 

Let us take an example for better understanding of this phenomena which is adapted 

from Granger and Newbold (1974): 

Suppose if T = 20 and ρ1 = ρ2, the distribution which has no single mode at origin will 

arise if ρ1 > 0.8 or ρ1 = 0.9 and E(R2) = 0.47. 

Thus the high value of R2 cannot be considered as an indication of significant 

association between autocorrelated series. So the phenomena of spurious regression 

might arise because of running the regression between independent time series by 

relating their levels.  

3.1.1.2 Asymptotic Theory of Spurious Regression by Philips 

Asymptotic theory of spurious regression adapted from Philips (1986) based on the 

concept of Granger and Newbold (1974): 
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As we have seen in Granger and Newbold experiment, they used two independent first 

order autoregressive time seriesXt and Yt. They employed linear regression model as 

following: 

Yt = β̂0 + β̂1Xt + ût (3.12) 

where  

Yt = b10 + ρ1Yt−1 + uyt (3.13) 

Xt = b20 + ρ2Xt−1 + uxt (3.14) 

and  

uyt~iid(0, σy
2)    and  uxt~iid(0, σx

2) (3.15) 

To make work more general, we relax Granger and Newbold’s assumption on error 

terms and impose weaker assumption on error terms of autoregressive series. We 

introduce random n-vectors sequence {휁}1
∞which is defined on probability space (Ω, β 

and Y).  

Suppose Gt = ∑ ζj
t
j=1  is a partial sum process and set G0 = 0. So, we require following: 

Assumption 1 

(a) E(ζt) = 0 

(b) Supj,tE|ζit|
β+ε < 𝑐𝑐 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛽 > 2 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 휀 > 0 

(c) ∑ = lim
T→∞

T−1 E(GTGT
′ ) be present and positive definite 

(d) {ζ}1
∞ is strongly mixing with the mixing number am and sustaining ∑ am

1−2/β∞
1 < ∞. 
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Now if we set n = 2 and 휁′
𝑡
= (uyt, uxt), then the conditions imposed in assumption 1 

on the error terms of autoregressive time series are weak and they allow Xt and Yt more 

general process  of (order one). The differences are quite weakly dependent and 

innovations are probably heterogeneously distributed.  This allows a wide variety of 

data generating mechanisms like, ARIMA (P, 1, q) model under general conditions on 

underlying innovations.  Hence the condition (d) is only satisfied when mixing waning 

rate is 𝑎𝑚 = 𝑂(𝑚−𝜆) for (𝜆 >
𝛽

𝛽−2
). When β becomes close to 2 and the outlier 

probability grows [under condition (b)], the mixing waning rate increses  outliers’s 

effect, then required under condition (d)  diminishes more rapidly.  

Now if the {ζt} is weak stationary process then  

∑ =𝐸(ζ1휁1
′) + ∑ 𝐸∞

𝑘=1 (ζ1휁𝑘
′ + ζk휁1

′) (3.16) 

the convergence of this innovations series is inferred by the (d) mixing condition. 

Additionally, when 휁′
𝑡
= (uyt, uxt) and uyt and uxt are independent, in the context of 

spurious regression, we have 

∑ = [
σ𝑢𝑦

2 1

0 σ𝑢𝑥

2
] (3.17) 

where 

σy
2 = lim

T→∞
T−1 E(𝐾𝑇

2) (3.18) 

σx
2 = lim

T→∞
T−1 E(𝐿𝑇

2 ) (3.19) 

and 

𝐾𝑡 = ∑ 𝑢𝑦𝑗
𝑡
1  (3.20) 
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𝐿𝑡 = ∑ 𝑢𝑥𝑗
𝑡
1  (3.21) 

The ordinary t-test ratios for β̂0 and β̂1 are estimated as  

𝑡𝛽0
= 

β̂0

𝑆β̂0

 (3.22) 

𝑡𝛽1
= 

β̂1

𝑆β̂1

 (3.23) 

where 𝑆β̂0
 and 𝑆β̂1

 are the standard error of estimated parameter  β̂0 and β̂1 in equation 

(3.12). The DW is the ordinary Durban Watson test d-statistic and R2 has been used for 

coefficient of determination. Whereas Box pierce test is defined as  

𝑄𝑘 = 𝑇∑ 𝑟𝑠
2𝑘

𝑠=1  (3.24) 

where 

𝑟𝑠 =
∑ 𝜐𝑡𝜐𝑡−𝑠

𝑇
𝑠+1

∑ 𝜐𝑡
2𝑇

1
 (3.25) 

Theorem 1 derived below provide the asymptotic theory of ordinary linear regression 

and some of its associated statics like t-statistics, R2 and Qk. The lemma 1 is used for 

the derivation of theorem 1.  

However, Theorem 1 conditions (a) and (b) indicate that �̂�0 and �̂�1do not converge in 

the probability to constant as T approaches to ∞. Definitely, �̂�0 distribution diverges 

and �̂�1 follows non degenerate limiting distribution as T approaches to ∞. So, the 

uncertainty regarding the regression (3.12) that arises due to its spurious nature 

(because series are independent and autoregressive 3.13 and 3.14) perseveres 

asymptotically in these limiting distributions.  
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3.2 Spurious Regression is not just a Nonstationary Phenomena 

 Modern time series econometrics consider nonstationary key cause of spurious 

regression. It was Granger and Newbold (1974) who first time publicized that the mian 

reason of spurious regression is nonstationarity in time series even there is no missing 

variable. Thereafter, Nelson and Plosser (1982) claimed that most of the economic 

series are nonstationary in nature. The theory of nonstationary is unusually different 

from the stationary time series theory which was employed by the researchers for 

regression analysis. These finding changed the direction of time series econometrics 

that led to the development of modern time series econometrics. After that large setoff 

literature published on the concept of nonstationary, it was found that the mian cause 

of spurious regression was nonstationarity and proposed battery of tests of time series 

econometrics to avoid the possibility of spurious regression (see section 2 of the study 

in hand). For handling the problem that spurious regression produced by 

nonstationarity, researcher used unit root and cointegration procedures (see section 5 of 

the study in hand).   

These proposed procedures are also facing size and power problems in small sample 

size. So, it is very hard to get reliable results from these tests because these procedures 

involve many prior specification decisions like lag length, trends and structural stability 

etc. There are not only one test which can provide good guidance regarding correct 

specification decisions, all available tests are also facing specific statistical error (type 

I and type II).  Unit root testing is pre-testing before going for cointegration. The first 

step of cointegration testing is to test unit root, while the unit root testing has problems 

in specification decisions and it suffers in size and power problem, second step is to 

apply cointegration testing which is also facing same problems, so the cumulative 

probability of error in all procedures leave the results unreliable. 
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3.3 Spurious Regression is also a Stationary Phenomena 

The spurious regression can also prevail in stationary series. Granger et al. (2001) 

indicted the possibility of spurious regression in stationary series. In this situation these 

procedures do not provide any solution. The cointegration is only way to hold the 

problem of spurious regression but it only works in case of nonstationarity. It means 

existing literature does not provide any solution for the remedy of spurious regression 

in stationary time series.  

3.4 Missing Variable can Generate Spurious Regression 

 The spurious regression has long history but we start at least from Yule (1926). 

Spurious regression is a phenomenon known to econometrician and statisticians since 

Yule (1926). He was who attributed spurious regression to missing variable. Simon 

(1954) and Frey (2002) argued that the main reason of spurious regression is missing 

relevant variable.  

It is a general misconception that spurious regression is due to nonstationarity. After 

reviewing a large number of studies, we come to conclusion that missing variable is the 

true cause of spurious regression even series is stationary or nonstationary. If we deeply 

analyze the spurious regression results, we find that Granger and Newbold study was 

also considering the missing variable. The mian purpose of their study is to show the 

nonstationary series can generate spurious regression, for this purpose they used 

autoregressive series and regressed them on each other; the regressions came up with 

significant results. It is because of missing variable that the true data generating process 

is autoregressive. If they include lag values of variables in regression, the results would 

be different and they came expectedly with insignificant results. We adopted the 

example from Zeisel (1948) for clarification of problem.  
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Example:X is the married female employee’s percentage in group, Y is the average absence of 

per employee per week and Z is the average housework hours consumed per employee per 

week. High correlations have been found between X and Y and X and Z, but when Z held 

constant, the correlation between X and Y is going close to zero. The correlation between X 

and Y is spurious and it is due to joint effect produced by the variation in Z. It is common that 

married female spend more housework hours that is why more absence came into being. 
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CHAPTER 4  

METHODOLOGY AND MODEL SPECIFICATION 

4.1 What is ARDL Model? 

In ARDL model, the dependent variable is expressed as a function of lag and current 

values of independent variable and its own lag value. Davidson et al. (1978) proposed 

ARDL methodology (DHSY hereafter) to model the UK consumption function. ARDL 

model normally starts from reasonably general and large dynamic model and 

progressively reduces its mass and alter variables by imposing linear and non-linear 

restrictions (Charemza and Deadman, 1997). Autoregressive distributed lag (ARDL) 

model is one of the most general dynamic unrestricted model in econometric literature.  

It has lag values of independent and dependent variables, therefore it should be able to 

tackle correlation problem. The ARDL model is a general model, that’s why it could 

be possible to tackle many econometric problems like misspecification and come up 

with a most appropriate interpretable model.  

The ARDL (1, 1) is the simplest form of ARDL model. Consideran ARDL (1, 1) model: 

yt = a + β1xt + β2xt−1 + β3yt−1 + εyt (4.1) 

Hendry and Richard (1983), Hendry, Pagan and Sargan (1984) and Charemza and 

Deadman (1997) argued that by imposing restrictions we can find out at least ten most 

appropriate and economically interpretable models from ARDL (1, 1) model. We are 

giving hare some important cases of restriction: 

1. 𝛽2 = 𝛽3 = 0 Static regression, 

2. 𝛽1 = 𝛽2 = 0                            First order autoregressive process, 

3. 𝛽3 = 1,  𝛽1 = −𝛽2                                          Equation in first difference, 

4. 𝛽2 = 0         Partial adjustment equation 
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As discussed, the spurious regression is may be a consequence of missing variable. 

ARDL is a general specification taking into account the lag structure. Therefore, it 

could give better results. 

4.1.1 Difference between ARDL model and ARDL cointegration test 

Pesaran et al. (1996) and Pesaran (1997) proposed a single equation ARDL 

(autoregressive distributed lag) approach for cointegration as an alternative of Engle 

and Granger and Engle and Yoo procedures. The ARDL cointegration approach 

provides explicit tests for the presence of a single cointegrating vector, instead of 

assuming uniqueness. Suppose we have two variables x1t and x2t  and the generalized 

ARDL model equation is following: 

x1t = θ10 + ∑ βi
p
i=1 Δx1t−i + ∑ δi

q
i=0 x2t−i + ε1t         (4.2) 

Equation 4.2 was proposed by Hendry for time series modeling and he stated that 

it provides convenient way of following General to Simple methodology. Hendry 

shows that numerous theoretical models can be driven from the equations similar 

to 4.2. 

On the other hand, the equation proposed by Pesaran for testing long run 

relationship is 

Δx1t = θ10 + θ11x1t−1 + θ12x2t−1 + ∑ βi
p−1
i=1 Δx1t−i + ∑ δi

q−1
i=1 Δx2t−i + ε1t       (4.3)                                                                        

One can see that just like the simplifications proposed by Hendry (1978), the 

Pesaran model is also restricted version of generalized ARDL model.by imposing 

restrictions on unrestricted ARDL model as in Eq 4.2, the Pesaran cointegration 

regression equation can be derived.    
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Δx1t = θ10 + θ11x1t−1 + θ12x2t−1 + ∑ βi
p
i=1 Δx1t−1 + ∑ δi

q
i=1 Δx2t−1 + ε1t    (4.4) 

Δx2t = θ20 + θ21x2t−1 + θ22x2t−1 + ∑ βi
p
i=1 Δx2t−1 + ∑ δi

q
i=1 Δx1t−i + ε2t    (4.5 ) 

The Pesaran Equations 4.5 and 4.5 can also be regarded as the Error Correction Version 

of unrestricted ARDL equation 4.2, because just like the error correction model, the 

equation contains all difference form variables and error correction term which 

mentioned without differencing. Pesaran argued that this model can be used for testing 

long run and short run relationships. The F test is employed to find out joint significance 

for short run and long run relationships. The hypotheses for long run and short run 

relationships are following: 

𝐻0:  θ11 = θ12 = 0                                        (There is no long run relationship) 

𝐻1:  At least one of them is nonzero           (There is long run relationship)  

The hypotheses for short run relationship are following: 

𝐻0:  βi = δi = 0                                                      (There is no short run relationship)  

𝐻1:  At least one of them is nonzero                     (There is short run relationship) 

The F statistic (Wald test) for these hypotheses tested in each of the models can be 

denoted as:  

𝐹𝑥1(x1t |x2t ) (4.6) 

𝐹𝑥2(x2t |x1t ) (4.7) 

The distribution of Wald test is non-standard asymptotically under the null of no 

cointegration. Pesaran and Shin (1995) revealed that asymptotically valid inference on 

short run and long run parameters could be made by employing ordinary least square 

estimations of ARDL model. So, the ARDL model order is properly augmented to grant 
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for contemporary correlation among the stochastic elements of the data generating 

processes involved in estimation.  

As stated by Pesaran the beauty of Pesaran’s model is that it can differentiate between 

genuine and spurious relationship without knowing about stationarity. Since Pesaran 

ECM version of ARDL is a restriction of the generalized ARDL model, therefore, the 

simple ARDL (DHSY version) should also be utilized to differentiate between genuine 

and spurious relationship.  This study shows that actually it is possible to use 

unrestricted ARDL model to differentiate between genuine and spurious relationship.  

In ARDL cointegration procedure, we used bound testing approach for long run 

relationship. ARDL cointegration procedure is only used for nonstationary series and 

involves prior specification decisions. ARDL cointegration procedure estimates short 

run effects by taking differencing in equation and long run effect through bound testing. 

Pesaran et al. (2001) provided critical values of two bounds, upper and lower which are 

being used for cointegration. The lower bound considers variables are stationary and 

they have no long run relationship. The upper bound considers variables are 

nonstationary and they have long run relationship. While the unrestricted ARDL model 

used least square regression and there is no need of special critical values and it also 

works in stationary time series case. The simple ARDL model provides only static 

relationships.    

4.2 The Methodology 

The Components of the methodology are as following: 

I. Data generating process (DGP)  

II. Testing and Simulations   
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4.2.1 Data Generating Process (DGP) 

Let’s, we have a data generating process  

[
𝑥𝑡

𝑦𝑡
] = [

휃1 휃12

휃21 휃2
] [

𝑥𝑡−1

𝑦𝑡−1
] + [

𝑎1 𝑎2

𝑏1 𝑏2
] [

1
𝑡
] + [

휀𝑥𝑡

휀𝑦𝑡
] [

휀𝑥𝑡

휀𝑦𝑡
] ~𝑁 ([

0
0
] , [

1 𝜌
𝜌 1

])      (4.8) 

We can rewrite it as for simplification of notation 

𝑋𝑡 = 𝐴𝑋𝑡−1 + 𝐵𝑑 + 휀𝑡               휀𝑡~𝑁(0, Σ)  (4.9) 

The data generating process equation (18) can generate data in quite large types of scenarios. 

Suppose, 휃12 = 휃21 = 0 and 𝜌 =0, the data generating process will generate two 

independent series and it would be indication of spurious regression if the regression of 

𝑥𝑡 on 𝑦𝑡 turns out to be significant. The matrix ‘B’ is nuisance parameter which does 

not determines the relation between X and Y, however, it can play significant role in 

determining size and power of the statistical tests. If A= 0, it indicates that there is no 

autocorrelation and cross autocorrelation in the series. If B= 0, it shows that series have 

no drift and trend. If A and B both are zero, it means that two series would be IID 

(identically independently distributed).  The value of degree of association depends 

upon only ∑.  

It could be possible to make many types of models from this data generating process 

by imposing restrictions. Some important scenarios which can be drawn from equation 

(4.8) are mentioned below: 

S1. 휃12 = 휃21 = 0, 𝜌 = 0 

Assumption 휃12 = 휃21 = 0, implies that both Xt and Yt are autoregressive without 

having any dependence on the lags of other variable. The 𝜌 = 0 implies that the error 

terms added to each have no contemporaneous correlation. Therefor Xt and Yt are 

neither serially nor contemporaneously dependent on each other.  
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S2.휃12 = 휃21 = 0, 𝜌 = 0 , 𝑎1 = 𝑏1 = 0 

Assumption 휃12 = 휃21 = 0, implies that both Xt and Yt are autoregressive without 

having any dependence on the lags of other variable. The 𝜌 = 0 implies that the error 

terms added to each have no contemporaneous correlation. Therefore Xt and Yt are 

neither serially nor contemporaneously dependent on each other. This restriction 𝑎1 =

𝑏1 = 0 implies that both series are without drift term or series are having only linear 

trend  

S3. 휃12 = 휃21 = 0, 𝜌 = 0𝑎2 = 𝑏2 = 0 

Assumption 휃12 = 휃21 = 0, implies that both Xt and Yt are autoregressive without 

having any dependence on the lags of other variable. The 𝜌 = 0 implies that the error 

terms added to each have no contemporaneous correlation. Therefor Xt and Yt are 

neither serially nor contemporaneously dependent on each other. This restriction 𝑎1 =

𝑏1 = 0 implies that both series are with drift term or series are having no linear trend  

S4. 𝑏2 = 𝑎2 = 0 

Assumption 𝑏2 = 𝑎2 = 0, implies that both Xt and Yt are autoregressive having 

dependence on other variable. Therefor Xt and Yt are serially or contemporaneously 

dependent on each other. This restriction 𝑎2 = 𝑏2 = 0 also implies that both series are 

with drift term or series are having no linear trend  

S5. 𝑎1 = 𝑏1 = 0 

Assumption 𝑏1 = 𝑎1 = 0, implies that both Xt and Yt are autoregressive having 

dependence on other variable. Therefore Xt and Yt are serially or contemporaneously 

dependent on each other. This restriction 𝑎1 = 𝑏1 = 0 also implies that both series are 

without drift term or series are having only linear trend  
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Organization Chart of data generating process and its different specification  

 

We will investigate the performance of ARDL with following specifications of data 

generating process. 

4.2.2 Testing and Simulation 

We will evaluate the forecast performance of ARDL model through Monte Carlo 

simulations and compare size and power of conventional methods with ARDL model. 

We will compare ARDL size and power performance with commonly practiced Engle, 

Granger and Johansen and Juselius cointegration tests. We will check the robustness of 

Engle, Granger and Johansen and Juselius cointegration tests and ARDL model under 

different specifications, like exact, over and under specifications by estimating size and 

power. We will also evaluate the forecast performance of ARDL by taking real data.  
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CHAPTER 5  

THE SPURIOUS REGRESSION WITH OLS, 

COINTEGRATION METHODS, AND ARDL 

The mian objective of this study is to evaluate the performance of ARDL model to 

differentiate between genuine and spurious regression. If ARDL is actually able to 

differentiate then it should have following feature: 

Suppose we have set of independent time series with no mutual relationship and we test 

the relationship using ARDL model, it should be able to find that there is no 

relationship. More technically suppose xt and yt are independent by construction and 

we estimate xt = α1xt−1 + β0yt + β1yt−1 + εt and we test the hypothesesH0(1): β0 =

0, H0(2): β1 = 0  and    H0(3): (β0, β1) = 0. Since in fact all three hypotheses are true, 

the possibility of rejection of the three hypotheses should not exceed the nominal size. 

If the probability is higher, then this size distortion can be regarded as spurious 

regression.  

It is well known that OLS produces high probability of spurious regression and this 

probability increases with the increase in sample size. On the other hand since ARDL 

contains all the true determinants of regressand, we hope that ARDL would perform 

better. The size analysis is performed to quantify the distortion in probability of type I 

error. It can be expressed in following way: 

Size = Prob (reject H0| whenH0 is true) 

In this study size analysis is used to estimate the probability of spurious regression after 

employing conventional method and ARDL model with different specification. For this 

analysis, the independent autoregressive stationary and nonstationary time series are 

being generated with different specification; without drift and trend, without drift, with 
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drift and with drift and trend. Suppose, two independent autoregressive series x and y 

are being generated, after that regress y on x, if the results are significant, it indicates 

regression is producing spurious results. All the results in tables 5.1, 5.2 and 5.3 came 

after 100,000 simulation. The data generating process for table 5.1 is discussed in 

chapter 4: 

[
xt

yt
] = [

θ1 0
0 θ2

] [
xt−1

yt−1
] + [

a1 a2

b1 b2
] [

1
t
] + [

εxt

εyt
] [

εxt

εyt
]~N ([

0
0
] , [

1 0
0 1

]) (5.1) 

The two independent autoregressive stationary and non-stationary series are generated 

by using above given data generating process as it is apparent from equation (5.1). We 

estimate the following regression: 

yt = a + β1xt−1.
+ εyt  (5.2) 

The probability of getting significant β1 would be the actual size and it is different from 

nominal size. It would be considered as probability of spurious regression. Below is the 

summary of actual empirical size and the probability of spurious regression given in 

table 5.1, 5.2 and 5.3.  

5. 1 Size Analysis with Nonstationary Series 

The data are generated with pre decided specifications and the probability of spurious 

regression is being tested by using classical methods and with ARDL model. The two 

independent autoregressive non-stationary series have been generated by using 

equation 5.1.  

The figure 1given below is based on data of first panel of table 5.1. When autoregressive 

parameters θ1 = θ2 are equal to 1, it means series are nonstationary. Figure 1, shows the 

comparison among the probability of spurious regression with OLS and ARDL models. 

This comparison has been made on the different sample sizes. Using OLS, we got 
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66.6%, 78.2%, and 86.3% probability of spurious regression at 50, 100, 200 sample 

size respectively. It supported the argument of Granger and Newbold (1974) that as we 

increase the sample size in case of independent nonstationary series, the probability of 

spurious regression is also increasing. At sample size 50, ARDL (1, 1) reduced this 

probability from 66.2% to just 6.2%, and ARDL (2, 2) also reduced this probability 

from 17.2% to just 6.6%. It shows that the conventional OLS method can generate 

spurious regression in case of nonstationary time series and ARDL model has reduced 

the probability of spurious regression significantly. 

Figure 5.1: Independent Non-Stationary Series without Drift and Trend 

 

Figure 5.1 shows the probability of spurious regression on the basis of t-statistics for coefficients 

of independent variable by using Ordinary Least Square and Autoregressive distributed 

Lag models. The F-stats are used for joint significance of current and lag values of 

independent variable for ARDL models. 

When we employed ARDL (1, 1), it reduced the probability of spurious regression from 

66.6% to just 6.2% at sample size of 50. The ARDL (2, 2) also reduced this probability 

from 66.6% to 6.6% at sample size of 50. When we increase the sample size from 50 

to 100 and 200 the probability of spurious regression remains same. It clearly shows 

that the probability of spurious regression with ARDL model is not increasing as sample 
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size increases. It shows that the OLS can generate spurious regression in case of 

nonstationary time series and ARDL model has reduced the probability of spurious 

regression significantly. We use this figure only for first panel of table (5.1). Similarly, 

we can make figures for other panels in same way. The comparison of OLS and ARDL 

on the basis of probability of spurious regression under different specifications have 

been given below in table (5.1): 

Table 5.1: Probability of Spurious Regression in Nonstationary with OLS and 

ARDL Models 

 OLS ARDL (1, 1) ARDL (2, 2) 

 xt Xt xt-1 yt-1 F-stat Xt xt-1 xt-2 yt-1 yt-2 F-stat 

N 𝐚𝟏= 𝐛𝟏= 0 = 𝐚𝟐= 𝐛𝟐= 0 

50 66.6 6.6 6.6 100.0 6.4 7.3 6.2 7.0 100.0 7.0 6.7 

100 78.2 6.1 6.5 99.7 6.5 7.2 6.1 7.0 100.0 7.3 6.7 

200 86.3 6.0 6.6 95.8 6.5 7.3 6.1 6.9 100.0 6.9 6.8 

N 𝐚𝟏= 𝐛𝟏= 0 

50 100.0 94.9 81.8 100.0 80.4 75.4 7.8 36.2 100.0 56.0 55.3 

100 100.0 93.0 80.0 100.0 81.5 75.2 8.1 35.1 100.0 58.3 56.6 

200 100.0 93.1 81.1 100.0 81.0 76.8 7.9 35.6 100.0 60.2 56.4 

      n 𝐚𝟐= 𝐛𝟐= 0 

50 100.0 6.1 8.0 100.0 7.0 8.3 6.3 8.2 100.0 6.4 7.5 

100 100.0 6.1 6.4 100.0 6.2 7.5 6.5 8.6 100.0 6.6 7.4 

200 100.0 6.3 7.2 100.0 6.4 7.6 6.6 8.4 100.0 6.5 6.6 

N 𝐚𝟏= 𝐛𝟏=𝐚𝟐= 𝐛𝟐 ≠ 0 

50 100.0 95.9 83.1 100.0 81.7 76.8 7.6 36.7 100.0 55.9 56.6 

100 100.0 93.5 83.4 100.0 80.9 76.3 7.4 33.2 100.0 56.1 56.3 

200 100.0 94.1 83.5 100.0 82.3 77.1 8.3 35.8 100.0 55.6 57.2 

 

The series have only autoregressive structure; this means the series has strong 

dependence on its own past. But the error terms of Series X are independent of the terms 

in Y. Therefore, X should not appear in the equation of Y, and if it appears, it indicates 



53 
 

spurious regression. The series are generated by following equation (5.1) and results 

are summarized after estimating equation (5.2).  

In first row of first panel of table (5.1), the results are indicating that when series are 

nonstationary, the autoregressive parameters θ1=1 and θ2=1having no drift and trend 

(a1= b1= 0 =a2= b2= 0) then after employing OLS, we get 66.6%, actual empirical size 

at sample size of 50. So on the basis of 5% nominal size, the probability of spurious 

regression is 61.6%.  In ARDL models, F-test is being used to test the joint significance 

of current and lag values of independent variables, the F-stat value after employing 

ARDL (1, 1) model is found only 6.4% which shows only 1.4% probability of spurious 

regression on the basis of 5% nominal level of significance at sample size of 50. It 

means ARDL (1, 1) reduced the probability of spurious regression from 66.6 to only 

6.4%. For ARDL (2, 2) model actual size is 6.8% when nominal size is 5%, which 

indicates that ARDL (2, 2) is 1.8% which is very minor and negligible at sample size 

of 50.  

In second row of first panel of table (5.1), the results are indicating that by employing 

OLS, we get 78.2% actual empirical size at sample size of 100. So with 5% nominal 

size, the probability of spurious regression is 73.2%. It indicates that as we increase 

sample size from 50 to 100 the probability of spurious regression also increases. But 

the probability of rejection with F-stat employed to ARDL (1, 1) model is only 6.5% 

which shows 1.5% probability of spurious regression. It means ARDL (1, 1) reduced 

the probability of spurious regression from 66.6 to only 6.5%. For ARDL (2, 2) model 

actual size is 6.7% when nominal size is 5%, it indicates 1.7% probability of spurious 

regression.   
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Consider the third row of first panel in table 5.1, the results are indicating that after 

employing OLS, we got 86.3% actual empirical size at sample size of 200. So with 5% 

nominal size, the probability of spurious regression is 81.3%. It again indicates that as 

we increase sample size the probability of spurious also increases. But the probability 

of significance of irrelevant variable using F-stat employed to the zero to zeroth and 

first lag or x variable in ARDL (1, 1) model is only 6.5% which shows only 1.5% 

probability of spurious regression. ARDL (1, 1) model again reduced the probability of 

spurious regression from 86% to 6.5%.  The actual size of ARDL (2, 2) model is 6.8%, 

so on the basis of 5% nominal size the probability of spurious regression after 

employing ARDL (2, 2) is 1.8% which is very minor and negligible at sample size of 

200. 

It shows that the conventional OLS method badly suffer with size problem when series 

are nonstationary without drift and trend and probability of spurious regression 

increases as sample size increases. It supported the conventional argument of Granger 

and Newbold (1974) regarding spurious regression that as we increase sample size in 

case of nonstationary series, the probability of spurious regression also increases. On 

contrary, ARDL model is not having size distortion problem on all sample sizes and 

size distortion not increases as we increase sample size. It clarifies that when series are 

nonstationary without having drift and trend ARDL works better than OLS.  

In first row of second panel of table 5.1, the results are representing that when the 

nonstationary series has θ1=1 and θ2=1 having no drift a1= b1= 0 or having linear trend 

then after running OLS, we come up with 100% actual empirical size and the 

probability of spurious regression is 95% on basis of 5% nominal size at sample size of 

50. The value of F-stat after employing ARDL (1, 1) model is 80.4% which shows 

14.6% size reduction on the basis of 5% nominal size. Hence, the probability of 
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spurious regression after employing ARDL (1, 1) is only 75.4% at sample size of 50. 

The ARDL (2, 2) model is also showing that for 55.9% actual size, the probability of 

spurious regression is 50.9% on the basis of 5% nominal size at sample size of 50. The 

probability of spurious regression with OLS is 100% on all the sample size of panel 2, 

panel 3 and 4. That is why, we cannot show the increasing probability of spurious 

regression with OLS on different sample size. Similar pattern has been found at 

remaining sample size and in other panels of table 5.1.  

There is a special effect which we should consider, in case of nonstationary time series 

the ARDL model works very well but it is unable to reduce the probability of spurious 

regression significantly in presence of trend. Basically both models OLS and ARDL 

are specified because the series are having linear trend but models do not have linear 

trend term in their equations. On the other we can see that the OLS model completely 

failed to tackle this problem but ARDL model works well as compare to OLS. One the 

other, our data generating process in equation 5.1, generates first order autoregressive 

series AR(1) but we used second lag in ARDL (2, 2) model, so in case of over 

specification, ARDL (2, 2) significantly reduced the probability of spurious regression 

as compare to OLS and ARDL (1, 1). It indicates that in case of over specification 

ARDL also works well. These results indicate that the conventional method is suffering 

in size distortion problem, while ARDL models significantly reduce the probability of 

spurious regression in both stationary and nonstationary time series and have negligible 

size distortion. 

5.2 Robustness of Size to Misspecification  

In this analysis, we evaluate the robustness of conventional cointegration procedures 

Engle and Granger, Johansen and Juselius and ARDL model with different 

specifications on the basis of size analysis. The possible three specification cases which 
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have been considered in this analysis are, under, exact and over specified regression. 

The Monte Carlo simulations has been used in this analysis. All the results in table 5.2 

summarized after 100,000 times simulations.  The series have been generated by using 

data generating process in equation 5.1. In this analysis only independent nonstationary 

series are used with autoregressive parameter specification θ1=1 and θ1=1.  

Specification Cases 

  Data Generating Process 

  Drift Drift and Trend 

Test  Equation 
Drift Exactly Specified Under Specified 

Drift and Trend Over Specified Exactly Specified 

 

In our analysis two cases of exact specification have been considered. First, when data 

generating process and test equation both contain drift term second, when data 

generating process and test equation both contain drift  and trend term. The under 

specification means when data generating process contains drift and trend and test 

equation takes on drift and trend terms. The over specification generates, when data 

generating process contains drift and test equation takes drift and trend terms.  

In fact, Regression analysis comprises three major stages, model specification, 

estimation of regression parameters and interpretation of estimated parameters. Thus 

first and crucial stage is the specification of regression equation. The reliability of 

estimated parameters and interpretation mainly rely on the correct specification of 

model. Consequently, misspecification can generate two types of errors. First when we 

include theoretically irrelevant variable(s) in regression equation and second, when we 

exclude theoretically relevant variable from regression equation. These specification 

errors can generate estimation and interpretation problems. Misspecification may 

produce any little problem when the independent variables are uncorrelated or 
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orthogonal to each other. When we include or omit an orthogonal independent variable 

from regression equation, it will affect the standard errors of partial regression 

coefficients. The exclusion of relevant variable has serious issues, it will lead to size 

and power problems. In this analysis we compare the size of conventional cointegration 

procedures and ARDL model and understand which one is working well in these three 

type of specifications. 

In this study size analysis is used to estimate the probability of spurious regression after 

employing conventional cointegration procedures and ARDL model with different 

specification. For this analysis, the independent autoregressive nonstationary time 

series are being generated by using data generating process in equation 5.1, and 

structure of equations can be seen in equation 5.2. All the results in table 5.2 have been 

summarized after 100,000 simulation.  

Table 5.2 shows the size analysis of Engle and Granger, Johansen and Juselius 

cointegration tests and ARDL model with different specifications. In this analysis we 

estimate the size distortion under different specifications cases like, under, exact and 

over specification. Size distortion is a difference between nominal and actual level of 

significance when the time series are independent. At first, we discuss the correct 

(exact) specification cases. The results are following: 
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Table 5.2 Size Analysis under Different Specifications 

Engle Granger (EG) Cointegration Test 

 

  
Data Generating Process 

  Drift  Drift and Trend  

Test  Equation 

Drift 21.3 25.8 

Drift and Trend  15.7 20.1 

Johansen and Juselius (JJ) Cointegration Test 

 

  
Data Generating Process 

  Drift  Drift and Trend  

Test  Equation 

Drift 17 20 

Drift and Trend  8 19.5 

ARDL Model 

 

  
Data Generating Process 

  Drift  Drift and Trend  

Test  Equation 

Drift 6.1 87.7 

Drift and Trend  7 8.4 

 

The first panel of table 5.2 given above describes the results of Engle and Granger 

cointegration test. The size in cases of exact specification is 21.3% in case of only drift 

and 20.1% in case of drift and trend. It shows the probabilities of spurious regression 

in case of both exact specification cases are 16.3% and 15.1% respectively on the basis 

of 5% nominal level of significance. The second panel of table 5.30 shows the results 

of Johansen and Juselius cointegration test with different specifications. The size in 

cases of exact specifications is 17% with only drift and 19.5% with drift and trend. It 
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means the probabilities of spurious regression are 12% and 14.5% with drift and with 

drift and trend respectively. The third panel of table 5.30 illustrates the results of ARDL 

model. In case of correct specification with drift and drift and trend, the size distortions 

(probabilities of spurious regression) are very minor 1.1% and 3.4% respectively. The 

size of ARDL model with correct specifications are 6.1% with drift and 8.4% with drift 

and trend, which is negligible. The order of statistics of spuriousness in case of correct 

specification is given in following equation: 

Probability of spurious regression (EG > 𝐽𝐽 > 𝐴𝑅𝐷𝐿) 

These statistics clearly indicates that conventional cointegration procedures have huge 

probabilities of spurious regression even in correct specifications and ARDL model has 

very minor spurious regression probability which is theoretically negligible. It explains 

that ARDL works very better than conventional cointegration procedures.  

Secondly, we consider the case of under specification. The first panel of table 5.2 which 

is showing the size results of Engle and Granger cointegration test, indicates that the 

size is 25%. It means there is 20% probability of spurious regression. From second 

panel of table 5.30, the size of Johansen and Juselius cointegration test in case of under 

specification is 19.5% showing that probability of spurious regression is 14.5%. The 

third panel of table 5.30 indicates that the probability of spurious regression is 82.7% 

which is too high. The order of statistics of spuriousness in case of under specification 

is given in the following equation: 

Probability of spurious regression (ARDL > 𝐸𝐺 > 𝐽𝐽) 

Thus, these results demonstrate that conventional cointegration procedures have huge 

probabilities of spurious regression even in correct specifications but ARDL model has 
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very high spurious regression probability. It means in case of under specification it 

works worse than other conventional techniques.  

Thirdly, we take the case of over specification. The first panel of table 5.2 which is 

showing the size results of Engle and Granger cointegration test indicates that the size 

is 15.7%. It means that there is 10.7% probability of spurious regression. From second 

panel of table 5.30, the size of Johansen and Juselius cointegration test in case of under 

specification is 8%, showing that probability of spurious regression is 3%. The third 

panel of table 5.2 indicates that the probability of spurious regression is 2%. The order 

of statistics of spuriousness in case of over specification is given in the following 

equation: 

Probability of spurious regression (EG > 𝐽𝐽 > 𝐴𝑅𝐷𝐿) 

Thus, these results validate that conventional cointegration procedure Engle and 

Granger has large probabilities of spurious regression even in correct specifications and 

ARDL model and Johansen and Juselius cointegration test have very minor spurious 

regression probability. But ARDL has less probability of spurious regression as 

compare to Johansen and Juselius cointegration test. It means that in case of under 

specification, the ARDL model works well than other conventional techniques. After 

size analysis we conclude that the ARDL model works better than other conventional 

cointegration techniques except under specification.  

5.3 Size Analysis with Stationary Series 

The non-stationarity is not the only cause of spurious regression in time series. Granger 

et al. (2001) have shown that the possibility of spurious regression in stationary time 

series. In this section we estimate the probability of spurious regression in stationary 

series with OLS and ARDL model. 
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Figure 5.2: Independent Stationary Series without Drift and Trend 

 

Figure 5.2 shows the probability of spurious regression on the basis of t-statistics for coefficients of 

independent variable by using Ordinary Least Square and Autoregressive distributed Lag 

models. The F test is used for joint significance of current and lag values of independent 

variable in ARDL models. 

The figure 5.2 is based on results of first panel of table 5.3 at different values of 

autoregressive parameters θ1 = θ2. Figure 5.2 portrays the comparison of results of OLS 

and ARDL models. When the value of autoregressive parameters θ1 = θ2are 0.8, we got 

37% probability of spurious regression after using OLS. While when we employed 

ARDL model, the probability reduced from 37% to 6.1% after ARDL (1, 1) and 6.5% 

after ARDL (2, 2). When the values of autoregressive parameters  θ1 = θ2are 0.6 after 

using OLS, we got 17.2 probability of spurious regression but ARDL (1, 1) reduced 

this probability from 17.2% to just 6%, and ARDL (2, 2) reduced this probability from 

17.2% to just 6.3%. It shows that the conventional method OLS can generate spurious 

regression even in case of stationary series and ARDL model has no size distortion. 

Similar, fashion has been found on other two values of autoregressive parameters θ1 = 

θ2. It means that in case of stationary series ARDL works very well as compare to 

conventional method. The detail results are given in following table 5.3: 
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Table 5.3: Probability of Spurious Regression in Stationary with OLS and ARDL 

Models 

 OLS ARDL (1, 1) ARDL (2, 2) 

 Xt xt xt-1 yt-1 F-stat Xt xt-1 xt-2 yt-1 yt-2 F-stat 

θ1= θ2 𝐚𝟏= 𝐛𝟏= 0 = 𝐚𝟐= 𝐛𝟐= 0 

0.8 32.9 6.2 6.2 99.7 6.1 7.1 6.2 7.1 99.6 7.2 6.5 

0.6 17.2 6.0 6.0 95.8 6.0 7.0 6.3 6.9 94.9 6.7 6.3 

0.4 11.5 5.8 5.9 95.9 5.7 6.8 6.4 6.8 68.3 6.8 6.4 

0.2 9.1 5.8 5.9 21.1 5.6 6.8 6.7 6.9 22.5 6.7 6.5 

 𝐚𝟏= 𝐛𝟏= 0 

0.8 100.0 16.0 6.5 100.0 34.6 28.3 19.6 29.1 65.2 15.2 23.6 

0.6 100.0 16.9 17.1 100.0 25.4 15.1 7.5 15.1 99.4 7.7 22.4 

0.4 100.0 29.3 30.5 99.0 13.8 21.1 11.1 21.8 93.2 10.8 18.5 

0.2 100.0 47.1 49.6 90.2 11.4 28.5 19.7 29.1 65.1 15.2 17.7 

 𝐚𝟐= 𝐛𝟐= 0 

0.8 100.0 6.2 6.6 100.0 6.1 7.0 6.1 7.6 99.9 6.5 7.1 

0.6 90.0 6.0 6.2 99.4 6.1 7.0 6.2 7.0 95.6 6.4 6.8 

0.4 47.8 5.9 6.0 80.8 5.9 6.7 6.4 7.1 68.3 6.8 6.4 

0.2 47.9 6.0 6.0 25.2 5.6 6.7 6.7 6.8 22.3 6.9 6.4 

 𝐚𝟏= 𝐛𝟏=𝐚𝟐= 𝐛𝟐 ≠ 0 

0.8 100.0 11.5 8.4 100.0 38.7 11.8 6.4 9.2 100.0 6.1 27.7 

0.6 100.0 31.1 8.5 99.9 24.9 22.3 8.5 8.8 99.5 5.5 19.6 

0.4 100.0 49.9 17.1 98.4 19.9 28.8 13.5 13.2 95.1 6.3 16.4 

0.2 100.0 67.5 36.3 86.1 9.20 35.2 24.2 21.0 71.4 9.7 9.1 

 

The series have autoregressive structure; this means the series has strong dependence 

on its own past. But the error terms of Series X are independent of the error terms in Y. 

Therefore, X should not appear in the equation of Y, and if it appears, it indicates 

spurious regression. The series are generated by following equation 5.1 and results are 

summarized after estimating equation 5.2.  
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In first row of first panel of table 5.3, the results are indicating that when series are 

stationary, the autoregressive parameters θ1= 0.8 and θ2= 0.8 having no drift and trend, 

a1= b1= 0 =a2= b2= 0, then after employing OLS we got 32.9%actual empirical size 

with 5% nominal size. So, the probability of spurious regression is 27.9%. On the other 

hand when we used ARDL (1, 1), the probability of spurious regression reduced from 

27.9% to 1.1%, because the F-stat value of ARDL (1, 1) is only 6.1%. The ARDL (2, 

2) model F-stat value is 6.5% which shows a huge reduction in probability of spurious 

regression from 27.9% to 1.5%. 

In second row of first panel of table 5.3, when series are stationary θ1= 0.6 and θ2= 0.6 

and having no drift and trend a1= b1= 0 =a2= b2= 0, then OLS shows 17.2%actual 

empirical size with 5% nominal size. So, the probability of spurious regression is 

12.2%. On the other hand when we used ARDL (1, 1) the probability of spurious 

regression reduced from 12.2% to 1%. The ARDL (2, 2) model F-stat values are also 

showing a huge reduction in probability of spurious regression from 27.9% to 1.3%. 

It shows that the conventional OLS method badly suffers in size problem even the series 

are stationary with no drift and trend. On contrary, ARDL model is not having size 

distortion problem in both cases. It indicates that when series are stationary without 

having drift and trend, ARDL works better than OLS and significantly reduce the 

probability of spurious regression. Similar pattern has been found when we changed the 

values of autoregressive parameters θ1 and θ2 from 0.6 to 0.4 and so on.  

In first row of second panel of table 5.3, the results are indicating that the stationary 

series, θ1=0.8 and θ2=0.8 having no drift or having trend a1= b1= 0 then after running 

OLS, we came up with 100% actual empirical size and the probability of spurious 

regression is 95% on basis of 5% nominal size. The F-stat value after employing ARDL 
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(1, 1) model is showing only 34.6% actual size which shows only 29.6% size distortion 

on the basis of 5% nominal size. Hence, the probability of spurious regression after 

employing ARDL (1, 1) is only 29.6%. The ARDL (2, 2) model is also showing 23.6% 

actual size, the probability of spurious regression is 18.6% on the basis of 5% nominal 

size.  

The second row of second panel of table 5.3, is showing that when we regressed 

stationary series, θ1= 0.6 and θ2= 0.6 with no drift a1= b1= 0, the OLS actual empirical 

size is 100%. On the basis of 5% nominal size, the probability of spurious regression is 

95%. On contrary, when we used ARDL (1, 1) the actual empirical size is 25.4% which 

shows the probability of spurious regression is only 20.4% at 5% nominal size. When 

we employed ARDL (2, 2) we came with 22.4% actual empirical size and 17.4% 

probability of spurious regression. Same fashion has been found on other values of 

autoregressive parameters θ1 and θ2 like, 0.4 and so on.  

There is a special effect which we should consider, In case of stationary time series the 

ARDL model works very well but it becomes unable to reduce the probability of 

spurious regression significantly in presence of trend. Basically both models OLS and 

ARDL are under specification because the series are having linear trend but models do 

not have linear trend term in their equations. On the other hand, we can see that the 

OLS model completely failed to tackle this problem but ARDL model works well as 

compare to OLS. One thing which is also very important, our data generating process 

in equation 5.1, generates first order autoregressive series AR(1) but we used second 

lag in ARDL (2, 2) model, so in case of over specification ARDL (2, 2) significantly 

reduced the probability of spurious regression as compare to OLS and ARDL (1, 1). It 

indicates that in case of over specification ARDL works well.  
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Similar fashion has been found in other panels of table 5.3. However, we can see that 

as we decrease the value of autoregressive parameters θ1 and θ2 like, 0.8, 0.6, and so 

on, there is decrease in lag dependency which reduces the probability of spurious 

regression. But when the time series contains linear trend, conventional method 

completely fails to reduce probability of spurious regression at all values of 

autoregressive correlation.  

These results indicate that the conventional method is suffering in size distortion 

problem, while ARDL models significantly reduce the probability of spurious 

regression in stationary time series and have negligible size distortion.  
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CHAPTER 6  

POWER ANALYSIS 

The main objective of this study is to evaluate the performance of ARDL model to 

differentiate between genuine and spurious regression. If ARDL is actually becomes 

able to differentiate, then it would be the feature of ARDL. 

Suppose we have set of dependent time series with mutual relationship and we test the 

relationship using ARDL model, it should be able to find that there is a relationship. 

More technically suppose Xt and Yt are generated in such a way that either Xt is used 

in construction of Yt or vice versa, and we estimate Xt = α1Xt−1 + β0Yt + β1Yt−1 + εt 

and we test the hypothesesH0(1): β0 = 0,H0(2): β1 = 0 and H0(3): (β0, β1) = 0. 

Since all three hypotheses are not true, so they should be rejected. 

Power analysis is executed to evaluate the probability of rejection the null hypothesis, 

when the alternative hypothesis is true. As the statistical power of test increases, the 

probability of type II error is decreased. It can be expressed in following way: 

Power = Prob (reject H0| whenH1 is true) 

In this study, we use power analysis to quantify the power of conventional method i.e., 

OLS and ARDL model with different specifications in different scenarios. The Monte 

Carlo simulations have been used in this analysis. All the results in the tables given 

below have been summarized after 100,000 times simulations.  

Suppose, two dependent series x and y are being generated by using given data in 

equation 6.1, after that we regress y on x, if the regression results are significant, it 

reflects the power of regression model. All the results in tables from 6.1 to 6.28 

composed after 100,000 simulation.  
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The data generating process is given in equation 6.1: 

[
xt

yt
] = [

θ1 θ12

θ21 θ2
] [

xt−1

yt−1
] + [

a1 a2

b1 b2
] [

1
t
] + [

εxt

εyt
] [

εxt

εyt
] ~N ([

0
0
] , [

1 ρ
ρ 1

]) (6.1) 

We can rewrite it as for simplification of notation 

Xt = AXt−1 + Bd + εtεt~N(0, Σ)   (6.2) 

Three types of dependent series are being generated by using data generating process 

in equation 6.1. 

i. Lag dependence between series, 

ii. Contemporaneous and lag dependence between series, 

iii. Contemporaneous dependence between series. 

This data generating process can generate two dependent autoregressive stationary and 

non-stationary series.  

The lag dependent series can be generated, if the cross correlation parameters found to 

be θ21 ≠ 0 and θ12 ≠ and ρ = 0. But in our analysis we are regressing y on x, that is 

why for the problem of singular matrix we put θ12= 0. It means y is a function of its 

own and lag value of x. The 𝜌 = 0 implies that the error terms added to each series 

have no contemporaneous correlation. Therefore x and y are serially dependent but have 

no contemporaneous dependence on each other.  

The contemporaneous and lag dependent series can be generated, if the cross correlation 

parameters become θ21 ≠ 0 and θ12 ≠ 0 and ρ ≠ 0. But in our analysis, we are 

regressing y on x and that is why for the problem of singular matrix, we put θ12= 0. It 

means y is a function of its own and lag value of x. The ρ ≠ 0 implies that the error 
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terms added to each series have contemporaneous correlation. Therefore x and y are 

serially and contemporaneously dependent on each other. 

The contemporaneous dependent series can be generated, if the cross correlation 

parameters become θ21 = 0 and θ12 = 0 and ρ ≠ 0. The ρ ≠ 0 implies that the error 

terms added to each series have contemporaneous correlation. Therefore x and y are not 

serially but contemporaneously dependent on each other. 

6.1  Power Analysis of Lag Dependent Series 

The lag dependent series can be generated, if the cross correlation parameters are found 

to be θ21 ≠ 0 and θ12 ≠ and ρ = 0. But in our analysis, we are regressing x on y and 

that is why for the problem of singular matrix we put θ12= 0. After this restriction the 

structure of equations are given as follows: 

xt = a + θ1xt−1 + εxt (6.3) 

yt = a + θ2yt−1.
+ θ21xt−1 + εyt (6.4) 

The series are non-stationary, if the own lag value parameters are θ1= 1 and θ2= 0.8, 

and the series are stationary, if the own lag value parameters are θ1< 1 and θ2< 1. When 

the matrix B = 0, then it means series are without drift and trend. If a1= b1= 0 in matrix 

B, then the series are without drift or with linear trend. When a2= b2= 0 in matrix B 

then the series are with drift or without linear trend. When a1= b1= a2= b2= 1 in matrix 

B, then the series are with drift and trend terms. When the ρ = 0, it means the error of 

x series has no relation with error of y series and when ρ ≠ 0, it indicates that the error 

of x series correlated with error of y series which shows that there is contemporaneous 

dependence between the series. In this experiment, we used dependent series with 
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different scenarios and with different values of parameters which are given in the 

following tables: 

Table 6.1: Power Analysis of Lag Dependent Series without drift and trend3 

 OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 F-stat xt xt-1 xt-2 yt-1 yt-2 F-stat 

θ1=θ2 θ21= 0.8 

1 89.9 95.9 6.7 100.0 93.9 7.0 96.3 7.3 100.0 7.8 87.6 

0.8 82.1 91.5 6.0 100.0 85.6 6.9 98.2 7.6 100.0 6.6 90.4 

0.6 67.5 48.8 6.0 100.0 56.4 6.9 99.1 7.2 96.2 6.4 96.3 

0.4 37.3 18.4 5.9 92.6 19.9 6.7 99.6 7.0 68.4 6.5 90.5 

0.2 12.4 8.4 5.9 36.4 11.3 6.9 99.8 6.7 22.0 6.7 90.3 

 θ21= 0.6 

1 83.2 86.5 6.2 100.0 84.3 6.8 83.3 7.1 100.0 7.6 70.4 

0.8 77.2 68.0 6.1 100.0 60.2 6.9 88.9 7.7 99.9 6.5 82.7 

0.6 58.5 21.0 5.9 99.7 20.7 6.7 92.8 7.3 95.9 6.5 88.6 

0.4 29.9 9.4 6.0 86.3 10.6 6.8 95.1 6.9 68.3 6.7 87.4 

0.2 10.8 6.6 5.8 29.6 6.8 6.6 96.6 6.8 22.2 6.6 86.4 

 θ21= 0.4 

1 81.8 67.1 6.1 100.0 74.6 6.8 52.4 7.4 100.0 7.6 67.3 

0.8 68.1 21.8 6.1 100.0 30.6 7.0 59.7 7.8 99.9 6.4 53.4 

0.6 44.8 8.5 6.0 98.9 21.4 7.0 66.1 7.1 95.6 6.7 60.6 

0.4 21.3 6.7 5.9 78.1 11.9 6.9 71.7 6.8 68.1 6.7 63.5 

0.2 8.8 6.1 6.0 25.1 7.2 6.8 75.0 6.8 22.2 6.7 63.9 

 θ21= 0.2 

1 80.5 19.8 5.2 100.0 27.6 7.1 18.5 7.4 100.0 7.4 12.4 

0.8 50.0 7.0 6.2 99.9 9.5 7.0 21.1 7.3 99.7 6.6 23.7 

0.6 27.8 6.3 5.9 97.0 7.5 6.8 24.4 6.9 95.2 6.7 23.8 

0.4 13.5 6.3 5.9 71.7 6.4 6.8 27.0 7.0 67.8 6.8 25.0 

0.2 8.8 6.1 5.8 22.4 6.1 6.8 29.0 6.8 22.3 6.8 25.9 
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Table 6.2: Power Analysis of Lag Dependent Series without drift 

 OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 xt xt-1 xt-2 yt-1 yt-2 

θ1= θ2 θ21= 0.8 

1 100.0 90.9 31.0 100.0 48.1 93.0 65.0 100.0 24.6 

0.8 100.0 86.8 5.6 100.0 18.1 97.8 7.4 100.0 9.6 

0.6 100.0 82.7 5.7 100.0 13.5 99.2 6.8 99.4 7.1 

0.4 100.0 33.1 23.3 100.0 15.1 99.7 6.6 89.6 16.8 

0.2 100.0 8.8 53.5 99.5 20.1 99.9 6.9 53.8 27.7 

 θ21= 0.6 

1 100.0 84.1 26.2 100.0 48.4 75.9 63.8 100.0 24.8 

0.8 100.0 82.1 27.4 100.0 18.2 88.6 8.1 100.0 10.1 

0.6 100.0 42.9 6.7 100.0 13.2 93.8 6.9 99.4 7.5 

0.4 100.0 10.7 27.6 100.0 15.5 97.1 7.3 90.5 17.7 

0.2 100.0 6.6 56.8 99.0 21.2 99.0 8.2 55.0 27.1 

 θ21= 0.4 

1 100.0 76.1 15.1 100.0 48.8 45.5 59.3 100.0 24.8 

0.8 100.00 67.72 28.82 100.00 19.16 62.36 8.52 99.99 11.14 

0.6 100.00 10.32 9.61 100.00 12.92 71.86 7.50 99.44 8.62 

0.4 100.00 6.47 31.68 99.97 16.02 81.86 8.51 91.50 17.40 

0.2 100.00 15.86 58.24 97.83 22.56 90.95 10.91 57.72 24.92 

 θ21= 0.2 

1 100.0 21.9 10.2 100.0 48.4 17.1 49.7 100.0 25.2 

0.8 100.0 9.4 26.3 100.0 20.2 26.1 8.6 100.0 13.2 

0.6 100.0 7.7 14.2 100.0 13.6 31.5 9.4 99.5 8.9 

0.4 100.0 17.6 33.7 99.8 18.1 43.5 12.9 92.5 15.1 

0.2 100.0 34.3 56.4 95.4 24.9 60.7 17.1 61.2 20.8 
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Table 6.3: Power Analysis of Lag Dependent Series with drift 

 OLS ARDL (1, 1) ARDL (2, 2) 

 xt Xt xt-1 yt-1 xt xt-1 xt-2 y t-1 yt-2 

θ1=θ2 θ21= 0.8 

1 92.2 94.3 7.7 100.0 6.8 96.2 7.3 100.0 7.8 

0.8 96.7 96.7 6.0 100.0 6.8 98.1 7.7 100.0 7.1 

0.6 82.0 53.2 5.9 100.0 7.0 99.1 7.4 96.5 0.0 

0.4 46.3 16.7 5.8 94.8 6.9 99.6 7.0 68.0 6.6 

0.2 14.8 7.1 5.9 37.9 6.8 99.8 6.8 22.2 6.8 

 θ21= 0.6 

1 88.8 89.0 6.9 100.0 6.9 83.2 7.2 100.0 7.7 

0.8 95.7 76.3 6.0 100.0 6.9 88.6 7.6 100.0 6.8 

0.6 74.6 20.7 5.9 100.0 6.8 92.8 7.3 96.3 6.4 

0.4 38.2 8.0 6.0 89.0 6.9 95.3 7.0 68.4 6.5 

0.2 12.7 5.8 5.9 30.9 7.0 96.5 6.9 22.0 6.9 

 θ21= 0.4 

1 88.1 57.6 4.6 100.0 6.9 52.5 7.0 100.0 7.6 

0.8 93.0 28.8 6.1 100.0 6.7 59.6 7.5 100.0 6.7 

0.6 61.9 6.7 6.0 99.6 6.7 66.6 7.2 95.8 6.5 

0.4 27.4 5.5 5.9 81.6 6.8 71.7 6.9 68.4 6.7 

0.2 9.9 5.7 5.7 26.0 6.6 75.2 6.8 22.5 6.7 

 θ21= 0.2 

1 83.2 11.9 2.7 100.0 6.9 18.6 7.0 100.0 7.6 

0.8 84.4 5.7 6.0 100.0 15.8 25.3 9.5 100.0 9.4 

0.6 39.6 5.8 5.9 98.4 12.5 30.7 9.3 99.5 10.4 

0.4 16.8 5.7 5.8 74.1 18.7 44.0 11.5 92.9 14.1 

0.2 7.7 5.8 5.9 22.7 25.8 61.5 15.8 62.7 19.4 
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Table 6.4: Power Analysis of Lag Dependent Series with drift and trend 

 OLS ARDL (1, 1) ARDL (2, 2) 

 xt Xt xt-1 yt-1 Xt xt-1 xt-2 yt-1 yt-2 

θ1= θ2 θ21= 0.8 

1 97.2 95.9 7.1 100.0 44.0 93.1 57.6 100.0 22.0 

0.8 100.0 99.9 17.9 100.0 15.0 97.8 8.0 100.0 8.0 

0.6 100.0 84.2 7.6 100.0 11.2 99.2 6.8 99.2 9.3 

0.4 100.0 32.6 23.3 100.0 14.9 99.8 6.7 90.0 17.1 

0.2 100.0 7.8 51.6 99.5 21.2 99.9 6.6 55.6 25.8 

 θ21= 0.6 

1 97.2 81.5 6.9 100.0 44.4 76.3 56.7 100.0 22.3 

0.8 100.0 97.6 17.9 100.0 15.2 88.5 8.4 100.0 8.6 

0.6 100.0 45.3 9.9 100.0 11.2 93.8 7.0 99.4 10.1 

0.4 100.0 10.4 27.9 100.0 15.5 97.1 6.8 91.0 17.5 

0.2 100.0 6.9 54.7 98.9 22.0 99.1 7.5 56.9 25.2 

 θ21= 0.4 

1 96.1 67.1 6.1 100.0 44.6 45.6 52.4 100.0 22.3 

0.8 100.0 73.7 17.6 100.0 15.2 62.5 9.3 100.0 8.8 

0.6 100.0 11.3 13.3 100.0 11.4 70.6 7.5 99.5 11.0 

0.4 100.0 6.8 31.2 100.0 16.7 81.9 8.2 92.0 16.8 

0.2 100.0 17.5 56.2 97.7 23.6 91.4 10.1 59.4 23.0 

 θ21= 0.2 

1 90.2 19.8 4.6 100.0 44.8 16.8 43.5 100.0 22.4 

0.8 100.0 13.0 13.6 100.0 15.8 25.3 9.5 100.0 9.4 

0.6 100.0 7.6 17.2 100.0 12.5 30.7 9.3 99.5 10.4 

0.4 100.0 19.0 32.4 99.8 18.7 44.0 11.5 92.9 14.1 

0.2 100.0 37.6 54.1 95.1 25.8 61.5 15.8 62.7 19.4 
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In first row of first panel of table 6.1, the results are indicating that when series are 

nonstationary, θ1=1 and θ2=0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0 and 

θ21=0.8, then the OLS power is 89.9%, which shows 5.1% power loss on the basis of 

5% nominal size. In case of ARDL models, F-test are being used to test the joint 

significance of current and lag values of independent variable. The F-stat value after 

employing ARDL (1, 1) model is indicating that the power is ARDL (1, 1) model is 

93.9% which shows 1.1% power loss at 5% nominal size. The power of ARDL (2, 2) 

is 87.6% and loss of power is 7.4 at 5% nominal size.  

In second row of first panel of table 6.1, the results are representing that when series 

are  stationary, θ1= 0.8 and θ2 = 0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0 

and θ21=0.8, then the value of OLS power is 82.1%, which shows 12.9% power loss 

on the basis of 5% nominal size. In case of ARDL models F-test are being used to test 

the joint significance of current and lag values of independent variables. The F-stat 

value after employing ARDL (1, 1) model is indicating that the power ofARDL (1, 1) 

model is 85.6% which shows 14.4% power loss at 5% nominal size. The power of 

ARDL (2, 2) is 90.4% and loss of power is 4.6 at 5% nominal size. 

In first row of second panel of table 6.1, the results are indicating that when series are 

nonstationary, θ1=1 and θ2=0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0 and 

θ21=0.6, then the OLS power is 83.2%, which shows 11.8% power loss on the basis of 

5% nominal size. In case of ARDL models F-test are being used to test the joint 

significance of current and lag values of independent variables. The F-stat value after 

employing ARDL (1, 1) model is indicates that the power of ARDL (1, 1) model is 

84.3% which shows 10.7% power loss at 5% nominal size. The power of ARDL (2, 2) 

is 70.4% and loss of power is 24.6 at 5% nominal size.  
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In second row of second panel of table 6.1, the results are representing that when there 

is stationary series, θ1= 0.8 and θ2 = 0.8, having no drift and trend, a1= b1= 0 =a2= 

b2= 0 and θ21=0.6, then the OLS power is 77.2%, which shows 17.8% power loss on 

the basis of 5% nominal size. In case of ARDL models F-test are being used to test the 

joint significance of current and lag values of independent variables. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power ofARDL (1, 1) model 

is 60.2% which shows 34.8% power loss at 5% nominal size. The power of ARDL (2, 

2) is 82.7% and loss of power is 12.3% at 5% nominal size. 

It shows that the conventional OLS method badly suffer in power problem when series 

are nonstationary and even they are stationary with no drift and trend. On contrary, 

ARDL model is not showing huge power in both cases. It clarifies that when series are 

stationary or nonstationary without having drift and trend ARDL works better than 

OLS.  

In first row of first panel of table 6.2, the results show that when we regressed 

nonstationary series θ1=1 and θ2=0.8, without drift, a1= b1= 0 and θ21 = 0.8 by using 

OLS, the probability of rejection false null hypothesis (power) is 100%, which 

represents a misleading figure.  As in table 5.1, the OLS has huge size distortion 

problem, specially, when series are with linear trend. That is why, it is showing 100% 

power which does not exist in reality. The F-test is used only in one case for displaying 

the joint significance of independent lag and current value. So, table 6.2, 6.3 and 6.4 

have only t-stat values. After employing ARDL (1, 1) model, the power of current value 

of X is 90.9%. It means that there is only 4.1% power loss.  The reason behind it might 

be we did not include linear trend in ARDL.  If we include linear trend, it may provide 

more power. The figure of lag value of X is showing only 31% power which means 

59% power loss. In ARDL (2, 2) model, the first lag value X showing 93.0% probability 
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of rejecting the false null hypothesis. The powers of current and second lag values of X 

are 48.1% and 65%, and show 46.9% and 30% power loss respectively  

As we know that Y value is determined through lag value of X, but the current value 

are more significant as compare to lag value of X.  The reason is that there is 

multicollinearity effect.  The current and lag values of X variable are collinear that is 

why the effect shifts into current value in ARDL(1, 1) and in first lag value of ARDL 

(2, 2).  

In second row of first panel of table 6.2, the results illustrate that when we regressed 

stationary series θ1=0.8 and θ2=0.8, without drift, a1= b1= 0 and θ21 = 0.8 by using 

OLS, the probability of rejecting false null hypothesis (power) is 100%, which 

represents a misleading figure.  As we observe in table 5.1, the OLS has huge size 

distortion problem, specially, when series are with linear trend. That is why, it is 

showing 100% power which does not exist in reality. After employing ARDL (1, 1) 

model, the power of current value of X is 86.8% which means only 8.6% power loss.  

The reason behind it is that we did not include linear trend in ARDL.  If we include 

linear trend,  it may provide more power. The figure of lag value of X is showing only 

5.6% power which means 89.4% power loss. In ARDL (2, 2) model, the first lag value 

is X showing 97.0% probability of rejection the false null hypothesis. The powers of 

current and second lag values of X are 18.1% and 7.4%, and show 76.9% and 87.6% 

power loss respectively  

Same pattern has been found on other values of θ21 like, 0.6 and so on. On all these 

point ARDL shows better performance as compare to OLS.  

Though in some cases the values of  parameter𝑠    θ1 and θ2, and θ21 and  OLS shows 

more power, yet we cannot consider it because as we have seen in size analysis the OLS 
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suffers badly in size problem and ARDL in all cases has less size problem. That is why, 

we cannot say that OLS has more power. In case without drift or with linear trend, and 

with drift and trend due to under specification, ARDL shows size problem but even in 

these cases OLS has more size distortion as compare to ARDL model.  

There is another special effect which we should consider. In case of stationary and 

nonstationary time series the ARDL model works very well but it becomes unable to 

reduce the probability of spurious regression significantly in presence of trend. 

Basically both models OLS and ARDL are under specified because the series are having 

linear trend but models do not have linear trend term in their equations. On the other 

hand, we can see that the OLS model completely failed to tackle this problem but ARDL 

model works well as compare to OLS in size analysis. One thing which is also very 

important; our data generating process in equation 5.1, generates first order 

autoregressive series AR (1) but we used second lag in ARDL (2, 2) model. Thus in 

case of over specification, ARDL (2, 2) shows more power in case of stationary series 

as compare to ARDL (1, 1) and OLS. It also explores that the ARDL models performs 

better as compare to OLS in under specification and over specification.  

Similarly results in tables 6.3 and 6.4 also show that two scenarios of lag dependent 

series with drift and with drift and trend depict the same fashion. So, the interpretations 

of these cases are approximately alike. The own lag values of Y are highly significant 

in all cases, but one thing which is necessary to consider is that as we reduce the value 

of autoregressive terms, the significance of  lag values also  decreases in case of ARDL 

and not in OLS.  
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6.2 Contemporaneous and Lag Dependence Between Series 

The contemporaneous and lag dependent series are generated from equation 6.1, if the 

cross correlation parameters are θ21 ≠ 0 and θ12 ≠ 0 and ρ ≠ 0. But in our analysis we 

are regressing y on x and that is why for the problem of singular matrix we put θ12= 0, 

see equation 6.3 and 6.4 in this regard. It means y is a function of its own and lag value 

of x. The ρ ≠ 0 implies that the error terms added to each series have contemporaneous 

correlation. Therefore x and y are serially and contemporaneously dependent onto each 

other. In this experiment we summarized the results of serially and contemporaneously 

dependent series with different scenarios by using equation 6.1. The results are given 

in the following equation :  
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Table 1.5: Power Analysis of Contemporaneous and Lag Dependent Series 

without drift and trend with ρ = 1 

 OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 F-stat xt xt-1 xt-2 yt-1 yt-2 F-stat 

 ρ = 1 

θ1= θ2 
θ21= 0.8 

1 71.9 99.6 6.0 100.0 95.3 6.9 96.2 7.4 100.0 7.8 90.2 

0.8 82.2 91.5 6.0 100.0 87.9 6.9 98.2 7.6 100.0 6.6 92.7 

0.6 67.5 48.8 6.0 100.0 47.1 6.9 99.1 7.2 96.2 6.4 94.5 

0.4 37.6 18.4 5.9 92.6 15.2 6.7 99.6 7.0 68.4 6.5 94.7 

0.2 12.6 8.4 5.9 36.4 7.8 6.9 99.8 6.7 22.0 6.7 94.8 

 θ21= 0.6 

1 72.0 95.3 5.9 100.0 93.1 6.9 83.1 7.4 100.0 7.6 79.1 

0.8 77.4 62.0 6.1 100.0 60.5 6.9 88.9 7.7 99.9 6.5 83.9 

0.6 58.7 21.0 5.9 99.7 19.1 6.7 92.8 7.3 95.9 6.5 84.6 

0.4 30.1 9.4 6.0 86.3 8.7 6.8 95.1 6.9 68.3 6.7 89.8 

0.2 10.5 6.6 5.8 29.6 6.1 6.6 96.6 6.8 22.2 6.6 93.2 

 θ21= 0.4 

1 72.7 22.4 6.1 100.0 21.9 7.1 18.5 7.4 100.0 7.3 15.2 

0.8 68.2 21.8 6.1 100.0 17.7 7.0 59.7 7.8 99.9 6.4 47.6 

0.6 44.8 8.5 6.0 98.9 7.2 7.0 66.1 7.1 95.6 6.7 62.1 

0.4 21.3 6.7 5.9 78.1 6.1 6.9 71.7 6.8 68.1 6.7 67.4 

0.2 9.0 6.1 6.0 25.1 6.1 6.8 75.0 6.8 22.2 6.7 68.8 

 θ21= 0.2 

1 73.0 22.7 6.1 100.0 21.8 7.0 18.5 7.5 100.0 7.2 15.1 

0.8 50.1 7.0 6.2 99.9 6.8 7.0 21.1 7.3 99.7 6.6 18.5 

0.6 27.7 6.3 5.9 97.0 6.2 6.8 24.4 6.9 95.2 6.7 18.7 

0.4 13.6 6.3 5.9 71.7 6.2 6.8 27.0 7.0 67.8 6.8 21.0 

0.2 7.3 6.1 5.8 22.4 6.1 6.8 29.0 6.8 22.3 6.8 23.4 

Table 6.6: Power Analysis of Contemporaneous and Lag Dependent Series 

without drift with ρ = 1 
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 OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 xt xt-1 xt-2 yt-1 yt-2 

 𝛒 = 1 

θ1= θ2 θ21= 0.8 

1 100.0 76.2 96.8 100.0 49.1 93.0 65.6 100.0 24.6 

0.8 100.0 82.8 5.6 100.0 19.4 96.1 9.5 100.0 9.6 

0.6 100.0 82.7 5.7 100.0 13.5 99.2 6.8 99.4 7.1 

0.4 100.0 33.1 23.3 100.0 15.1 99.7 6.6 89.6 16.8 

0.2 100.0 8.8 53.5 99.5 20.1 99.9 6.9 53.8 27.7 

 θ21= 0.6 

1 100.0 54.1 96.4 100.0 49.2 76.1 64.2 100.0 24.7 

0.8 100.0 96.7 27.4 100.0 19.7 87.4 9.3 100.0 10.1 

0.6 100.0 42.9 6.7 100.0 13.2 93.8 6.9 99.4 7.5 

0.4 100.0 10.7 27.6 100.0 15.5 97.1 7.3 90.5 17.7 

0.2 100.0 6.6 56.8 99.0 21.2 99.0 8.2 55.0 27.1 

 θ21= 0.4 

1 100.0 40.3 97.1 100.0 48.6 17.1 49.9 100.0 24.9 

0.8 100.0 67.7 28.8 100.0 19.2 62.4 8.5 100.0 11.1 

0.6 100.0 10.3 9.6 100.0 12.9 71.9 7.5 99.4 8.6 

0.4 100.0 6.5 31.7 100.0 16.0 81.9 8.5 91.5 17.4 

0.2 100.0 15.9 58.2 97.8 22.6 91.0 10.9 57.7 24.9 

 θ21= 0.2 

1 100.0 39.9 97.2 100.0 48.9 16.9 49.6 100.0 24.9 

0.8 100.0 9.4 26.3 100.0 20.2 26.1 8.6 100.0 13.2 

0.6 100.0 7.7 14.2 100.0 13.6 31.5 9.4 99.5 8.9 

0.4 100.0 17.6 33.7 99.8 18.1 43.5 12.9 92.5 15.1 

0.2 100.0 34.3 56.4 95.4 24.9 60.7 17.1 61.2 20.8 
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Table 6.7: Power Analysis of Contemporaneous and Lag Dependent Series with 

drift with ρ = 1 

WD OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 xt xt-1 xt-2 yt-1 yt-2 

 𝛒 = 1 

θ1= θ2 
θ21= 0.8 

1 100.0 99.8 5.8 100.0 6.9 96.3 7.4 100.0 7.7 

0.8 96.7 96.7 6.0 100.0 6.8 98.1 7.7 100.0 7.1 

0.6 82.0 53.2 5.9 100.0 7.0 99.1 7.4 96.5 6.6 

0.4 46.4 16.7 5.8 94.8 6.9 99.6 7.0 68.0 6.6 

0.2 14.9 7.1 5.9 37.9 6.8 99.8 6.8 22.2 6.8 

 θ21= 0.6 

1 100.0 96.6 5.9 100.0 6.8 83.4 7.2 100.0 7.7 

0.8 95.8 76.3 6.0 100.0 6.9 88.6 7.6 100.0 6.8 

0.6 74.7 20.7 5.9 100.0 6.8 92.8 7.3 96.3 6.4 

0.4 38.1 8.0 6.0 89.0 6.9 95.3 7.0 68.4 6.5 

0.2 12.5 5.8 5.9 30.9 7.0 96.5 6.9 22.0 6.9 

 θ21= 0.4 

1 100.0 26.1 5.8 100.0 6.8 18.7 7.0 100.0 7.7 

0.8 93.2 28.8 6.1 100.0 6.7 59.6 7.5 100.0 6.7 

0.6 61.8 6.7 6.0 99.6 6.7 66.6 7.2 95.8 6.5 

0.4 27.6 5.5 5.9 81.6 6.8 71.7 6.9 68.4 6.7 

0.2 10.0 5.7 5.7 26.0 6.6 75.2 6.8 22.5 6.7 

 θ21= 0.2 

1 100.0 26.0 5.9 100.0 7.0 18.7 7.1 100.0 7.7 

0.8 84.3 5.7 6.0 100.0 6.9 21.6 7.4 99.9 6.3 

0.6 39.4 5.8 5.9 98.4 6.9 24.3 7.2 95.4 6.7 

0.4 16.7 5.7 5.8 74.1 6.9 26.9 6.7 68.1 6.8 

0.2 7.8 5.8 5.9 22.7 6.9 29.2 7.0 22.4 6.8 
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Table 6.8: Power Analysis of Contemporaneous and Lag Dependent Series with 

drift and trend with ρ = 1 

WDT OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 xt xt-1 xt-2 yt-1 yt-2 

 𝛒 = 1 

θ1= θ2 θ21= 0.8 

1 100.0 82.8 92.2 100.0 44.1 92.9 57.2 100.0 21.9 

0.8 100.0 99.9 17.9 100.0 15.0 97.8 8.0 100.0 8.0 

0.6 100.0 84.2 7.6 100.0 11.2 99.2 6.8 99.2 9.3 

0.4 100.0 32.6 23.3 100.0 14.9 99.8 6.7 90.0 17.1 

0.2 100.0 7.8 51.6 99.5 21.2 99.9 6.6 55.6 25.8 

 θ21= 0.6 

1 100.0 34.1 92.2 100.0 44.3 76.1 56.8 100.0 22.1 

0.8 100.0 97.6 17.9 100.0 15.2 88.5 8.4 100.0 8.6 

0.6 100.0 45.3 9.9 100.0 11.2 93.8 7.0 99.4 10.1 

0.4 100.0 10.4 27.9 100.0 15.5 97.1 6.8 91.0 17.5 

0.2 100.0 6.9 54.7 98.9 22.0 99.1 7.5 56.9 25.2 

 θ21= 0.4 

1 100.0 27.6 93.1 100.0 44.8 16.8 43.6 100.0 22.6 

0.8 100.0 73.7 17.6 100.0 15.2 62.5 9.3 100.0 8.8 

0.6 100.0 11.3 13.3 100.0 11.4 70.6 7.5 99.5 11.0 

0.4 100.0 6.8 31.2 100.0 16.7 81.9 8.2 92.0 16.8 

0.2 100.0 17.5 56.2 97.7 23.6 91.4 10.1 59.4 23.0 

 θ21= 0.2 

1 100.0 27.8 93.1 100.0 44.9 17.0 43.6 100.0 22.3 

0.8 100.0 13.0 13.6 100.0 15.8 25.3 9.5 100.0 9.4 

0.6 100.0 7.6 17.2 100.0 12.5 30.7 9.3 99.5 10.4 

0.4 100.0 19.0 32.4 99.8 18.7 44.0 11.5 92.9 14.1 

0.2 100.0 37.6 54.1 95.1 25.8 61.5 15.8 62.7 19.4 
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In first row of first panel of table 6.5, the results are indicating that when series are 

nonstationary, θ1=1 and θ2=0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.8 and covariance ρ=1, then the OLS power is 71.9%, which shows 23.1% power 

loss on the basis of 5% nominal size. In case of ARDL models F-test are being used to 

test the joint significance of current and lag values of independent variable. The F-stat 

value after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) 

model is 95.3% which shows 0.0% power loss at 5% nominal size. The power of ARDL 

(2, 2) is 90.2% and loss of power is 4.8 at 5% nominal size.  

In second row of first panel of table 6.5, the results are representing that when series 

are stationary, θ1= 0.8 and θ2 = 0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.8 and ρ= 1, then the OLS power is 82.2%, which shows 12.8% power loss on 

the basis of 5% nominal size. In case of ARDL models, F-test is being used to test the 

joint significance of current and lag values of independent variable. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model 

is 87.9% which shows 6.9% power loss at 5% nominal size. The power of ARDL (2, 2) 

is 92.7% and loss of power is 2.3% at 5% nominal size. 

In first row of second panel of table 6.5, the results are indicating that when series are 

nonstationary, θ1=1 and θ2=0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.6 and ρ= 1, then the OLS power is 72.2%, which shows 22.8% power loss on 

the basis of 5% nominal size. In case of ARDL models F-test are being used to test the 

joint significance of current and lag values of independent variable. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power ofARDL (1, 1) model 

is 93.1% which shows 1.9% power loss at 5% nominal size. The power of ARDL (2, 2) 

is 79.1% and loss of power is 15.9 at 5% nominal size.  
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In second row of second panel of table 6.5, the results are representing that when series 

are stationary, θ1= 0.8 and θ2 = 0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.6 and ρ= 1, then the OLS power is 77.4%, which shows 17.6% power loss on 

the basis of 5% nominal size. In case of ARDL models F-test are being used to test the 

joint significance of current and lag values of independent variable. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model 

is 60.5% which shows 34.5% power loss at 5% nominal size. The power of ARDL (2, 

2) is 83.9% and loss of power is 11.1% at 5% nominal size. 

It shows that the conventional OLS method badly suffers in power problem when series 

are nonstationary even they are stationary with no drift and trend. On contrary, ARDL 

model is not showing huge power in both cases. It clarifies that when series are 

stationary or nonstationary without having drift and trend, ARDL works better than 

OLS.  

In first row of first panel of table 6.6, the results show that when we regressed 

nonstationary series θ1=1 and θ2=0.8, without drift, a1= b1= 0, θ21 = 0.8 and ρ= 1 by 

using OLS, the probability of rejection of false null hypothesis (power) is 100%, which 

represents a misleading figure.  Because as seen above in table 5.1, the OLS has huge 

size distortion problem, specially, when series are with linear trend. That is why, it is 

showing 100% power which does not exist in reality. The F-test used only in one case 

for displaying the joint significance of independent lag and current value. So, table 6.6, 

5.8 and 5.9 have only t-stat values. After employing ARDL (1, 1) model the power of 

current value of x is 76.2%, which shows only 18.8% power loss. The reason behind it 

is that we did not include linear trend in ARDL, if we include linear trend in it. The 

numeral of lag value of x is showing only 96.8% power which means 0.0% power loss. 

In ARDL (2, 2) model the first lag value of x showing 93.0% probability of rejection 
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the false null hypothesis. The powers of current and second lag values of x are 49.1% 

and 65.6%, which show 45.9% and 29.4% power loss respectively  

As we know that y value is determined through lag value of x, but the first lag value are 

more significant as compare to current value of x.  The reason is that there is 

multicollinearity effect, the current and lag values of x variable are collinear that is why 

the effect shifts into lag value in ARDL(1, 1) and in lag value in ARDL (2, 2).  

In second row of first panel of table 6.6, the results illustrate that when we regressed 

stationary series θ1=0.8 and θ2=0.8, without drift, a1= b1= 0, θ21 = 0.8 and ρ= 1 by 

using OLS, the probability of rejection of false null hypothesis (power) is 100%, which 

represents a misleading figure. Because as we see above in table 5.1, the OLS has huge 

size distortion problem, specially, when series are with linear trend. That is why, it is 

showing 100% power which does not exist in reality. After employing ARDL (1, 1) 

model, the power of current value of x is 82.2%, which means that there is only 12.8% 

power loss, the reason behind it is that we did not include linear trend in ARDL. If we 

include linear trend, it may provide more power. The figure of lag value of x is showing 

only 5.6% power which means 89.4% power loss. In ARDL (2, 2) model, the first lag 

value of x is showing 96.1% probability of rejection of the false null hypothesis. The 

powers of current and second lag values of x are 19.4% and 96.1%, which show 75.6% 

and 0.0% power loss respectively  

Same pattern has been found on other values of θ21 like, 0.6 and so on. On all these 

points ARDL shows better performance as compare to OLS.  

On some values of parameter𝑠θ1 and θ2, and θ21 and OLS shows more power but we 

cannot consider it because as we have seen in size analysis the OLS suffers  badly in 

size problem while ARDL in all cases has less size problem. In case without drift or 
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with linear trend, and with drift and trend due to under specification, ARDL shows size 

problem but even in these cases OLS has more size distortion as compare to ARDL 

model.  

There is another special effect which we should consider, In case of stationary and 

nonstationary time series the ARDL model works very well but it becomes unable to 

reduce the probability of spurious regression significantly in presence of trend. 

Basically both models OLS and ARDL are under specified because the series are having 

linear trend but models do not have linear trend term in their equations. On the other 

hand, we can see that the OLS model completely failed to tackle this problem but ARDL 

model works well as compare to OLS in size analysis. There is an important point, our 

data generating process in equation 6.1, generates first order autoregressive series 

AR(1) but we used second lag in ARDL (2, 2) model, so in case of over specification 

ARDL (2, 2) shows more power in case of stationary series as compare to ARDL (1, 1) 

and OLS. It also explores that the ARDL models performs better as compare to OLS in 

under specification and over specification.  

Similarly table 6.7 and 6.8 also display the results of next two scenarios of lag and 

contemporaneous dependent series with drift and with drift and trend. So the 

interpretations of these cases are approximately alike, that is why we are interpreting 

them here. The lag values of y itself are highly significant in all cases, but one thing 

which is necessary is that as we reduce the value of autoregressive terms, the lag 

significance values also decreases in case of ARDL not in OLS.  
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Table 6.9: Power Analysis of Contemporaneous and Lag Dependent Series 

without drift and trend with ρ = 0.8 

 OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 F-stat xt xt-1 xt-2 yt-1 yt-2 F-stat 

 𝛒 = 0.8 

θ1= θ2 θ21= 0.8 

1 71.5 99.6 5.9 100.0 91.2 6.9 96.2 7.4 100.0 7.8 87.3 

0.8 80.1 91.5 6.0 100.0 80.9 6.9 98.2 7.6 100.0 6.6 75.4 

0.6 59.5 48.8 6.0 100.0 49.7 6.9 99.1 7.2 96.2 6.4 40.8 

0.4 37.3 18.4 5.9 92.6 21.5 6.7 99.6 7.0 68.4 6.5 23.7 

0.2 12.4 8.4 5.9 36.4 11.9 6.9 99.8 6.7 22.0 6.7 20.8 

 θ21= 0.6 

1 73.1 95.1 5.9 100.0 90.3 6.9 83.2 7.3 100.0 7.8 78.1 

0.8 77.3 62.0 6.1 100.0 53.4 6.9 88.9 7.7 99.9 6.5 45.7 

0.6 58.5 41.0 5.9 99.7 30.6 6.7 92.8 7.3 95.9 6.5 30.0 

0.4 29.9 9.4 6.0 86.3 10.9 6.8 95.1 6.9 68.3 6.7 16.4 

0.2 10.8 6.6 5.8 29.6 8.6 6.6 96.6 6.8 22.2 6.6 12.4 

 θ21= 0.4 

1 73.0 22.6 6.0 100.0 29.9 7.1 18.7 7.4 100.0 7.3 23.0 

0.8 68.1 21.8 6.1 100.0 25.8 7.0 59.7 7.8 99.9 6.4 20.9 

0.6 44.8 8.5 6.0 98.9 14.9 7.0 66.1 7.1 95.6 6.7 19.0 

0.4 21.3 6.7 5.9 78.1 8.7 6.9 71.7 6.8 68.1 6.7 18.3 

0.2 8.8 6.1 6.0 25.1 5.8 6.8 75.0 6.8 22.2 6.7 16.1 

 θ21= 0.2 

1 72.8 22.4 6.0 100.0 25.4 6.9 18.6 7.4 100.0 7.2 18.3 

0.8 50.0 7.0 6.2 99.9 10.4 7.0 21.1 7.3 99.7 6.6 11.3 

0.6 27.8 6.3 5.9 97.0 8.4 6.8 24.4 6.9 95.2 6.7 10.5 

0.4 13.5 6.3 5.9 71.7 6.2 6.8 27.0 7.0 67.8 6.8 9.0 

0.2 8.8 6.1 5.8 22.4 6.1 6.8 29.0 6.8 22.3 6.8 9.6 
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Table 6.10: Power Analysis of Contemporaneous and Lag Dependent Series 

without drift with ρ = 0.8 

 OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 xt xt-1 xt-2 yt-1 yt-2 

 𝛒 = 0.8 

θ1= θ2 
θ21= 0.8 

1 100.0 77.0 95.7 100.0 43.9 91.0 62.6 100.0 24.7 

0.8 100.0 81.3 9.2 100.0 17.8 95.8 8.5 100.0 9.6 

0.6 100.0 82.7 5.7 100.0 13.5 99.2 6.8 99.4 7.1 

0.4 100.0 33.1 23.3 100.0 15.1 99.7 6.6 89.6 16.8 

0.2 100.0 8.8 53.5 99.5 20.1 99.9 6.9 53.8 27.7 

 θ21= 0.6 

1 100.0 50.1 94.6 100.0 48.4 76.1 64.5 100.0 24.8 

0.8 100.0 72.4 26.1 100.0 16.3 83.5 8.3 100.0 10.1 

0.6 100.0 42.9 6.7 100.0 13.2 93.8 6.9 99.4 7.5 

0.4 100.0 10.7 27.6 100.0 15.5 97.1 7.3 90.5 17.7 

0.2 100.0 6.6 56.8 99.0 21.2 99.0 8.2 55.0 27.1 

 θ21= 0.4 

1 100.0 40.3 93.2 100.0 48.2 17.1 49.6 100.0 24.7 

0.8 100.0 67.7 28.8 100.0 19.2 62.4 8.5 100.0 11.1 

0.6 100.0 10.3 9.6 100.0 12.9 71.9 7.5 99.4 8.6 

0.4 100.0 6.5 31.7 100.0 16.0 81.9 8.5 91.5 17.4 

0.2 100.0 15.9 58.2 97.8 22.6 91.0 10.9 57.7 24.9 

 θ21= 0.2 

1 100.0 40.3 91.6 100.0 48.6 17.0 49.8 100.0 24.5 

0.8 100.0 9.4 26.3 100.0 20.2 26.1 8.6 100.0 13.2 

0.6 100.0 7.7 14.2 100.0 13.6 31.5 9.4 99.5 8.9 

0.4 100.0 17.6 33.7 99.8 18.1 43.5 12.9 92.5 15.1 

0.2 100.0 34.3 56.4 95.4 24.9 60.7 17.1 61.2 20.8 
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Table 6.11: Power Analysis of Contemporaneous and Lag Dependent Series with 

drift with ρ = 0.8 

 OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 xt xt-1 xt-2 yt-1 yt-2 

 𝛒 = 0.8 

θ1= θ2 θ21= 0.8 

1 100.0 99.8 6.0 100.0 6.9 96.3 7.3 100.0 7.8 

0.8 96.7 96.7 6.0 100.0 6.8 98.1 7.7 100.0 7.1 

0.6 82.0 53.2 5.9 100.0 7.0 99.1 7.4 96.5 0.0 

0.4 46.3 16.7 5.8 94.8 6.9 99.6 7.0 68.0 6.6 

0.2 14.8 7.1 5.9 37.9 6.8 99.8 6.8 22.2 6.8 

 θ21= 0.6 

1 100.0 96.6 5.9 100.0 6.9 83.1 7.2 100.0 7.9 

0.8 95.7 76.3 6.0 100.0 6.9 88.6 7.6 100.0 6.8 

0.6 74.6 20.7 5.9 100.0 6.8 92.8 7.3 96.3 6.4 

0.4 38.2 8.0 6.0 89.0 6.9 95.3 7.0 68.4 6.5 

0.2 12.7 5.8 5.9 30.9 7.0 96.5 6.9 22.0 6.9 

 θ21= 0.4 

1 100.0 25.8 5.8 100.0 7.0 18.4 6.9 100.0 7.9 

0.8 93.0 28.8 6.1 100.0 6.7 59.6 7.5 100.0 6.7 

0.6 61.9 6.7 6.0 99.6 6.7 66.6 7.2 95.8 6.5 

0.4 27.4 5.5 5.9 81.6 6.8 71.7 6.9 68.4 6.7 

0.2 9.9 5.7 5.7 26.0 6.6 75.2 6.8 22.5 6.7 

 θ21= 0.2 

1 100.0 26.0 5.9 100.0 6.7 18.4 6.9 100.0 7.7 

0.8 84.4 5.7 6.0 100.0 15.8 25.3 9.5 100.0 9.4 

0.6 39.6 5.8 5.9 98.4 12.5 30.7 9.3 99.5 10.4 

0.4 16.8 5.7 5.8 74.1 18.7 44.0 11.5 92.9 14.1 

0.2 7.7 5.8 5.9 22.7 25.8 61.5 15.8 62.7 19.4 
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Table 6.12: Power Analysis of Contemporaneous and Lag Dependent Series with 

drift and trend with ρ = 0.8 

 OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 xt xt-1 xt-2 yt-1 yt-2 

 𝛒 = 0.8 

θ1= θ2 
θ21= 0.8 

1 100.0 82.8 92.3 100.0 44.0 93.1 57.6 100.0 22.1 

0.8 100.0 99.9 17.9 100.0 15.0 97.8 8.0 100.0 8.0 

0.6 100.0 84.2 7.6 100.0 11.2 99.2 6.8 99.2 9.3 

0.4 100.0 32.6 23.3 100.0 14.9 99.8 6.7 90.0 17.1 

0.2 100.0 7.8 51.6 99.5 21.2 99.9 6.6 55.6 25.8 

 θ21= 0.6 

1 100.0 33.9 92.2 100.0 44.3 76.4 56.6 100.0 22.4 

0.8 100.0 97.6 17.9 100.0 15.2 88.5 8.4 100.0 8.6 

0.6 100.0 45.3 9.9 100.0 11.2 93.8 7.0 99.4 10.1 

0.4 100.0 10.4 27.9 100.0 15.5 97.1 6.8 91.0 17.5 

0.2 100.0 6.9 54.7 98.9 22.0 99.1 7.5 56.9 25.2 

 θ21= 0.4 

1 100.0 27.6 93.0 100.0 44.7 16.9 43.9 100.0 22.5 

0.8 100.0 73.7 17.6 100.0 15.2 62.5 9.3 100.0 8.8 

0.6 100.0 11.3 13.3 100.0 11.4 70.6 7.5 99.5 11.0 

0.4 100.0 6.8 31.2 100.0 16.7 81.9 8.2 92.0 16.8 

0.2 100.0 17.5 56.2 97.7 23.6 91.4 10.1 59.4 23.0 

 θ21= 0.2 

1 100.0 27.6 93.1 100.0 44.5 17.2 44.0 100.0 22.3 

0.8 100.0 37.6 54.1 100.0 15.8 25.3 9.5 100.0 9.4 

0.6 100.0 19.0 32.4 100.0 12.5 30.7 9.3 99.5 10.4 

0.4 100.0 13.7 17.5 99.8 18.7 44.0 11.5 92.9 14.1 

0.2 100.0 7.6 13.6 95.1 25.8 61.5 15.8 62.7 19.4 
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In first row of first panel of table 6.9, the results are indicating that when series are 

nonstationary, θ1=1 and θ2=0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.8 and covariance ρ=0.8, then the OLS power is 71.5%, which shows 23.5% 

power loss on the basis of 5% nominal size. In case of ARDL models F-test are being 

used to test the joint significance of current and lag values of independent variable. The 

F-stat value after employing ARDL (1, 1) model is indicating that the power of ARDL 

(1, 1) model is 91.2% which shows 3.8% power loss at 5% nominal size. The power of 

ARDL (2, 2) is 87.3% and loss of power is 7.7 at 5% nominal size.  

In second row of first panel of table 6.9, the results are representing that when series 

are stationary, θ1= 0.8 and θ2 = 0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.8 and ρ= 0.8, then the OLS power is 80.1%, which shows 14.9% power loss on 

the basis of 5% nominal size. In case of ARDL models F-test is being used to test the 

joint significance of current and lag values of independent variable. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model 

is 80.9% which shows 14.1% power loss at 5% nominal size. The power of ARDL (2, 

2) is 75.1% and loss of power is 19.9% at 5% nominal size. 

In first row of second panel of table 6.9, the results are indicating that when series are 

nonstationary, θ1=1 and θ2=0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.6 and ρ= 0.8, then the OLS power is 73.1%, which shows 21.9% power loss on 

the basis of 5% nominal size. In case of ARDL models F-test are being used to test the 

joint significance of current and lag values of independent variable. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model 

is 90.3% which shows 4.7% power loss at 5% nominal size. The power of ARDL (2, 2) 

is 78.1% and loss of power is 16.9 at 5% nominal size.  
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In second row of second panel of table 6.9, the results are representing that when series 

are stationary, θ1= 0.8 and θ2 = 0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.6 and ρ= 0.8 then the OLS power is 77.2%, which shows 17.8% power loss on 

the basis of 5% nominal size. In case of ARDL models F-test are being used to test the 

joint significance of current and lag values of independent variable. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model 

is 53.4% which shows 41.6% power loss at 5% nominal size. The power of ARDL (2, 

2) is 45.7% and loss of power is 11.1% at 5% nominal size. 

It shows that the conventional OLS method badly suffers in power problem when series 

are nonstationary even they are stationary with no drift and trend. On contrary ARDL 

model is not showing huge power in both cases. It clarifies that when series are 

stationary or nonstationary without having drift and trend ARDL works better than 

OLS.  

In first row of first panel of table 6.10, the results show that when we regressed 

nonstationary seriesθ1=1 and θ2=0.8, without drift, a1= b1= 0, θ21 = 0.8 and ρ= 0.8 by 

using OLS, the probability of rejection of false null hypothesis (power) is 100%, which 

represents a misleading figure.  Because as seen above in table 5.1 the OLS has huge 

size distortion problem, specially, when series are with linear trend. That is why it is 

showing 100% power which does not exist in reality. The F-test used only in one case 

for displaying the joint significance of independent lag and current value. So, table 6.10, 

5.12 and 5.13 have only t-stat values. After employing ARDL (1, 1) model the power 

of current value of x is 50.1%, which shows only 44.9% power loss. The reason behind 

it is that we did not include linear trend in ARDL if we include linear trend in it may 

provide more power. The numeral of lag value of x is showing only 94.1% power which 

means 0.9% power loss. In ARDL (2, 2) model the first lag value of x showing 91.0% 



92 
 

probability of rejection of the false null hypothesis. The powers of current and second 

lag values of x are 43.9% and 62.6%, which show 51.1% and 32.4% power loss 

respectively  

As we know that y value is determined through lag value of x, but the first lag value are 

more significant as compare to current value of x.  The reason is that there is 

multicollinearity effect, the current and lag values of x variable are collinear that is why 

the effect shifts into lag value in ARDL(1, 1) and in lag value in ARDL (2, 2).  

In second row of first panel of table 6.10, the results illustrate that when we regressed 

stationary series θ1=0.8 and θ2=0.8, without drift, a1= b1= 0, θ21 = 0.8 and ρ= 0.8 by 

using OLS, the probability of rejection of false null hypothesis (power) is 100%, which 

represents a misleading figure. Because as we see in table 5.1, the OLS has huge size 

distortion problem, specially, when series are with linear trend. That is why, it is 

showing 100% power which does not exist in reality. After employing ARDL (1, 1) 

model, the power of current value of x is 81.3%, which means only 13.7% power loss, 

the reason is that we did not include linear trend in ARDL. If we include linear trend, 

it may provide more power. The figure of lag value of x is showing only .9.2% power 

which means 85.8% power loss. In ARDL (2, 2), model the first lag value of x is 

showing 95.8% probability of rejection the false null hypothesis. The powers of current 

and second lag values of x are 17.8% and 8.5%, which shows 77.2% and 86.5% power 

loss respectively  

Same pattern has been found on other values of θ21 like, 0.6 and so on. On all these 

points ARDL shows better performance as compare to OLS.  

On some values of parameter𝑠 θ1 and θ2, and θ21 and OLS shows more power but we 

cannot consider it because as we have seen in size analysis the OLS suffers badly in 
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size problem while ARDL in all cases has less size problem. In case without drift or 

with linear trend, and with drift and trend due to under specification, ARDL shows size 

problem but even in these cases OLS has more size distortion as compare to ARDL 

model.  

There is another special effect which we should consider, In case of stationary and 

nonstationary time series the ARDL model works very well but it becomes unable to 

reduce the probability of spurious regression significantly in presence of trend. 

Basically both models OLS and ARDL are under specified because the series are having 

linear trend but models do not have linear trend term in their equations. On the other 

hand, we can see that the OLS model completely failed to tackle this problem but ARDL 

model works well as compare to OLS in size analysis. There is an important point, our 

data generating process in equation 6.1, generates first order autoregressive series 

AR(1) but we used second lag in ARDL (2, 2) model, so in case of over specification 

ARDL (2, 2) shows more power in case of stationary series as compare to ARDL (1, 1) 

and OLS. It also explores that the ARDL models perform better than OLS in under 

specification and over specification.  

Similarly table 6.11 and 6.12 results also display the results of next two scenarios of lag 

and contemporaneous dependent series with drift and with drift and trend. So, the 

interpretations of these cases are approximately alike that is why we are interpreting 

them here. The lag values of y itself are highly significant in all cases, but one thing 

which is necessary is that as we reduce the value of autoregressive terms, the lag 

significance is also going to decrease in case of ARDL not in OLS.  
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Table 6.13: Power Analysis of Contemporaneous and Lag Dependent Series 

without drift and trend with ρ = 0.6 

 OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 F-stat xt xt-1 xt-2 yt-1 yt-2 F-stat 

 ρ = 0.6 

θ1=θ2 
θ21= 0.8 

1 72 99.6 5.8 100 93.2 6.8 96.3 7.4 100 7.9 91.4 

0.8 82.2 91.5 6 100 85.7 6.9 98.2 7.6 100 6.6 90.1 

0.6 66.3 48.8 6 100 45.3 6.9 99.1 7.2 96.2 6.4 94.5 

0.4 37.6 18.4 5.9 92.6 17.1 6.7 99.6 7 68.4 6.5 94.7 

0.2 12.6 8.4 5.9 36.4 7.6 6.9 99.8 6.7 22 6.7 95.3 

 θ21= 0.6 

1 72.4 95.1 5.9 100 90.1 6.9 83.1 7.4 100 7.7 79.6 

0.8 71.4 62 6.1 100 61 6.9 88.9 7.7 99.9 6.5 81.2 

0.6 58.7 21 5.9 99.7 18.9 6.7 92.8 7.3 95.9 6.5 87.6 

0.4 30.1 9.4 6 86.3 7.6 6.8 95.1 6.9 68.3 6.7 91.3 

0.2 10.5 6.6 5.8 29.6 6.3 6.6 96.6 6.8 22.2 6.6 91.5 

 θ21= 0.4 

1 73.1 22.4 6 100 20.9 7 18.5 7.2 100 7.2 12.3 

0.8 68.2 21.8 6.1 100 19.7 7 59.7 7.8 99.9 6.4 43.2 

0.6 44.8 8.5 6 98.9 7.2 7 66.1 7.1 95.6 6.7 56.9 

0.4 21.3 6.7 5.9 78.1 6.3 6.9 71.7 6.8 68.1 6.7 59.4 

0.2 9 6.1 6 25.1 5.9 6.8 75 6.8 22.2 6.7 69.7 

 θ21= 0.2 

1 72.9 22.2 6.1 100 19.8 7.1 18.7 7.4 100 7.3 13.2 

0.8 50.1 7 6.2 99.9 6.8 7 21.1 7.3 99.7 6.6 18.9 

0.6 27.7 6.3 5.9 97 6.1 6.8 24.4 6.9 95.2 6.7 19.8 

0.4 13.6 6.3 5.9 71.7 6.1 6.8 27 7 67.8 6.8 20.1 

0.2 7.3 6.1 5.8 22.4 5.7 6.8 29 6.8 22.3 6.8 23.5 
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Table 6.14: Power Analysis of Contemporaneous and Lag Dependent Series 

without drift with ρ = 0.6 

WoD OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 Xt xt-1 xt-2 yt-1 yt-2 

 𝛒 = 0.6 

θ1= θ2 
θ21= 0.8 

1 100.0 75.8 96.7 100.0 48.2 92.8 65.0 100.0 24.6 

0.8 100.0 82.8 5.6 100.0 19.7 95.1 7.6 100.0 9.6 

0.6 100.0 82.7 5.7 100.0 13.5 99.2 6.8 99.4 7.1 

0.4 100.0 33.1 23.3 100.0 15.1 99.7 6.6 89.6 16.8 

0.2 100.0 8.8 53.5 99.5 20.1 99.9 6.9 53.8 27.7 

 θ21= 0.6 

1 100.0 23.9 96.9 100.0 48.4 75.8 63.9 100.0 24.8 

0.8 100.0 95.9 27.4 100.0 18.2 88.6 8.1 100.0 10.1 

0.6 100.0 42.9 6.7 100.0 13.2 93.8 6.9 99.4 7.5 

0.4 100.0 10.7 27.6 100.0 15.5 97.1 7.3 90.5 17.7 

0.2 100.0 6.6 56.8 99.0 21.2 99.0 8.2 55.0 27.1 

 θ21= 0.4 

1 100.0 40.2 97.1 100.0 48.5 16.9 49.7 100.0 25.0 

0.8 100.0 67.7 28.8 100.0 19.2 62.4 8.5 100.0 11.1 

0.6 100.0 10.3 9.6 100.0 12.9 71.9 7.5 99.4 8.6 

0.4 100.0 6.5 31.7 100.0 16.0 81.9 8.5 91.5 17.4 

0.2 100.0 15.9 58.2 97.8 22.6 91.0 10.9 57.7 24.9 

 θ21= 0.2 

1 100.0 40.1 97.2 100.0 48.4 17.0 49.8 100.0 25.1 

0.8 100.0 9.4 26.3 100.0 20.2 26.1 8.6 100.0 13.2 

0.6 100.0 7.7 14.2 100.0 13.6 31.5 9.4 99.5 8.9 

0.4 100.0 17.6 33.7 99.8 18.1 43.5 12.9 92.5 15.1 

0.2 100.0 34.3 56.4 95.4 24.9 60.7 17.1 61.2 20.8 
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Table 6.15: Power Analysis of Contemporaneous and Lag Dependent Series 
with drift with ρ = 0.6 

WD OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 Xt xt-1 xt-2 yt-1 yt-2 

 𝛒 = 0.6 

θ1= θ2 
θ21= 0.8 

1 100.0 99.8 6.0 100.0 6.8 96.4 7.3 100.0 7.7 

0.8 96.7 96.7 6.0 100.0 6.8 98.1 7.7 100.0 7.1 

0.6 74.9 53.2 5.9 100.0 7.0 99.1 7.4 96.5 6.6 

0.4 46.4 16.7 5.8 94.8 6.9 99.6 7.0 68.0 6.6 

0.2 14.9 7.1 5.9 37.9 6.8 99.8 6.8 22.2 6.8 

 θ21= 0.6 

1 100.0 96.7 6.0 100.0 6.9 83.3 7.2 100.0 7.7 

0.8 95.8 76.3 6.0 100.0 6.9 88.6 7.6 100.0 6.8 

0.6 74.7 20.7 5.9 100.0 6.8 92.8 7.3 96.3 6.4 

0.4 38.1 8.0 6.0 89.0 6.9 95.3 7.0 68.4 6.5 

0.2 12.5 5.8 5.9 30.9 7.0 96.5 6.9 22.0 6.9 

 θ21= 0.4 

1 100.0 25.9 5.9 100.0 7.0 18.7 7.1 100.0 7.7 

0.8 93.2 28.8 6.1 100.0 6.7 59.6 7.5 100.0 6.7 

0.6 61.8 6.7 6.0 99.6 6.7 66.6 7.2 95.8 6.5 

0.4 27.6 5.5 5.9 81.6 6.8 71.7 6.9 68.4 6.7 

0.2 10.0 5.7 5.7 26.0 6.6 75.2 6.8 22.5 6.7 

 θ21= 0.2 

1 100.0 26.2 6.0 100.0 6.9 18.7 7.1 100.0 7.6 

0.8 84.3 5.7 6.0 100.0 6.9 21.6 7.4 99.9 6.3 

0.6 39.4 5.8 5.9 98.4 6.9 24.3 7.2 95.4 6.7 

0.4 16.7 5.7 5.8 74.1 6.9 26.9 6.7 68.1 6.8 

0.2 7.8 5.8 5.9 22.7 6.9 29.2 7.0 22.4 6.8 
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Table 6.16: Power Analysis of Contemporaneous and Lag Dependent Series with 

drift and trend with ρ = 0.6 

 OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 Xt xt-1 xt-2 yt-1 yt-2 

 𝛒 = 0.6 

θ1= θ2 
θ21= 0.8 

1 100.0 82.8 92.0 100.0 43.9 93.1 57.6 100.0 21.9 

0.8 100.0 99.9 17.9 100.0 15.0 97.8 8.0 100.0 8.0 

0.6 100.0 84.2 7.6 100.0 11.2 99.2 6.8 99.2 9.3 

0.4 100.0 32.6 23.3 100.0 14.9 99.8 6.7 90.0 17.1 

0.2 100.0 7.8 51.6 99.5 21.2 99.9 6.6 55.6 25.8 

 θ21= 0.6 

1 100.0 33.9 92.3 100.0 44.3 76.3 56.7 100.0 22.3 

0.8 100.0 97.6 17.9 100.0 15.2 88.5 8.4 100.0 8.6 

0.6 100.0 45.3 9.9 100.0 11.2 93.8 7.0 99.4 10.1 

0.4 100.0 10.4 27.9 100.0 15.5 97.1 6.8 91.0 17.5 

0.2 100.0 6.9 54.7 98.9 22.0 99.1 7.5 56.9 25.2 

 θ21= 0.4 

1 100.0 27.7 93.0 100.0 44.5 17.0 44.0 100.0 22.4 

0.8 100.0 73.7 17.6 100.0 15.2 88.5 8.4 100.0 8.6 

0.6 100.0 11.3 13.3 100.0 11.2 93.8 7.0 99.4 10.1 

0.4 100.0 6.8 31.2 100.0 15.5 97.1 6.8 91.0 17.5 

0.2 100.0 17.5 56.2 97.7 22.0 99.1 7.5 56.9 25.2 

 θ21= 0.2 

1 100.0 27.4 93.1 100.0 44.6 17.0 43.9 100.0 22.4 

0.8 100.0 13.0 13.6 100.0 22.0 99.1 7.5 56.9 25.2 

0.6 100.0 7.6 17.2 100.0 11.4 70.6 7.5 99.5 11.0 

0.4 100.0 19.0 32.4 99.8 16.7 81.9 8.2 92.0 16.8 

0.2 100.0 37.6 54.1 95.1 23.6 91.4 10.1 59.4 23.0 

  



98 
 

In first row of first panel of table 6.13, the results are indicating that when series are 

nonstationary, θ1=1 and θ2=0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.8 and covariance ρ=0.6, then the OLS power is 72.0%, which shows 23.0% 

power loss on the basis of 5% nominal size. In case of ARDL models F-test are being 

used to test the joint significance of current and lag values of independent variable. The 

F-stat value after employing ARDL (1, 1) model is indicating that the power of ARDL 

(1, 1) model is 93.2% which shows 1.8% power loss at 5% nominal size. The power of 

ARDL (2, 2) is 91.4% and loss of power is 3.6% at 5% nominal size.  

In second row of first panel of table 6.13, the results are representing that when series 

are stationary, θ1= 0.8 and θ2 = 0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.8 and ρ= 0.6, then the OLS power is 82.2%, which shows 12.8% power loss on 

the basis of 5% nominal size. In case of ARDL models F-test is being used to test the 

joint significance of current and lag values of independent variable. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model 

is 85.7% which shows 9.3% power loss at 5% nominal size. The power of ARDL (2, 2) 

is 90.1% and loss of power is 4.9% at 5% nominal size. 

In first row of second panel of table 6.13, the results are indicating that when series are 

nonstationary, θ1=1 and θ2=0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.6 and ρ= 0.6, then the OLS power is 72.4%, which shows 22.6% power loss on 

the basis of 5% nominal size. In case of ARDL models F-test are being used to test the 

joint significance of current and lag values of independent variable. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model 

is 90.1% which shows 4.9% power loss at 5% nominal size. The power of ARDL (2, 2) 

is 79.6% and loss of power is 15.4 at 5% nominal size.  
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In second row of second panel of table 6.13, the results are representing that when series 

are stationary, θ1= 0.8 and θ2 = 0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.6 and ρ= 0.6 then the OLS power is 71.4%, which shows 23.6% power loss on 

the basis of 5% nominal size. In case of ARDL models F-test are being used to test the 

joint significance of current and lag values of independent variable. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model 

is 61.0% which shows 34.0% power loss at 5% nominal size. The power of ARDL (2, 

2) is 81.2% and loss of power is 13.8% at 5% nominal size. 

It shows that the conventional OLS method badly suffers in power problem when series 

are nonstationary even they are stationary with no drift and trend. On contrary ARDL 

model is not showing huge power in both cases. It clarifies that when series are 

stationary or nonstationary without having drift and trend ARDL works better than 

OLS.  

In first row of first panel of table 6.14, the results show that when we regressed 

nonstationary seriesθ1=1 and θ2=0.8, without drift, a1= b1= 0, θ21 = 0.8 and ρ= 0.6 by 

using OLS, the probability of rejection of false null hypothesis (power) is 100%, which 

represents a misleading figure.  Because as seen above in table 5.1 the OLS has huge 

size distortion problem, specially, when series are with linear trend. That is why it is 

showing 100% power which does not exist in reality. The F-test used only in one case 

for displaying the joint significance of independent lag and current value. So, table 6.14, 

6.15 and 6.16 have only t-stat values. After employing ARDL (1, 1) model the power 

of current value of x is 75.1%, which shows only 19.9% power loss. The reason behind 

it is that we did not include linear trend in ARDL if we include linear trend in it may 

provide more power. The numeral of lag value of x is showing only 96.7% power which 

means 0% power loss. In ARDL (2, 2) model the first lag value of x showing 92.8% 



100 
 

probability of rejection of the false null hypothesis. The powers of current and second 

lag values of x are 48.2% and 65.0%, which show 46.8% and 30.0% power loss 

respectively  

As we know that y value is determined through lag value of x, but the first lag value are 

more significant as compare to current value of x.  The reason is that there is 

multicollinearity effect, the current and lag values of x variable are collinear that is why 

the effect shifts into lag value in ARDL(1, 1) and in lag value in ARDL (2, 2).  

In second row of first panel of table 6.14, the results illustrate that when we regressed 

stationary series θ1=0.8 and θ2=0.8, without drift, a1= b1= 0, θ21 = 0.8 and ρ= 0.6 by 

using OLS, the probability of rejection of false null hypothesis (power) is 100%, which 

represents a misleading figure. Because as we see in table 5.1, the OLS has huge size 

distortion problem, specially, when series are with linear trend. That is why, it is 

showing 100% power which does not exist in reality. After employing ARDL (1, 1) 

model, the power of current value of x is 82.8%, which means only 12.2% power loss, 

the reason is that we did not include linear trend in ARDL. If we include linear trend, 

it may provide more power. The figure of lag value of x is showing only 5.6% power 

which means 89.4% power loss. In ARDL (2, 2), model the first lag value of x is 

showing 95.1% probability of rejection the false null hypothesis. The powers of current 

and second lag values of x are 19.7% and 7.6%, which shows 75.3% and 87.4% power 

loss respectively  

Same pattern has been found on other values of θ21 like, 0.6 and so on. On all these 

points ARDL shows better performance as compare to OLS.  

On some values of parameter𝑠 θ1 and θ2, and θ21 and OLS shows more power but we 

cannot consider it because as we have seen in size analysis the OLS suffers badly in 



101 
 

size problem while ARDL in all cases has less size problem. In case without drift or 

with linear trend, and with drift and trend due to under specification, ARDL shows size 

problem but even in these cases OLS has more size distortion as compare to ARDL 

model.  

There is another special effect which we should consider, In case of stationary and 

nonstationary time series the ARDL model works very well but it becomes unable to 

reduce the probability of spurious regression significantly in presence of trend. 

Basically both models OLS and ARDL are under specified because the series are having 

linear trend but models do not have linear trend term in their equations. On the other 

hand, we can see that the OLS model completely failed to tackle this problem but ARDL 

model works well as compare to OLS in size analysis. There is an important point, our 

data generating process in equation 6.1, generates first order autoregressive series 

AR(1) but we used second lag in ARDL (2, 2) model, so in case of over specification 

ARDL (2, 2) shows more power in case of stationary series as compare to ARDL (1, 1) 

and OLS. It also explores that the ARDL models perform better than OLS in under 

specification and over specification.  

Similarly table 6.15 and 6.16 results also display the results of next two scenarios of lag 

and contemporaneous dependent series with drift and with drift and trend. So, the 

interpretations of these cases are approximately alike that is why we are interpreting 

them here. The lag values of y itself are highly significant in all cases, but one thing 

which is necessary is that as we reduce the value of autoregressive terms, the lag 

significance is also going to decrease in case of ARDL not in OLS.  
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Table 6.17: Power Analysis of Contemporaneous and Lag Dependent Series 

without drift and trend with ρ = 0.4 

 OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 F-stat xt xt-1 xt-2 yt-1 yt-2 F-stat 

 ρ = 0.4 

θ1= θ2 
θ21= 0.8 

1 71.4 99.6 6 100 91.5 6.8 96.3 7.4 100 7.7 87.3 

0.8 81.6 91.3 6 100 82.6 6.8 98.1 7.7 100 6.8 84.7 

0.6 63.9 48.6 6 100 43.9 6.7 99.1 7.4 96.2 6.4 91.2 

0.4 37.2 18.5 5.9 92.7 15.4 6.8 99.6 7 68.1 6.5 91.6 

0.2 12.3 8.3 6 36.1 7.8 6.8 99.8 6.9 22.1 6.7 92.6 

 θ21= 0.6 

1 70.3 95.1 5.9 100 82.4 6.9 83.4 7.4 100 7.7 76.5 

0.8 75.0 61.4 6.1 100 58.7 7.1 88.7 7.8 99.9 6.5 78.3 

0.6 58.6 21 6 99.7 18.9 6.8 92.8 7.3 95.8 6.4 78.9 

0.4 30.1 9.6 6 86.3 7.8 6.7 95.2 6.9 68.1 6.7 80.7 

0.2 10.7 6.5 5.9 29.8 6.5 6.8 96.6 6.8 22.3 6.8 81.4 

 θ21= 0.4 

1 73.3 22.5 6.1 100 18.7 7 18.6 7.4 100 7.2 15.7 

0.8 67.9 21.6 6.1 100 17.6 7.1 59.7 7.7 99.9 6.5 48.7 

0.6 44.6 8.4 5.9 98.8 6.5 6.9 66.3 7.2 95.5 6.5 54.6 

0.4 21.4 6.6 6.1 78.5 6.1 6.8 71.5 6.9 68.2 6.5 57.2 

0.2 8.8 6.3 5.9 25.1 5.9 6.9 75 6.9 22.3 6.8 65.4 

 θ21= 0.2 

1 73 22.5 6 100 18.5 7.2 18.7 7.4 100 7.3 15.9 

0.8 50.1 6.8 6.1 99.9 6.5 7.1 21.3 7.5 99.7 6.8 18.4 

0.6 27.4 6.2 6.1 97 6.2 7 24.5 7 95.2 6.8 19.9 

0.4 13.4 6.1 6 71.9 6.1 6.9 27 6.7 68 6.6 21.6 

0.2 7.4 6.1 5.8 22.2 6.1 6.7 28.7 6.8 22.5 6.8 23.8 
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Table 6.18: Power Analysis of Contemporaneous and Lag Dependent Series 

without drift with ρ = 0.4 

 OLS ARDL (1, 1) ARDL (2, 2) 

 Xt Xt xt-1 yt-1 xt xt-1 xt-2 yt-1 yt-2 

 𝛒 = 0.4 

θ1= θ2 
θ21= 0.8 

1 100.0 74.6 93.1 100.0 47.0 93.1 64.8 100.0 24.6 

0.8 100.0 81.6 5.6 100.0 17.9 94.7 7.5 100.0 9.4 

0.6 100.0 82.0 5.6 100.0 13.4 99.2 6.8 99.3 7.1 

0.4 100.0 33.1 23.0 100.0 14.9 99.7 6.7 89.5 17.2 

0.2 100.0 8.8 53.8 99.5 20.5 99.9 6.9 53.8 27.6 

 θ21= 0.6 

1 100.0 24.1 95.6 100.0 46.9 76.3 62.4 100.0 24.7 

0.8 100.0 91.7 27.2 100.0 18.5 86.9 7.1 100.0 10.0 

0.6 100.0 43.2 6.7 100.0 13.1 93.8 6.9 99.4 7.7 

0.4 100.0 10.8 27.8 100.0 15.2 97.1 7.0 90.5 17.8 

0.2 100.0 6.7 56.7 98.9 21.0 98.9 8.1 55.4 27.0 

 θ21= 0.4 

1 100.0 40.3 97.2 100.0 48.4 17.1 49.8 100.0 24.8 

0.8 100.0 67.8 29.0 100.0 19.0 62.3 8.3 100.0 11.1 

0.6 100.0 10.3 9.8 100.0 13.1 71.5 7.7 99.5 8.5 

0.4 100.0 6.5 31.9 100.0 16.1 81.6 8.5 91.6 17.4 

0.2 100.0 16.0 58.2 97.8 22.7 90.9 10.8 57.7 24.8 

 θ21= 0.2 

1 100.0 40.6 97.1 100.0 48.5 16.8 49.5 100.0 25.0 

0.8 100.0 9.2 26.6 100.0 20.6 25.8 8.6 100.0 13.3 

0.6 100.0 7.6 14.4 100.0 13.4 31.3 9.4 99.4 9.2 

0.4 100.0 17.7 33.6 99.8 18.1 43.6 12.7 92.7 15.1 

0.2 100.0 34.4 56.3 95.5 24.9 60.5 16.9 61.0 20.8 
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Table 6.19: Power Analysis of Contemporaneous and Lag Dependent Series with 

drift with ρ = 0.4 

 OLS ARDL (1, 1) ARDL (2, 2) 

 Xt xt xt-1 yt-1 xt xt-1 xt-2 yt-1 yt-2 

 𝛒 = 0.4 

θ1= θ2 
θ21= 0.8 

1 100.0 99.8 5.9 100.0 6.7 96.4 7.3 100.0 7.8 

0.8 96.8 96.8 5.9 100.0 6.7 98.2 7.4 100.0 7.0 

0.6 75.0 53.4 6.0 100.0 6.9 99.1 7.3 96.5 6.3 

0.4 46.5 16.8 5.9 94.8 6.9 99.5 7.1 68.5 6.6 

0.2 15.1 7.0 5.8 38.0 6.7 99.8 6.7 22.1 6.7 

 θ21= 0.6 

1 100.0 96.7 5.8 100.0 6.8 83.4 7.2 100.0 7.8 

0.8 95.7 76.3 5.9 100.0 6.9 88.9 7.6 100.0 6.9 

0.6 75.0 20.6 5.9 100.0 6.9 92.6 7.2 96.3 6.4 

0.4 38.6 7.8 5.9 89.1 6.9 95.3 6.9 68.6 6.7 

0.2 12.7 5.8 5.9 30.9 6.7 96.5 6.8 22.1 6.6 

 θ21= 0.4 

1 100.0 25.9 5.8 100.0 6.9 18.7 7.0 100.0 7.7 

0.8 93.2 28.9 6.0 100.0 7.0 59.6 7.5 100.0 6.5 

0.6 61.8 6.6 5.8 99.7 6.9 66.3 7.1 95.8 6.3 

0.4 27.6 5.5 5.9 81.3 6.8 71.6 6.9 68.2 6.6 

0.2 10.1 5.6 5.9 25.9 6.8 75.0 6.9 22.1 6.8 

 θ21= 0.2 

1 100.0 25.9 6.0 100.0 6.9 18.6 7.0 100.0 7.6 

0.8 84.4 5.8 6.1 100.0 6.9 21.5 7.4 99.9 6.4 

0.6 39.8 5.9 6.0 98.4 6.9 24.3 7.1 95.4 6.7 

0.4 16.3 5.8 6.0 74.2 6.8 26.8 6.8 68.2 6.9 

0.2 7.8 5.8 5.9 22.8 6.9 28.8 6.8 22.3 6.8 
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Table 6.20: Power Analysis of Contemporaneous and Lag Dependent Series with 

drift and trend with ρ = 0.4 

 OLS ARDL (1, 1) ARDL (2, 2) 

 Xt xt xt-1 yt-1 xt xt-1 xt-2 yt-1 yt-2 

 𝛒 = 0.4 

θ1= θ2 θ21= 0.8 

1 100.0 82.6 92.1 100.0 44.1 93.1 57.3 100.0 22.1 

0.8 100.0 99.9 18.0 100.0 14.8 97.8 8.1 100.0 8.1 

0.6 100.0 84.1 7.8 100.0 11.3 99.2 6.8 99.2 9.1 

0.4 100.0 32.3 23.3 100.0 15.2 99.7 6.6 89.8 17.0 

0.2 100.0 7.9 51.5 99.5 21.4 99.9 6.7 55.7 25.9 

 θ21= 0.6 

1 100.0 33.8 92.2 100.0 44.6 76.3 57.1 100.0 22.3 

0.8 100.0 97.7 17.7 100.0 15.0 88.8 8.4 100.0 8.2 

0.6 100.0 45.4 9.8 100.0 11.3 93.8 6.9 99.4 10.3 

0.4 100.0 10.2 27.4 100.0 15.5 97.2 6.8 90.8 17.6 

0.2 100.0 6.8 54.5 98.9 22.3 99.0 7.5 57.0 25.2 

 θ21= 0.4 

1 100.0 27.5 93.1 100.0 44.9 16.9 43.7 100.0 22.4 

0.8 100.0 73.5 17.5 100.0 15.3 62.3 8.9 100.0 8.8 

0.6 100.0 11.3 13.5 100.0 11.7 70.9 7.6 99.4 10.9 

0.4 100.0 6.7 31.4 100.0 16.6 82.3 8.1 91.9 16.8 

0.2 100.0 17.6 56.0 97.7 23.6 91.3 9.8 59.5 23.2 

 θ21= 0.2 

1 100.0 27.2 93.1 100.0 44.5 17.1 44.0 100.0 22.1 

0.8 100.0 13.2 13.9 100.0 15.9 25.2 9.3 100.0 9.6 

0.6 100.0 7.4 17.1 100.0 12.4 30.8 9.3 99.5 10.6 

0.4 100.0 19.0 32.2 99.8 18.9 44.1 11.6 92.8 14.2 

0.2 100.0 37.7 53.8 95.2 26.0 61.4 16.0 62.6 19.3 
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In first row of first panel of table 6.17, the results are indicating that when series are 

nonstationary, θ1=1 and θ2=0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.8 and covariance ρ=0.4, then the OLS power is 71.4%, which shows 23.6% 

power loss on the basis of 5% nominal size. In case of ARDL models F-test are being 

used to test the joint significance of current and lag values of independent variable. The 

F-stat value after employing ARDL (1, 1) model is indicating that the power of ARDL 

(1, 1) model is 91.5% which shows 3.5% power loss at 5% nominal size. The power of 

ARDL (2, 2) is 87.3% and loss of power is 7.7% at 5% nominal size.  

In second row of first panel of table 6.17, the results are representing that when series 

are stationary, θ1= 0.8 and θ2 = 0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.8 and ρ= 0.4, then the OLS power is 81.6%, which shows 13.4% power loss on 

the basis of 5% nominal size. In case of ARDL models F-test is being used to test the 

joint significance of current and lag values of independent variable. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model 

is 82.6% which shows 12.4% power loss at 5% nominal size. The power of ARDL (2, 

2) is 84.7% and loss of power is 10.3% at 5% nominal size. 

In first row of second panel of table 6.17, the results are indicating that when series are 

nonstationary, θ1=1 and θ2=0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.6 and ρ= 0.4, then the OLS power is 70.3%, which shows 24.7% power loss on 

the basis of 5% nominal size. In case of ARDL models F-test are being used to test the 

joint significance of current and lag values of independent variable. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model 

is 82.4% which shows 12.6% power loss at 5% nominal size. The power of ARDL (2, 

2) is 76.5% and loss of power is 18.5% at 5% nominal size.  
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In second row of second panel of table 6.17, the results are representing that when series 

are stationary, θ1= 0.8 and θ2 = 0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.6 and ρ= 0.4 then the OLS power is 75.0%, which shows 20.0% power loss on 

the basis of 5% nominal size. In case of ARDL models F-test are being used to test the 

joint significance of current and lag values of independent variable. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model 

is 58.7% which shows 36.3% power loss at 5% nominal size. The power of ARDL (2, 

2) is 78.3% and loss of power is 16.7% at 5% nominal size. 

It shows that the conventional OLS method badly suffers in power problem when series 

are nonstationary even they are stationary with no drift and trend. On contrary ARDL 

model is not showing huge power in both cases. It clarifies that when series are 

stationary or nonstationary without having drift and trend ARDL works better than 

OLS.  

In first row of first panel of table 6.18, the results show that when we regressed 

nonstationary seriesθ1=1 and θ2=0.8, without drift, a1= b1= 0, θ21 = 0.8 and ρ= 0.4 by 

using OLS, the probability of rejection of false null hypothesis (power) is 100%, which 

represents a misleading figure.  Because as seen above in table 5.1 the OLS has huge 

size distortion problem, specially, when series are with linear trend. That is why it is 

showing 100% power which does not exist in reality. The F-test used only in one case 

for displaying the joint significance of independent lag and current value. So, table 6.18, 

6.19 and 6.20 have only t-stat values. After employing ARDL (1, 1) model the power 

of current value of x is 74.6%, which shows only 20.4% power loss. The reason behind 

it is that we did not include linear trend in ARDL if we include linear trend in it may 

provide more power. The numeral of lag value of x is showing only 93.1% power which 

means 1.9% power loss. In ARDL (2, 2) model the first lag value of x showing 93.1% 
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probability of rejection of the false null hypothesis. The powers of current and second 

lag values of x are 47.0% and 64.8%, which show 48.0% and 30.2% power loss 

respectively  

As we know that y value is determined through lag value of x, but the first lag value are 

more significant as compare to current value of x.  The reason is that there is 

multicollinearity effect, the current and lag values of x variable are collinear that is why 

the effect shifts into lag value in ARDL(1, 1) and in lag value in ARDL (2, 2).  

In second row of first panel of table 6.18, the results illustrate that when we regressed 

stationary series θ1=0.8 and θ2=0.8, without drift, a1= b1= 0, θ21 = 0.8 and ρ= 0.4 by 

using OLS, the probability of rejection of false null hypothesis (power) is 100%, which 

represents a misleading figure. Because as we see in table 5.1, the OLS has huge size 

distortion problem, specially, when series are with linear trend. That is why, it is 

showing 100% power which does not exist in reality. After employing ARDL (1, 1) 

model, the power of current value of x is 81.6%, which means only 13.4% power loss, 

the reason is that we did not include linear trend in ARDL. If we include linear trend, 

it may provide more power. The figure of lag value of x is showing only 5.6% power 

which means 89.4% power loss. In ARDL (2, 2), model the first lag value of x is 

showing 94.7% probability of rejection the false null hypothesis. The powers of current 

and second lag values of x are 17.9% and 7.5%, which shows 77.1% and 87.5% power 

loss respectively  

Same pattern has been found on other values of θ21 like, 0.6 and so on. On all these 

points ARDL shows better performance as compare to OLS.  

On some values of parameter𝑠 θ1 and θ2, and θ21 and OLS shows more power but we 

cannot consider it because as we have seen in size analysis the OLS suffers badly in 
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size problem while ARDL in all cases has less size problem. In case without drift or 

with linear trend, and with drift and trend due to under specification, ARDL shows size 

problem but even in these cases OLS has more size distortion as compare to ARDL 

model.  

There is another special effect which we should consider, In case of stationary and 

nonstationary time series the ARDL model works very well but it becomes unable to 

reduce the probability of spurious regression significantly in presence of trend. 

Basically both models OLS and ARDL are under specified because the series are having 

linear trend but models do not have linear trend term in their equations. On the other 

hand, we can see that the OLS model completely failed to tackle this problem but ARDL 

model works well as compare to OLS in size analysis. There is an important point, our 

data generating process in equation 6.1, generates first order autoregressive series 

AR(1) but we used second lag in ARDL (2, 2) model, so in case of over specification 

ARDL (2, 2) shows more power in case of stationary series as compare to ARDL (1, 1) 

and OLS. It also explores that the ARDL models perform better than OLS in under 

specification and over specification.  

Similarly table 6.19 and 6.20 results also display the results of next two scenarios of lag 

and contemporaneous dependent series with drift and with drift and trend. So, the 

interpretations of these cases are approximately alike that is why we are interpreting 

them here. The lag values of y itself are highly significant in all cases, but one thing 

which is necessary is that as we reduce the value of autoregressive terms, the lag 

significance is also going to decrease in case of ARDL not in OLS.  
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Table 6.21: Power Analysis of Contemporaneous and Lag Dependent Series 

without drift and trend with ρ = 0.2 

 OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 F-stat xt xt-1 xt-2 yt-1 yt-2 F-stat 

 ρ = 0.2 

θ1= θ2 
θ21= 0.8 

1 70.8 82.6 6 100 91.6 6.8 96.3 7.3 100 7.6 86.3 

0.8 80.2 86.2 6 100 81.3 6.8 98.1 7.7 100 6.8 85.2 

0.6 62.5 48.8 6 99.9 43.4 6.7 99.1 7.4 96.2 6.4 91.2 

0.4 37.6 18.5 5.9 92.7 15.4 6.8 99.6 7 68.1 6.5 91.6 

0.2 12.6 8.3 6 36.1 7.8 6.8 99.8 6.9 22.1 6.7 94.8 

 θ21= 0.6 

1 69.9 94.6 6 100 85.4 6.8 83.3 7.3 100 7.7 75.1 

0.8 73.3 61.7 6.1 100 55.7 7.1 88.7 7.8 99.9 6.5 76.5 

0.6 58.7 21 5.9 99.7 18.4 6.8 92.8 7.3 95.8 6.4 79.2 

0.4 30.1 9.5 6 86.2 7.9 6.7 95.2 6.9 68.1 6.7 80.7 

0.2 10.5 6.7 5.8 29.6 6.4 6.8 96.6 6.8 22.3 6.8 85.6 

 θ21= 0.4 

1 72.9 22.6 6.1 100 18.4 7 18.7 7.5 100 7.2 15.7 

0.8 68.2 21.4 6 100 17.6 7.1 59.7 7.7 99.9 6.5 48.7 

0.6 44.8 8.6 5.9 98.8 7.3 6.9 66.3 7.2 95.5 6.5 53.6 

0.4 21.3 6.6 5.9 78.3 6.1 6.8 71.5 6.9 68.2 6.5 57.2 

0.2 9 6.1 5.9 25.1 5.8 6.9 75 6.9 22.3 6.8 68.4 

 θ21= 0.2 

1 73 22.5 6 100 17.5 7.1 18.6 7.6 100 7.2 15.9 

0.8 50.1 7 6 99.9 6.5 7.1 21.3 7.5 99.7 6.8 17.3 

0.6 27.7 6.2 5.9 96.9 6.2 7 24.5 7 95.2 6.8 19.7 

0.4 13.6 6.2 5.8 71.7 6.1 6.9 27 6.7 68 6.6 21.6 

0.2 7.3 6.1 5.9 22 6.1 6.7 28.7 6.8 22.5 6.8 24.2 

  



111 
 

Table 6.22: Power Analysis of Contemporaneous and Lag Dependent Series 

without drift with ρ = 0.2  

 OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 xt xt-1 xt-2 yt-1 yt-2 

 ρ = 0.2 

θ1= θ2 
θ21= 0.8 

1 100.0 73.0 92.7 100.0 48.0 92.5 65.0 100.0 24.5 

0.8 100.0 80.7 5.7 100.0 16.7 95.4 7.5 100.0 9.4 

0.6 100.0 82.9 5.6 100.0 13.4 99.2 6.8 99.3 7.1 

0.4 100.0 33.4 23.2 100.0 14.9 99.7 6.7 89.5 17.2 

0.2 100.0 8.8 53.5 99.6 20.5 99.9 6.9 53.8 27.6 

 θ21= 0.6 

1 100.0 23.8 94.8 100.0 48.6 75.9 64.1 100.0 24.7 

0.8 100.0 91.3 27.4 100.0 18.5 88.5 7.9 100.0 10.0 

0.6 100.0 43.4 6.8 100.0 13.1 93.8 6.9 99.4 7.7 

0.4 100.0 10.8 27.6 100.0 15.2 97.1 7.0 90.5 17.8 

0.2 100.0 6.5 56.6 99.0 21.0 98.9 8.1 55.4 27.0 

 θ21= 0.4 

1 100.0 40.2 97.1 100.0 48.7 17.1 49.8 100.0 25.0 

0.8 100.0 67.6 28.7 100.0 19.0 62.3 8.3 100.0 11.1 

0.6 100.0 10.5 9.7 100.0 13.1 71.5 7.7 99.5 8.5 

0.4 100.0 6.5 31.8 100.0 16.1 81.6 8.5 91.6 17.4 

0.2 100.0 15.7 58.0 97.9 22.7 90.9 10.8 57.7 24.8 

 θ21= 0.2 

1 100.0 40.3 97.2 100.0 48.6 17.0 49.5 100.0 25.1 

0.8 100.0 9.2 26.5 100.0 20.6 25.8 8.6 100.0 13.3 

0.6 100.0 7.6 14.3 100.0 13.4 31.3 9.4 99.4 9.2 

0.4 100.0 17.6 33.6 99.8 18.1 43.6 12.7 92.7 15.1 

0.2 100.0 34.4 56.5 95.5 24.9 60.5 16.9 61.0 20.8 
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Table 6.23: Power Analysis of Contemporaneous and Lag Dependent Series with 

drift with ρ = 0.2 

WD OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 xt xt-1 xt-2 yt-1 yt-2 

 ρ = 0.2 

θ1= θ2 
θ21= 0.8 

1 100.0 99.8 5.9 100.0 6.8 96.3 7.2 100.0 7.8 

0.8 96.7 96.7 5.9 100.0 6.7 98.2 7.4 100.0 7.0 

0.6 74.9 53.1 6.0 100.0 6.9 99.1 7.3 96.5 6.3 

0.4 46.4 16.7 6.0 94.9 6.9 99.5 7.1 68.5 6.6 

0.2 14.9 7.2 5.9 37.9 6.7 99.8 6.7 22.1 6.7 

 θ21= 0.6 

1 100.0 96.7 5.8 100.0 6.9 83.1 7.1 100.0 7.7 

0.8 95.8 76.1 6.0 100.0 6.9 88.9 7.6 100.0 6.9 

0.6 74.7 20.8 5.8 100.0 6.9 92.6 7.2 96.3 6.4 

0.4 38.1 7.8 6.0 89.1 6.9 95.3 6.9 68.6 6.7 

0.2 12.5 5.9 5.8 30.9 6.7 96.5 6.8 22.1 6.6 

 θ21= 0.4 

1 100.0 26.2 5.9 100.0 7.1 18.8 7.1 100.0 7.7 

0.8 93.2 28.9 6.0 100.0 7.0 59.6 7.5 100.0 6.5 

0.6 61.8 6.8 5.8 99.7 6.9 66.3 7.1 95.8 6.3 

0.4 27.6 5.7 5.9 81.6 6.8 71.6 6.9 68.2 6.6 

0.2 10.0 5.7 6.0 26.0 6.8 75.0 6.9 22.1 6.8 

 θ21= 0.2 

1 100.0 26.0 6.0 100.0 7.0 18.6 6.9 100.0 7.6 

0.8 84.3 5.8 6.1 100.0 6.9 21.5 7.4 99.9 6.4 

0.6 39.4 5.7 6.0 98.5 6.9 24.3 7.1 95.4 6.7 

0.4 16.7 5.8 5.8 74.2 6.8 26.8 6.8 68.2 6.9 

0.2 7.8 5.8 5.8 22.8 6.9 28.8 6.8 22.3 6.8 
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Table 6.24: Power Analysis of Contemporaneous and Lag Dependent Series with 

drift and trend with ρ = 0.2 

 OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt xt-1 yt-1 xt xt-1 xt-2 yt-1 yt-2 

 ρ = 0.2 

θ1= θ2 
θ21= 0.8 

1 100.0 82.7 92.2 100.0 44.4 92.9 57.4 100.0 22.0 

0.8 100.0 99.9 18.0 100.0 14.8 97.8 8.1 100.0 8.1 

0.6 100.0 83.6 7.7 100.0 11.3 99.2 6.8 99.2 9.1 

0.4 100.0 32.4 23.6 100.0 15.2 99.7 6.6 89.8 17.0 

0.2 100.0 7.8 51.4 99.5 21.4 99.9 6.7 55.7 25.9 

 θ21= 0.6 

1 100.0 34.0 92.2 100.0 44.5 76.3 56.8 100.0 22.5 

0.8 100.0 97.7 18.0 100.0 15.0 88.8 8.4 100.0 8.2 

0.6 100.0 45.1 9.9 100.0 11.3 93.8 6.9 99.4 10.3 

0.4 100.0 10.4 27.5 100.0 15.5 97.2 6.8 90.8 17.6 

0.2 100.0 6.9 54.8 98.9 22.3 99.0 7.5 57.0 25.2 

 θ21= 0.4 

1 100.0 27.5 93.2 100.0 44.6 17.2 43.9 100.0 22.5 

0.8 100.0 73.7 17.5 100.0 15.3 62.3 8.9 100.0 8.8 

0.6 100.0 11.2 13.5 100.0 11.7 70.9 7.6 99.4 10.9 

0.4 100.0 6.7 31.0 100.0 16.6 82.3 8.1 91.9 16.8 

0.2 100.0 17.6 55.9 97.7 23.6 91.3 9.8 59.5 23.2 

 θ21= 0.2 

1 100.0 27.6 93.1 100.0 44.8 16.8 43.7 100.0 22.6 

0.8 100.0 13.2 13.8 100.0 15.9 25.2 9.3 100.0 9.6 

0.6 100.0 7.6 17.2 100.0 12.4 30.8 9.3 99.5 10.6 

0.4 100.0 19.2 32.0 99.8 18.9 44.1 11.6 92.8 14.2 

0.2 100.0 37.7 54.0 95.2 26.0 61.4 16.0 62.6 19.3 
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In first row of first panel of table 6.21, the results are indicating that when series are 

nonstationary, θ1=1 and θ2=0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.8 and covariance ρ=0.2, then the OLS power is 70.8%, which shows 24.2% 

power loss on the basis of 5% nominal size. In case of ARDL models F-test are being 

used to test the joint significance of current and lag values of independent variable. The 

F-stat value after employing ARDL (1, 1) model is indicating that the power of ARDL 

(1, 1) model is 91.6% which shows 3.4% power loss at 5% nominal size. The power of 

ARDL (2, 2) is 86.3% and loss of power is 8.7% at 5% nominal size.  

In second row of first panel of table 6.21, the results are representing that when series 

are stationary, θ1= 0.8 and θ2 = 0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.8 and ρ= 0.2, then the OLS power is 80.2%, which shows 14.8% power loss on 

the basis of 5% nominal size. In case of ARDL models F-test is being used to test the 

joint significance of current and lag values of independent variable. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model 

is 81.3% which shows 12.7% power loss at 5% nominal size. The power of ARDL (2, 

2) is 86.3% and loss of power is 8.7% at 5% nominal size. 

In first row of second panel of table 6.21, the results are indicating that when series are 

nonstationary, θ1=1 and θ2=0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.6 and ρ= 0.2, then the OLS power is 69.9%, which shows 25.1% power loss on 

the basis of 5% nominal size. In case of ARDL models F-test are being used to test the 

joint significance of current and lag values of independent variable. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model 

is 85.4% which shows 9.6% power loss at 5% nominal size. The power of ARDL (2, 2) 

is 75.1% and loss of power is 19.9% at 5% nominal size.  
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In second row of second panel of table 6.21, the results are representing that when series 

are stationary, θ1= 0.8 and θ2 = 0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0.6 and ρ= 0.4 then the OLS power is 73.3%, which shows 12.7% power loss on 

the basis of 5% nominal size. In case of ARDL models F-test are being used to test the 

joint significance of current and lag values of independent variable. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model 

is 85.4% which shows 9.6% power loss at 5% nominal size. The power of ARDL (2, 2) 

is 75.1% and loss of power is 19.9% at 5% nominal size. 

It shows that the conventional OLS method badly suffers in power problem when series 

are nonstationary even they are stationary with no drift and trend. On contrary ARDL 

model is not showing huge power in both cases. It clarifies that when series are 

stationary or nonstationary without having drift and trend ARDL works better than 

OLS.  

In first row of first panel of table 6.22, the results show that when we regressed 

nonstationary seriesθ1=1 and θ2=0.8, without drift, a1= b1= 0, θ21 = 0.8 and ρ= 0.2 by 

using OLS, the probability of rejection of false null hypothesis (power) is 100%, which 

represents a misleading figure.  Because as seen above in table 5.1 the OLS has huge 

size distortion problem, specially, when series are with linear trend. That is why it is 

showing 100% power which does not exist in reality. The F-test used only in one case 

for displaying the joint significance of independent lag and current value. So, table 6.22, 

6.23 and 6.24 have only t-stat values. After employing ARDL (1, 1) model the power 

of current value of x is 73.0%, which shows only 22.0% power loss. The reason behind 

it is that we did not include linear trend in ARDL if we include linear trend in it may 

provide more power. The numeral of lag value of x is showing only 92.7% power which 

means 2.3% power loss. In ARDL (2, 2) model the first lag value of x showing 92.5% 
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probability of rejection of the false null hypothesis. The powers of current and second 

lag values of x are 48.0% and 64.8%, which show 47.0% and 30.2% power loss 

respectively  

As we know that y value is determined through lag value of x, but the first lag value are 

more significant as compare to current value of x.  The reason is that there is 

multicollinearity effect, the current and lag values of x variable are collinear that is why 

the effect shifts into lag value in ARDL(1, 1) and in lag value in ARDL (2, 2).  

In second row of first panel of table 6.18, the results illustrate that when we regressed 

stationary series θ1=0.8 and θ2=0.8, without drift, a1= b1= 0, θ21 = 0.8 and ρ= 0.2 by 

using OLS, the probability of rejection of false null hypothesis (power) is 100%, which 

represents a misleading figure. Because as we see in table 5.1, the OLS has huge size 

distortion problem, specially, when series are with linear trend. That is why, it is 

showing 100% power which does not exist in reality. After employing ARDL (1, 1) 

model, the power of current value of x is 80.7%, which means only 13.4% power loss, 

the reason is that we did not include linear trend in ARDL. If we include linear trend, 

it may provide more power. The figure of lag value of x is showing only 5.7% power 

which means 89.3% power loss. In ARDL (2, 2), model the first lag value of x is 

showing 89.3% probability of rejection the false null hypothesis. The powers of current 

and second lag values of x are 16.7% and 7.5%, which shows 78.3% and 87.5% power 

loss respectively  

Same pattern has been found on other values of θ21 like, 0.6 and so on. On all these 

points ARDL shows better performance as compare to OLS.  

On some values of parameter𝑠 θ1 and θ2, and θ21 and OLS shows more power but we 

cannot consider it because as we have seen in size analysis the OLS suffers badly in 
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size problem while ARDL in all cases has less size problem. In case without drift or 

with linear trend, and with drift and trend due to under specification, ARDL shows size 

problem but even in these cases OLS has more size distortion as compare to ARDL 

model.  

There is another special effect which we should consider, In case of stationary and 

nonstationary time series the ARDL model works very well but it becomes unable to 

reduce the probability of spurious regression significantly in presence of trend. 

Basically both models OLS and ARDL are under specified because the series are having 

linear trend but models do not have linear trend term in their equations. On the other 

hand, we can see that the OLS model completely failed to tackle this problem but ARDL 

model works well as compare to OLS in size analysis. There is an important point, our 

data generating process in equation 6.1, generates first order autoregressive series 

AR(1) but we used second lag in ARDL (2, 2) model, so in case of over specification 

ARDL (2, 2) shows more power in case of stationary series as compare to ARDL (1, 1) 

and OLS. It also explores that the ARDL models perform better than OLS in under 

specification and over specification.  

Similarly table 6.23 and 6.24 results also display the results of next two scenarios of lag 

and contemporaneous dependent series with drift and with drift and trend. So, the 

interpretations of these cases are approximately alike that is why we are interpreting 

them here. The lag values of y itself are highly significant in all cases, but one thing 

which is necessary is that as we reduce the value of autoregressive terms, the lag 

significance is also going to decrease in case of ARDL not in OLS.  
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6.3 Contemporaneous Dependence Between the Series 

The contemporaneous dependent series are generated by using equation 5.6, the cross 

correlation parameters θ21 = 0 and θ12 = 0 and ρ ≠ 0. The ρ ≠ 0 implies that the error 

terms added to each have contemporaneous correlation. Therefor X and Yare not 

serially but contemporaneously dependent onto each other. 

The series are non-stationary, if the own lag value parameters are θ1= 1 and θ2= 0.8, 

and the series are stationary, if the own lag value parameters are θ1< 1 and θ2< 1. When 

the matrix B = 0 then it means series are without drift and trend. If a1= b1= 0 in matrix 

B then the series are without drift or with linear trend. When a2= b2= 0 in matrix B 

then the series are with drift or without linear trend. When a1= b1= a2= b2= 1 in matrix 

B then the series are with drift and trend terms. when ρ ≠ 0, it indicates that the error of 

X series correlated with error of Y series, means there is contemporaneous dependence 

between the series. In this experiment we used dependent series with different scenarios 

and with different values of parameters which are following: 
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Table 6.25: Power Analysis of Contemporaneous Dependent Series without drift 

and trend 

 OLS ARDL (1, 1) ARDL (2, 2) 

 
xt xt xt-1 yt-1 F-stat xt xt-1 xt-2 yt-1 yt-2 F-stat 

θ1= θ2 ρ = 1 

1 76.5 90.6 78.2 100 87.5 89.6 54.2 7.4 100 7.9 82.3 

0.8 77.2 89.6 59.5 100 81.2 88.8 47.4 7.6 100 6.6 80.2 

0.6 85.1 89.6 37.4 96.7 78.9 86.3 31.2 7.2 96.2 6.5 76.8 

0.4 88.5 89.3 22.4 70.3 78.3 85.4 19.1 7.1 68.4 6.5 68.4 

0.2 90.9 89.8 8.8 23.5 76.7 81.2 7.9 6.7 22 6.7 56.7 

 
ρ = 0.8 

1 72.1 79.8 61.2 100 74.6 75.1 41.4 7.5 100 7.8 64.9 

0.8 67.3 75.4 45.2 99.8 69.7 73.2 39.2 7.6 100 6.6 56.7 

0.6 71.4 76.5 26.9 95.2 68.5 71.4 31.2 7.1 95.9 6.4 55.7 

0.4 76.5 78.4 16.9 69.9 64.3 70.9 18.6 7 67.5 6.5 54.3 

0.2 76.6 75.9 7.1 22.3 62.1 68.7 7.6 6.6 22.1 6.7 42.6 

 
ρ = 0.6 

1 67.1 73.5 45.1 100 69.6 52.5 29.7 7.5 100 7.8 40.6 

0.8 55.6 50.6 29.5 99.5 46.3 52.3 27.5 7.2 100 6.6 39.5 

0.6 52.6 54.1 16.2 96.1 46.2 51.8 27.3 7 95.1 6.4 39.2 

0.4 52.1 53.8 12.5 66.4 43.1 51.4 15.8 7.1 67.1 6.5 32.1 

0.2 54.1 54.7 7.2 19.1 39.8 52.2 8.1 6.3 21.8 6.7 29.7 

 
ρ = 0.4 

1 58.1 70.5 23.3 100 62.1 50.6 28.5 7.4 100 7.3 39.7 

0.8 44.8 29.1 16.5 99.4 23.6 49.9 27.4 7.2 99.8 6.2 33.2 

0.6 34.5 30.9 10.6 95.4 24.3 49.2 26.9 7.2 94.3 6.3 32.6 

0.4 31.5 28.4 8.6 70.8 19.7 47.3 13.1 7 69.1 6.5 29.8 

0.2 33.8 31.4 6.6 20.3 21.9 46.1 7.9 5.9 20.1 6.7 21.6 

 
ρ = 0.2 

1 53.4 70.8 21.5 100 61.4 50.2 23.6 7.3 100 7.2 39.4 

0.8 39.5 40.1 7.7 99.7 35.7 37.7 23.4 7.1 97.6 6.6 31.5 

0.6 25.1 10.4 8.7 95.1 8.6 36.9 19.7 7 91.2 6.3 28.6 

0.4 15.1 13.6 6.8 67.4 8.9 31.1 12.6 7 62.6 6.3 21.4 

0.2 12.7 11.3 4.6 20.3 7.5 28 6.5 5.7 20.7 6.1 17.6 
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Table 6.26: Power Analysis of Contemporaneous Dependent Series without drift 

 

  

 WOD OLS ARDL (1, 1) ARDL (2, 2) 

 
xt xt xt-1 yt-1 xt xt-1 xt-2 yt-1 yt-2 

θ1= θ2 ρ = 1 

1 100 99.6 90.6 100 90.5 51.2 7.8 100 8.4 

0.8 100 97.3 64.1 99.3 87.8 45.1 7.5 100 7.6 

0.6 100 98.5 53.6 98.7 86.3 33.8 7.4 95.1 6.5 

0.4 100 97.8 21.3 92.8 85.4 19.1 7.1 69.2 6.8 

0.2 100 95.3 9.8 87.7 78.2 7.9 7 24.6 6.7 

 
ρ = 0.8 

1 100 99.1 95.2 100 76.1 43.4 7.5 100 7.8 

0.8 100 96.2 75.4 98.1 73.2 39.2 7.6 100 6.6 

0.6 100 95.3 76.5 92.6 72.6 31.2 7.1 94.7 6.4 

0.4 100 94.4 78.4 85.9 71 19.6 7 68.3 6.8 

0.2 100 93.7 8.5 79.3 70.7 7.6 6.6 22.1 6.7 

 
ρ = 0.6 

1 100 98.4 94.2 100 54.1 30.4 7.5 100 7.8 

0.8 100 95.5 50.6 97.1 53 27.5 7.2 100 6.6 

0.6 100 95.1 54.1 92.1 52.5 28.1 7 95.1 6.5 

0.4 100 93.9 53.8 81.2 52.1 17.5 7.1 67.1 6.5 

0.2 100 93.1 15.1 78.7 54.1 8.1 6.3 21.8 6.8 

 
ρ = 0.4 

1 100 97.9 91.5 100 51.5 28.5 7.4 100 7.1 

0.8 100 94.9 49.1 96.2 50.2 27.4 7.2 99.8 6.2 

0.6 100 93.7 33.9 90.1 49.1 26.9 7.2 94.3 6.8 

0.4 100 91.5 26.4 76.8 47.6 13.1 7 69.1 6.5 

0.2 100 88.4 21.4 68.3 45.1 7.9 5.9 20.1 6.7 

 
ρ = 0.2 

1 100 97.3 88.8 100 50.2 23.6 7.3 100 7.2 

0.8 100 94.7 44.1 93.4 37.9 23.4 7.1 96.3 6.8 

0.6 100 89.6 25.4 87.1 36.9 19.8 7 93.7 6.4 

0.4 100 81.4 15.2 69.9 31.1 12.6 7 65.1 6.3 

0.2 100 74.7 13.1 62.3 30 7.5 5.7 19.8 6.2 
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Table 6.27: Power Analysis of Contemporaneous Dependent Series with drift 

 WD OLS ARDL (1, 1) ARDL (2, 2) 

 
Xt xt xt-1 yt-1 xt xt-1 xt-2 yt-1 yt-2 

θ1= θ2 ρ = 1 

1 100 95.8 69.2 100 94.6 56.2 7.5 100 7.6 

0.8 97.3 95.3 59.5 100 87.4 47.5 7.6 100 6.6 

0.6 96.9 93.8 37.4 96.7 86.2 31.7 7.2 96.5 6.5 

0.4 95.3 93.6 22.4 70.3 85.4 19.3 7.1 68.4 6.5 

0.2 93.2 92.3 9.4 20.5 84.2 10.4 6.7 22.3 6.7 

 
ρ = 0.8 

1 98.2 85.6 53.7 100 83.1 39.2 7.5 100 7.8 

0.8 94.2 83.2 45.2 99.8 81.2 19.2 7.6 100 6.6 

0.6 86.5 82.4 26.9 95.2 77.4 18.6 7.1 95.9 6.4 

0.4 82.1 79.1 16.9 69.9 76.1 11.2 7 67.5 6.5 

0.2 78.1 78.5 7.1 23.3 75.2 10.2 6.6 21.4 6.7 

 
ρ = 0.6 

1 97.9 62.4 32.2 100 72.5 29.7 7.5 100 7.8 

0.8 82.1 50.6 29.5 99.5 62.1 27.5 7.2 100 6.6 

0.6 76.4 54.1 16.2 96.1 61 27.3 7 95.8 6.4 

0.4 69.3 53.8 12.5 66.4 57.3 15.8 7.1 65.6 6.5 

0.2 57.9 54.7 7.2 19.1 52.2 8.1 6.3 20.1 6.7 

 
ρ = 0.4 

1 97.5 70.5 23.3 100 50.6 28.5 7.4 100 7.3 

0.8 81.3 49.1 16.5 99.4 49.9 27.4 7.2 99.8 6.2 

0.6 44.5 30.9 10.6 95.4 49.2 26.9 7.2 94.3 6.3 

0.4 39.3 28.4 8.6 70.8 47.3 13.1 7 69.1 6.5 

0.2 32.1 58 6.2 22.3 46.1 7.9 5.9 20.1 6.7 

 
ρ = 0.2 

1 97.4 70.8 21.5 100 50.2 23.6 7.3 100 7.2 

0.8 78.7 40.1 7.7 99.7 37.7 23.4 7.1 97.6 6.6 

0.6 57.5 10.4 8.7 95.1 36.9 19.7 7 91.2 6.3 

0.4 31.6 13.6 6.8 67.4 31.1 12.6 7 62.6 6.3 

0.2 13.4 13.8 5.5 19.3 28 6.5 5.7 20.7 6.1 
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Table 6.28: Power Analysis of Contemporaneous Dependent Series with drift and 

trend 

 WDT OLS ARDL (1, 1) ARDL (2, 2) 

 
xt xt xt-1 yt-1 xt xt-1 xt-2 yt-1 yt-2 

θ1= θ2 ρ = 1 

1 100 98.8 90.7 100 89.8 54.2 7.4 100 8.5 

0.8 100 98.6 64.3 99.2 87.9 47.4 7.6 100 7.3 

0.6 100 97.9 53.9 98.6 86.7 31.2 7.2 99.8 6.5 

0.4 100 96.3 21.3 91.6 84.9 19.1 7.1 87.4 6.2 

0.2 100 95.1 11.8 87.1 80.2 7.9 6.7 722 6.1 

 
ρ = 0.8 

1 100 97.8 95.7 100 75.1 41.4 7.5 100 7.6 

0.8 100 96.6 76.2 98.1 73.2 39.2 7.6 100 6.4 

0.6 100 95.9 76.5 92.9 71.4 31.2 7.1 95.9 6.2 

0.4 100 94.5 75.1 86.3 70.9 18.6 7 67.5 6.9 

0.2 100 94.7 10.5 71.6 68.7 7.6 6.6 51.1 6.1 

 
ρ = 0.6 

1 100 97.5 76.5 100 52.5 29.7 7.5 100 7.5 

0.8 100 94.3 52.4 98.2 52.3 27.8 7.2 97.4 6.8 

0.6 100 94.1 54.1 96.1 51.8 27.3 7 95.1 6.1 

0.4 100 93.8 52.4 68.4 51.4 15.8 7.1 67.1 5.9 

0.2 100 92.6 51.3 17.1 52.2 8.5 6.3 31.5 6 

 
ρ = 0.4 

1 100 95.1 73.5 100 51.6 28.5 7.4 100 7.3 

0.8 100 94.6 32.6 97.3 49.7 27.4 7.2 96.1 6.2 

0.6 100 92.7 30.4 95.4 46.5 26.7 7.2 93.8 6.3 

0.4 100 91.4 29.4 72.8 44.3 13.2 7 64.2 6.5 

0.2 100 86.8 31.3 25.4 46.8 7.2 5.9 20 6.7 

 
ρ = 0.2 

1 100 94.3 70.8 100 50.6 23.6 7.3 100 7.2 

0.8 100 93.9 42.1 95.3 38.7 23.4 7.1 94.3 6.6 

0.6 100 89.4 10.4 94.2 36.9 20.7 7 92.4 6 

0.4 100 82.5 13.7 69.8 29.8 12.6 7 63.6 5.9 

0.2 100 76.8 14.3 22.1 24.3 5.3 5.7 19.3 6.1 
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In first row of first panel of table 6.25, the results are indicating that when series are 

nonstationary, θ1=1 and θ2=0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0 and covariance ρ=1, then the OLS power is 76.5%, which shows 18.5% power 

loss on the basis of 5% nominal size. In case of ARDL models F-test are being used to 

test the joint significance of current and lag values of independent variable. The F-stat 

value after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) 

model is 87.5% which shows 7.5% power loss at 5% nominal size. The power of ARDL 

(2, 2) is 82.3% and loss of power is 12.7% at 5% nominal size.  

In second row of first panel of table 6.25, the results are representing that when series 

are stationary, θ1= 0.8 and θ2 = 0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0 and ρ= 1, then the OLS power is 77.2%, which shows 17.8% power loss on the 

basis of 5% nominal size. In case of ARDL models F-test is being used to test the joint 

significance of current and lag values of independent variable. The F-stat value after 

employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model is 

81.2% which shows 13.8% power loss at 5% nominal size. The power of ARDL (2, 2) 

is 80.2% and loss of power is 14.8% at 5% nominal size. 

In first row of second panel of table 6.25, the results are indicating that when series are 

nonstationary, θ1=1 and θ2=0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0 and ρ= 0.8, then the OLS power is 72.1%, which shows 22.9% power loss on 

the basis of 5% nominal size. In case of ARDL models F-test are being used to test the 

joint significance of current and lag values of independent variable. The F-stat value 

after employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model 

is 74.6% which shows 20.4% power loss at 5% nominal size. The power of ARDL (2, 

2) is 64.9% and loss of power is 30.1% at 5% nominal size.  
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In second row of second panel of table 6.25, the results are representing that when series 

are stationary, θ1= 0.8 and θ2 = 0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0, 

θ21=0 and ρ= 0.8 then the OLS power is 67.3%, which shows 27.7% power loss on the 

basis of 5% nominal size. In case of ARDL models F-test are being used to test the joint 

significance of current and lag values of independent variable. The F-stat value after 

employing ARDL (1, 1) model is indicating that the power of ARDL (1, 1) model is 

69.7% which shows 25.3% power loss at 5% nominal size. The power of ARDL (2, 2) 

is 56.7% and loss of power is 38.3% at 5% nominal size. 

It shows that the conventional OLS method badly suffers in power problem when series 

are nonstationary even they are stationary with no drift and trend. On contrary ARDL 

model is not showing huge power in both cases. It clarifies that when series are 

stationary or nonstationary without having drift and trend ARDL works better than 

OLS.  

In first row of first panel of table 6.26, the results show that when we regressed 

nonstationary seriesθ1=1 and θ2=0.8, without drift, a1= b1= 0, θ21 = 0 and ρ= 1 by 

using OLS, the probability of rejection of false null hypothesis (power) is 100%, which 

represents a misleading figure.  Because as seen above in table 5.1 the OLS has huge 

size distortion problem, specially, when series are with linear trend. That is why it is 

showing 100% power which does not exist in reality. The F-test used only in one case 

for displaying the joint significance of independent lag and current value. So, table 6.26, 

6.27 and 6.28 have only t-stat values. After employing ARDL (1, 1) model the power 

of current value of x is 99.6%, which shows only 0% power loss. The reason behind it 

is that we did not include linear trend in ARDL if we include linear trend in it may 

provide more power. The numeral of lag value of x is showing only 90.6% power which 

means 4.4% power loss. In ARDL (2, 2) model the first lag value of x showing 51.2% 
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probability of rejection of the false null hypothesis. The powers of current and second 

lag values of x are 90.5% and 7.8%, which show 4.5% and 87.2% power loss 

respectively  

As we know that y value is determined through lag value of x, but the first lag value are 

more significant as compare to current value of x.  The reason is that there is 

multicollinearity effect, the current and lag values of x variable are collinear that is why 

the effect shifts into lag value in ARDL(1, 1) and in lag value in ARDL (2, 2).  

In second row of first panel of table 6.26, the results illustrate that when we regressed 

stationary series θ1=0.8 and θ2=0.8, without drift, a1= b1= 0, θ21 = 0 and ρ= 1 by using 

OLS, the probability of rejection of false null hypothesis (power) is 100%, which 

represents a misleading figure. Because as we see in table 5.1, the OLS has huge size 

distortion problem, specially, when series are with linear trend. That is why, it is 

showing 100% power which does not exist in reality. After employing ARDL (1, 1) 

model, the power of current value of x is 97.3%, which means only 0% power loss, the 

reason is that we did not include linear trend in ARDL. If we include linear trend, it 

may provide more power. The figure of lag value of x is showing only 64.1% power 

which means 30.9% power loss. In ARDL (2, 2), model the first lag value of x is 

showing 87.7% probability of rejection the false null hypothesis. The powers of current 

and second lag values of x are 45.1% and 7.5%, which shows 49.9% and 87.5% power 

loss respectively  

Same pattern has been found on other values of θ21 like, 0.6 and so on. On all these 

points ARDL shows better performance as compare to OLS.  

On some values of parameter𝑠 θ1 and θ2, and θ21 and OLS shows more power but we 

cannot consider it because as we have seen in size analysis the OLS suffers badly in 
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size problem while ARDL in all cases has less size problem. In case without drift or 

with linear trend, and with drift and trend due to under specification, ARDL shows size 

problem but even in these cases OLS has more size distortion as compare to ARDL 

model.  

There is another special effect which we should consider, In case of stationary and 

nonstationary time series the ARDL model works very well but it becomes unable to 

reduce the probability of spurious regression significantly in presence of trend. 

Basically both models OLS and ARDL are under specified because the series are having 

linear trend but models do not have linear trend term in their equations. On the other 

hand, we can see that the OLS model completely failed to tackle this problem but ARDL 

model works well as compare to OLS in size analysis. There is an important point, our 

data generating process in equation 6.1, generates first order autoregressive series 

AR(1) but we used second lag in ARDL (2, 2) model, so in case of over specification 

ARDL (2, 2) shows more power in case of stationary series as compare to ARDL (1, 1) 

and OLS. It also explores that the ARDL models perform better than OLS in under 

specification and over specification.  

Similarly table 6.27 and 6.28 results also display the results of next two scenarios of lag 

and contemporaneous dependent series with drift and with drift and trend. So, the 

interpretations of these cases are approximately alike that is why we are interpreting 

them here. The lag values of y itself are highly significant in all cases, but one thing 

which is necessary is that as we reduce the value of autoregressive terms, the lag 

significance is also going to decrease in case of ARDL not in OLS.  
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6.4 Robustness of Power to Misspecification 

In this analysis we evaluate the robustness of conventional cointegration procedures 

Engle and Granger, Johansen and Juselius and ARDL model with different 

specifications on the basis of power analysis. The possible three specification cases 

which have been considered in this analysis are under, exact and over specified 

regression. The Monte Carlo simulations have been used in this analysis. All the results 

in tables given below have been summarized after 100,000 times simulations.  The 

series have been generated by using data generating process in equation 5.6. In this 

analysis only nonstationary series are used and with autoregressive parameter 

specification θ1=1 and θ1=0.8.  

Specification Cases 

  Data Generating Process 

  Drift Drift and Trend 

Test  Equation 
Drift Exactly Specified Under Specified 

Drift and Trend Over Specified Exactly Specified 

 

In our analysis two cases of exact specification have been considered. First, when data 

generating process and test equation both contain drift term second, when data 

generating process and test equation both contain drift and trend term. The under 

specification means when data generating process contains drift and trend and test 

equation takes on drift and trend terms. The over specification generates when data 

generating process contains drift and test equation takes drift and trend terms.  

In fact, Regression analysis comprises three major stages, model specification, 

estimation of regression parameters and interpretation of estimated parameters. Thus 

first and crucial stage is the specification of regression equation. The reliability of 

estimated parameters and interpretation mainly rely on the correct specification of 
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model. Consequently, misspecification can generate two types of errors. First when we 

include theoretically irrelevant variable(s) in regression equation and second, when we 

exclude theoretically relevant variable from regression equation. These specification 

errors can generate estimation and interpretation problems. Misspecification may 

produce any little problem when the independent variables are uncorrelated or 

orthogonal to each other. When we include or omit an orthogonal independent variable 

from regression equation, it will affect the standard errors of partial regression 

coefficients. The exclusion of relevant variable has serious issues, it will lead to size 

and power problems. In this analysis we compare the power of conventional 

cointegration procedures and ARDL model and see which one is working well in these 

three types of specifications. 

In this analysis we estimate the power of conventional cointegration procedures and 

ARDL model because of series dependent. The powers of conventional cointegration 

procedures and ARDL model are measured by taking different specifications and 

different values of. θ2. We used three types of dependent series in this analysis 

i. Lag dependent series 

ii. Contemporaneous and lag dependent series  

iii. Contemporaneous dependent series 

The results are summarized in given below tables after 100,000 simulations. Different 

specifications of regression equations have been taken as follows: 

i. Exactly specified  

ii. Under specified  

iii. Over specified  

The description of these specifications has been given in chapter 5.  
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Table 6.29: Power Analysis of Engle and Granger Cointegration Test by using Lag 

dependent Series at Different Specifications 

Engle Granger (EG) Cointegration Test 

 𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
24.1 30.5 

Drift and Trend  
10.1 19.1 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
60.1 50.2 

Drift and Trend  
70.8 51.6 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
96.3 64.7 

Drift and Trend  
97.6 63.8 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 
Drift 

99.9 98.1 

Drift and Trend  98.7 99.9 
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Table 6.30: Power Analysis of Johansen and Juselius Cointegration Test by using 

Lag dependent Series at Different Specifications  

Johansen and Juselius (JJ) Cointegration Test 

 𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
38.4 48.7 

Drift and Trend  
22.2 25.1 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
64.7 51.3 

Drift and Trend  
44.8 60.6 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
81.3 85.3 

Drift and Trend  
78.4 99.2 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
91.5 99.9 

Drift and Trend  
98.1 100 
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Table 6.31: Power Analysis of ARDL Model by using Lag dependent Series at 

Different Specifications 

ARDL Model 

 𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
98.1 98.7 

Drift and Trend  
99 99.9 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
99.3 99 

Drift and Trend  
99 99.9 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
99.5 99 

Drift and Trend  
99 100 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 100 

 

Table 6.29, shows the results of power of Engle and Granger cointegration test under 

different specifications at different values of autoregressive parameter θ2. At first we 

consider correct specification with drift and drift and trend cases. The first panel of 
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table 6.29, describes the results of Engle and Granger cointegration test when θ2=0.8. 

The power in case of correct specification is 24.1% with drift. It shows 70.9% power 

loss when autoregressive parameter θ2= 0.8 and x lag value coefficient θ21= 0.8. The 

power under correct specification is 24.1% with drift and trend. It shows 75.9% power 

loss when lag value parameter of y  is θ2= 0.8 and x lag value coefficient is θ21= 0.8. 

Table 6.30 describes the results of power of Johansen and Juselius cointegration test 

under different specifications at different values of autoregressive parameter θ2. Firstly, 

we consider correct specification with drift and drift and trend cases. The first panel of 

table 6.30, refers the results of Johansen and Juselius cointegration test when θ2=0.8. 

The power in case of correct specification is 38.4% with drift. It shows 56.6% power 

loss when θ2= 0.8 and x lag value coefficient is θ21= 0.8. The power under correct 

specification is 25.1% with drift and trend. It shows 74.9% power loss when θ2= 0.8 

andθ21= 0.8.  Table 6.31, describes the results of power of ARDL model under different 

specifications at different values of autoregressive parameter θ2. Firstly, we consider 

correct specification with drift and drift and trend cases. The first panel of table 6.31, 

refers the results of ARDL model when θ2=0.8. The power in case of correct 

specification is 98.1% with drift. It shows 0% power loss when θ2= 0.8 and θ21= 0.8. 

The power under correct specification is 99.9% with drift and trend. It shows 0% power 

loss at θ2= 0.8 and θ21= 0.8.  

The second panel of table 6.29, illustrates the power results of Engle and Granger 

cointegration test when θ2=0.6. The power in case of correct specification is 60.1% 

with drift. It shows 34.9% power loss when θ2= 0.6 andθ21= 0.8. The power under 

correct specification is 51.6% with drift and trend, it shows 43.4% power loss when 

θ2= 0.8 andθ21= 0.8. The second panel of table 6.30 given above explains the power 

results of Johansen and Juselius cointegration test when θ2=0.6. The power in case of 
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correct specification is 64.7% with drift, it shows 30.3% power loss when θ2= 0.6 

andθ21= 0.8. The power under correct specification is 60.6% with drift and trend, it 

shows 34.4% power loss when θ2= 0.8 andθ21= 0.8. The second panel of table 6.31 

given above describes the power results of ARDL model when θ2=0.6. The power in 

case of correct specification is 99.3% with drift, it shows 0% power loss when θ2= 0.6 

and θ21= 0.8. The power under correct specification is 99.9% with drift and trend, it 

shows 0% power loss when θ2= 0.8 andθ21= 0.8. The order of statistics of power in 

case of correct specification is following: 

Power (ARDL > 𝐽𝐽 > 𝐸𝐺) 

Thus, these results validate that conventional cointegration procedures are having very 

low power when checked at θ2= 0.8 andθ21= 0.8. On contrast, the ARDL model has no 

power loss compare to Johansen and Juselius cointegration tests. It means in case of 

correct specification, the ARDL model works well than other conventional techniques.  

Similarly, when the values of autoregressive parameters are  θ2 = 0.4 and 0.2, same 

pattern has been found. It clearly indicates that in correct specification cases the ARDL 

model have huge power while conventional cointegration procedures are having huge 

power loss. We cannot compare the power of these tests and ARDL model because as 

we have seen in size analysis these cointegration procedure suffer in size distortion 

problem even in case of correct specification.  

 Secondly, we consider the case of under specification. Table 6.29, shows the results of 

power of Engle and Granger cointegration test under different specifications at different 

values of autoregressive parameter θ2. The first panel of table 6.29, describes the results 

of Engle and Granger cointegration test when θ2=0.8. The power in case of under 

specification is 30.5% with drift. it shows 64.5% power loss when θ2= 0.8 andθ21= 0.8. 
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Table 6.30, shows the results of power of Johansen and Juselius cointegration tests 

under different specifications at different values of autoregressive parameter θ2. The 

first panel of table 6.30, describes the results of Johansen and Juselius cointegration test 

when θ2=0.8. The power in case of under specification is 48.7% with drift. It shows 

46.3% power loss when θ2= 0.8 andθ21= 0.8. Table 6.31, shows the results of power 

of ARDL model under different specifications at different values of autoregressive 

parameter θ2. The first panel of table 6.31 describes the results of ARDL model when 

θ2=0.8. The power in case of under specification is 98.7% with drift. it shows 0% power 

loss when θ2= 0.8 andθ21= 0.8. Table 6.29, shows the results of power of Engle and 

Granger cointegration test under different specifications at different values of 

autoregressive parameter θ2. The second panel of table 6.29, describes the results of 

Engle and Granger cointegration test when θ2=0.6. The power in case of under 

specification is 50.2%, it shows 44.8% power loss when θ2= 0.6 andθ21= 0.8. Table 

6.30, shows the results of power of Johansen and Juselius cointegration test under 

different specifications at different values of autoregressive parameter θ2. The second 

panel of table 6.30, describes the results of Johansen and Juselius cointegration test 

when θ2=0.6. The power in case of under specification is 51.3% with drift. It shows 

43.7% power loss when θ2= 0.6 andθ21= 0.8. Table 6.31 shows the results of power of 

ARDL model under different specifications at different values of autoregressive 

parameter θ2. The first panel of table 6.31, describes the results of ARDL model when 

θ2=0.6. The power in case of under specification is 99.0% with drift. It shows 0% power 

loss when θ2= 0.6 andθ21= 0.8.  

Thus, these results validate that conventional cointegration procedure Engle and 

Granger Johansen and Juselius cointegration test are having very low power when  θ2= 

0.8 andθ21= 0.8. On the other hand, the ARDL model shows no power loss compare to 
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Johansen and Juselius cointegration test. It does not mean in case of under specification 

the ARDL model works well than other conventional techniques.  

In case of under specification, ARDL model badly suffers in size distortion problem as 

we have seen in size analysis. So, we cannot say that ARDL has power on the basis of 

these statistics that is in under specification according to our estimation the Johansen 

and Juselius cointegration test works well. Because it has minimum size distortion 

under specification. The order of power of ARDL in case of under specification is given 

in the following equation: 

Power (JJ > 𝐸𝐺 > 𝐴𝑅𝐷𝐿) 

Similarly at all the values of autoregressive parameter θ2 = 0.4 and 0.2 same pattern 

has been found.   

At third we consider the case of over specification. Table 6.29, shows the results of 

power of Engle and Granger cointegration test over different specifications at different 

values of autoregressive parameter θ2. The first panel of table 6.29,  describes the 

results of Engle and Granger cointegration test when θ2=0.8. The power in case of over 

specification is 24.1%.  It shows 70.9% power loss when θ2=0.8 andθ21= 0.8. Table 

6.30, shows that the results of power of Johansen and Juselius cointegration test over 

different specifications at different values of autoregressive parameter θ2. The first 

panel of table 6.30,  describes the results of Johansen and Juselius cointegration test 

when θ2=0.8. The power in case of under specification is 38.4% with drift. It shows 

56.6% power loss when θ2= 0.8 andθ21= 0.8. Table 6.31, shows the results of power 

of ARDL model under different specifications at different values of autoregressive 

parameter θ2. The first panel of table 6.31,  describes the results of ARDL model when 

θ2=0.8. The power in case of over specification is 98.1% with drift. It shows 0% power 
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loss when θ2= 0.8 andθ21= 0.8. The second panel of table 6.29 describes the results of 

Engle and Granger cointegration test when θ2=0.6. The power in case of over 

specification is 60.1%. It shows 34.9% power loss when θ2= 0.6 andθ21= 0.8. The 

second panel of table 6.30 describes the results of Johansen and Juselius cointegration 

test when θ2=0.6. The power in case of under specification is 64.7% with drift, it shows 

30.3% power loss when θ2= 0.6 andθ21= 0.8. The first panel of table 6.31, describes 

the results of ARDL model when θ2=0.6. The power in case of under specification is 

99.3% with drift. It shows 0% power loss when θ2= 0.6 andθ21= 0.8.  

Thus, these results validate that conventional cointegration procedure Engle and 

Granger Johansen and Juselius cointegration test are having very low power when we 

check them at at θ2= 0.8 and 0.6, andθ21= 0.8. On contrast, the ARDL model shows no 

power loss as compare to Johansen and Juselius cointegration test. It means in case of 

over specification, the ARDL model works well than other conventional techniques.  In 

case of over specification ARDL model does not suffer in size distortion problem as we 

have seen in size analysis. So, we can say that ARDL has more power in case of over 

specification.  The power of ARDL is given as follows; 

Power  (ARDL > 𝐽𝐽 > 𝐸𝐺) 

Similarly at all the values of autoregressive parameter θ2 = 0.4 and 0.2 same pattern 

has been found. It clearly indicates that in over specification ARDL works good as 

compare to other techniques.   

There is a special effect which needs to be analyzed. If we decrease the value of 

autoregressive parameter θ2 from 0.8 to 0.6 and so on, the powers of these procedures 

are increasing. The reason behind this is that power of test depends upon relationship 

between y and x, in presence of high autoregressive parameter value. That is why as we 
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decrease the value of lag of y the relationship between y and x, gets stronger. Other 

reason is that in this analysis we only decrease the value of autoregressive parameter 

θ2 from 0.8 to 0.2 but we do not change parameter value of lag of x. θ21=0.8. Due to 

this reason lag of x. gets strong correlation as we decrease θ2 value. In other words, 

when decrease θ2 value θ21 remians same, then y depends more on x. as compare to its 

own lag.  
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Table 6.32: Power Analysis of Engle and Granger Cointegration Test by using Lag 

and Contemporaneous dependent Series at Different Specifications 

when 𝛒 = 𝟏 

Engle Granger (EG) Cointegration Test 

  𝛒 = 𝟏 

  𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 53.2 56.4 

Drift and Trend  50.5 51.6 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 61.2 64.7 

Drift and Trend  71.2 55.4 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 91.9 80.3 

Drift and Trend  96.7 60.1 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 99.8 99.7 

Drift and Trend  99.9 99 

 

 

  



139 
 

Table 6.33: Power Analysis of Johansen and Juselius Cointegration Test by using 

Lag and Contemporaneous dependent Series at Different 

Specifications when 𝛒 = 𝟏 

Johansen and Juselius (JJ) Cointegration Test 

  𝛒 = 𝟏 

  𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 54.6 62.3 

Drift and Trend  53.8 52.1 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 65.2 56.9 

Drift and Trend  74.8 58.3 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 94.1 65.8 

Drift and Trend  98.2 87.3 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 100 99 

Drift and Trend  99 99 
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Table 6.34: Power Analysis of ARDL Model by using Lag and Contemporaneous 

dependent Series at Different Specifications when 𝛒 = 𝟏 

ARDL Model 

  𝛒 = 𝟏 

  𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 99.9 99 

Drift and Trend  99 99 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 99.9 99 

Drift and Trend  99 99 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 100 99 

Drift and Trend  99 100 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 100 99 

Drift and Trend  99 100 

 

Table 6.32, shows the results of power of Engle and Granger cointegration test under 

different specifications at different values of autoregressive parameter θ2 when 
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covariance ρ = 1. At first we consider correct specification with drift and drift and trend 

cases. The first panel of table 6.32, describes the results of Engle and Granger 

cointegration test when θ2=0.8. The power in case of correct specification is 53.2% 

with drift. It shows 41.5% power loss when autoregressive parameter θ2= 0.8 and x lag 

value coefficient θ21= 0.8. The power under correct specification is 51.6% with drift 

and trend. It shows 43.4% power loss when lag value parameter of y  is θ2= 0.8 and x 

lag value coefficient is θ21= 0.8. Table 6.33 describes the results of power of Johansen 

and Juselius cointegration test under different specifications at different values of 

autoregressive parameter θ2. Firstly, we consider correct specification with drift and 

drift and trend cases. The first panel of table 6.33, refers the results of Johansen and 

Juselius cointegration test when θ2=0.8. The power in case of correct specification is 

54.6% with drift. It shows 40.4% power loss when θ2= 0.8 and x lag value coefficient 

is θ21= 0.8. The power under correct specification is 52.2% with drift and trend. It 

shows 42.8% power loss when θ2= 0.8 andθ21= 0.8.  Table 6.34, describes the results 

of power of ARDL model under different specifications at different values of 

autoregressive parameter θ2. Firstly, we consider correct specification with drift and 

drift and trend cases. The first panel of table 6.34, refers the results of ARDL model 

when θ2=0.8. The power in case of correct specification is 99.9% with drift. It shows 

0% power loss when θ2= 0.8 and θ21= 0.8. The power under correct specification is 

99.9% with drift and trend. It shows 0% power loss at θ2= 0.8 and θ21= 0.8.  

The second panel of table 6.32, illustrates the power results of Engle and Granger 

cointegration test when θ2=0.6. The power in case of correct specification is 61.2% 

with drift. It shows 33.8% power loss when θ2= 0.6 andθ21= 0.8. The power under 

correct specification is 55.4% with drift and trend, it shows 39.6% power loss when 

θ2= 0.8 and θ21= 0.8. The second panel of table 6.33 given above explains the power 
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results of Johansen and Juselius cointegration test when θ2=0.6. The power in case of 

correct specification is 65.2% with drift, it shows 29.8% power loss when θ2= 0.6 and 

θ21= 0.8. The power under correct specification is 58.3% with drift and trend, it shows 

36.7% power loss when θ2= 0.8 and θ21= 0.8. The second panel of table 6.34 given 

above describes the power results of ARDL model when θ2=0.6. The power in case of 

correct specification is 99.9% with drift, it shows 0% power loss when θ2= 0.6 and θ21= 

0.8. The power under correct specification is 99.0% with drift and trend, it shows 0% 

power loss when θ2= 0.8 andθ21= 0.8. The order of statistics of power in case of correct 

specification is following: 

Power  (ARDL > 𝐽𝐽 > 𝐸𝐺) 

Thus, these results validate that conventional cointegration procedures are having very 

low power when checked at θ2= 0.8 andθ21= 0.8. On contrast, the ARDL model has no 

power loss compare to Johansen and Juselius cointegration tests. It means in case of 

correct specification, the ARDL model works well than other conventional techniques.  

Similarly, when the values of autoregressive parameters are  θ2 = 0.4 and 0.2, same 

pattern has been found. It clearly indicates that in correct specification cases the ARDL 

model have huge power while conventional cointegration procedures are having huge 

power loss. We cannot compare the power of these tests and ARDL model because as 

we have seen in size analysis these cointegration procedure suffer in size distortion 

problem even in case of correct specification.  

 Secondly, we consider the case of under specification. Table 6.32, shows the results of 

power of Engle and Granger cointegration test under different specifications at different 

values of autoregressive parameter θ2. The first panel of table 6.32, describes the results 

of Engle and Granger cointegration test when θ2=0.8. The power in case of under 
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specification is 56.4% with drift. It shows 38.6% power loss when θ2= 0.8 and θ21= 

0.8. Table 6.33, shows the results of power of Johansen and Juselius cointegration tests 

under different specifications at different values of autoregressive parameter θ2. The 

first panel of table 6.33, describes the results of Johansen and Juselius cointegration test 

when θ2=0.8. The power in case of under specification is 62.3% with drift. It shows 

32.7% power loss when θ2= 0.8 andθ21= 0.8. Table 6.34, shows the results of power 

of ARDL model under different specifications at different values of autoregressive 

parameter θ2. The first panel of table 6.34 describes the results of ARDL model when 

θ2=0.8. The power in case of under specification is 99.9% with drift. It shows 0% power 

loss when θ2= 0.8 andθ21= 0.8. Table 6.32, shows the results of power of Engle and 

Granger cointegration test under different specifications at different values of 

autoregressive parameter θ2. The second panel of table 6.32, describes the results of 

Engle and Granger cointegration test when θ2=0.6. The power in case of under 

specification is 64.7%, it shows 30.3% power loss when θ2= 0.6 andθ21= 0.8. Table 

6.33, shows the results of power of Johansen and Juselius cointegration test under 

different specifications at different values of autoregressive parameter θ2. The second 

panel of table 6.33, describes the results of Johansen and Juselius cointegration test 

when θ2=0.6. The power in case of under specification is 56.9% with drift. It shows 

38.1% power loss when θ2= 0.6 andθ21= 0.8. Table 6.34 shows the results of power of 

ARDL model under different specifications at different values of autoregressive 

parameter θ2. The first panel of table 6.34, describes the results of ARDL model when 

θ2=0.6. The power in case of under specification is 99.0% with drift. It shows 0% power 

loss when θ2= 0.6 and θ21= 0.8.  

Thus, these results validate that conventional cointegration procedure Engle and 

Granger Johansen and Juselius cointegration test are having very low power when  θ2= 
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0.8 and θ21= 0.8. On the other hand, the ARDL model shows no power loss compare 

to Johansen and Juselius cointegration test. It does not mean in case of under 

specification the ARDL model works well than other conventional techniques.  

In case of under specification, ARDL model badly suffers in size distortion problem as 

we have seen in size analysis. So, we cannot say that ARDL has power on the basis of 

these statistics that is in under specification according to our estimation the Johansen 

and Juselius cointegration test works well. Because it has minimum size distortion 

under specification. The order of power of ARDL in case of under specification is given 

in the following equation: 

Power  (JJ > 𝐸𝐺 > 𝐴𝑅𝐷𝐿) 

Similarly at all the values of autoregressive parameter θ2 = 0.4 and 0.2 same pattern 

has been found.   

At third we consider the case of over specification. Table 6.32, shows the results of 

power of Engle and Granger cointegration test over different specifications at different 

values of autoregressive parameter θ2. The first panel of table 6.32, describes the results 

of Engle and Granger cointegration test when θ2=0.8. The power in case of over 

specification is 50.5%. It shows 44.5% power loss when θ2=0.8 andθ21= 0.8. Table 

6.33, shows that the results of power of Johansen and Juselius cointegration test over 

different specifications at different values of autoregressive parameter θ2. The first 

panel of table 6.33, describes the results of Johansen and Juselius cointegration test 

when θ2=0.8. The power in case of under specification is 53.8% with drift and trend. It 

shows 41.2% power loss when θ2= 0.8 and θ21= 0.8. Table 6.34, shows the results of 

power of ARDL model under different specifications at different values of 

autoregressive parameter θ2. The first panel of table 6.34, describes the results of 
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ARDL model when θ2=0.8. The power in case of over specification is 99.0% with drift 

and trend. It shows 0% power loss when θ2= 0.8 andθ21= 0.8. The second panel of 

table 6.32 describes the results of Engle and Granger cointegration test when θ2=0.6. 

The power in case of over specification is 71.2%. It shows 23.8% power loss when θ2= 

0.6 and θ21= 0.8. The second panel of table 6.33 describes the results of Johansen and 

Juselius cointegration test when θ2=0.6. The power in case of under specification is 

74.8% with drift, it shows 20.2% power loss when θ2= 0.6 and θ21= 0.8. The second 

panel of table 6.34, describes the results of ARDL model when θ2=0.6. The power in 

case of under specification is 99.3% with drift. It shows 0% power loss when θ2= 0.6 

and θ21= 0.8.  

Thus, these results validate that conventional cointegration procedure Engle and 

Granger Johansen and Juselius cointegration test are having very low power when we 

check them at θ2= 0.8 and 0.6, and θ21= 0.8. On contrast, the ARDL model shows no 

power loss as compare to Johansen and Juselius cointegration test. It means in case of 

over specification, the ARDL model works well than other conventional techniques.  In 

case of over specification ARDL model does not suffer in size distortion problem as we 

have seen in size analysis. So, we can say that ARDL has more power in case of over 

specification.  The power of ARDL is given as follows; 

Power  (ARDL > 𝐽𝐽 > 𝐸𝐺) 

Similarly at all the values of autoregressive parameter θ2 = 0.4 and 0.2 same pattern 

has been found. It clearly indicates that in over specification ARDL works good as 

compare to other techniques.   

There is a special effect which needs to be analyzed. If we decrease the value of 

autoregressive parameter θ2 from 0.8 to 0.6 and so on, the powers of these procedures 
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are increasing. The reason behind this is that power of test depends upon relationship 

between y and x, in presence of high autoregressive parameter value. That is why as we 

decrease the value of lag of y the relationship between y and x, gets stronger. Other 

reason is that in this analysis we only decrease the value of autoregressive parameter 

θ2 from 0.8 to 0.2 but we do not change parameter value of lag of x. θ21=0.8. Due to 

this reason lag of x. gets strong correlation as we decrease θ2 value. In other words, 

when decrease θ2 value θ21 remians same, then y depends more on x. as compare to its 

own lag.  
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Table 6.35: Power Analysis of Engle and Granger Cointegration Test by using Lag 

and Contemporaneous dependent Series at Different Specifications 

when 𝛒 = 𝟎. 𝟖 

Engle Granger (EG) Cointegration Test 

  𝛒 = 𝟎. 𝟖 

  𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
40.7 53.3 

Drift and Trend  
32.6 36.3 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
59.7 62.6 

Drift and Trend  
68.5 55.3 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
91.7 78.4 

Drift and Trend  
96.6 59.6 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
99.98 99.97 

Drift and Trend  
99.99 99.98 
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Table 6.36: Power Analysis of Johansen and Juselius Cointegration Test by using 

Lag and Contemporaneous dependent Series at Different 

Specifications when 𝛒 = 𝟎. 𝟖 

Johansen and Juselius (JJ) Cointegration Test 

  𝛒 = 𝟎. 𝟖 

  𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
41.6 50.2 

Drift and Trend  
37.7 39.9 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
63.5 56.4 

Drift and Trend  
72.1 57.1 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
93.2 66.4 

Drift and Trend  
98 94.3 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 99 
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Table 6.37: Power Analysis of ARDL Model by using Lag and Contemporaneous 

dependent Series at Different Specifications when 𝛒 = 𝟎. 𝟖 

ARDL Model 

  𝛒 = 𝟎. 𝟖 

  𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
99 99 

Drift and Trend  
99 99 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 99 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 100 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 100 

 

Table 6.35, shows the results of power of Engle and Granger cointegration test under 

different specifications at different values of autoregressive parameter θ2 when 

covariance ρ = 0.8. At first we consider correct specification with drift and drift and 
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trend cases. The first panel of table 6.35, describes the results of Engle and Granger 

cointegration test when θ2=0.8. The power in case of correct specification is 40.7% 

with drift. It shows 54.3% power loss when autoregressive parameter θ2= 0.8 and x lag 

value coefficient θ21= 0.8. The power under correct specification is 36.3% with drift 

and trend. It shows 58.7% power loss when lag value parameter of y  is θ2= 0.8 and x 

lag value coefficient is θ21= 0.8. Table 6.36 describes the results of power of Johansen 

and Juselius cointegration test under different specifications at different values of 

autoregressive parameter θ2. Firstly, we consider correct specification with drift and 

drift and trend cases. The first panel of table 6.36, refers the results of Johansen and 

Juselius cointegration test when θ2=0.8. The power in case of correct specification is 

41.6% with drift. It shows 44.4% power loss when θ2= 0.8 and x lag value coefficient 

is θ21= 0.8. The power under correct specification is 39.9% with drift and trend. It 

shows 55.1% power loss when θ2= 0.8 andθ21= 0.8.  Table 6.37, describes the results 

of power of ARDL model under different specifications at different values of 

autoregressive parameter θ2. Firstly, we consider correct specification with drift and 

drift and trend cases. The first panel of table 6.37, refers the results of ARDL model 

when θ2=0.8. The power in case of correct specification is 99.9% with drift. It shows 

0% power loss when θ2= 0.8 and θ21= 0.8. The power under correct specification is 

99.9% with drift and trend. It shows 0% power loss at θ2= 0.8 and θ21= 0.8.  

The second panel of table 6.35, illustrates the power results of Engle and Granger 

cointegration test when θ2=0.6. The power in case of correct specification is 59.7% 

with drift. It shows 35.3% power loss when θ2= 0.6 andθ21= 0.8. The power under 

correct specification is 55.3% with drift and trend, it shows 39.7% power loss when 

θ2= 0.8 and θ21= 0.8. The second panel of table 6.36 given above explains the power 

results of Johansen and Juselius cointegration test when θ2=0.6. The power in case of 
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correct specification is 63.5% with drift, it shows 31.5% power loss when θ2= 0.6 and 

θ21= 0.8. The power under correct specification is 57.1% with drift and trend, it shows 

37.9% power loss when θ2= 0.8 and θ21= 0.8. The second panel of table 6.37 given 

above describes the power results of ARDL model when θ2=0.6. The power in case of 

correct specification is 99.9% with drift, it shows 0% power loss when θ2= 0.6 and θ21= 

0.8. The power under correct specification is 99.0% with drift and trend, it shows 0% 

power loss when θ2= 0.8 andθ21= 0.8. The order of statistics of power in case of correct 

specification is following: 

Power  (ARDL > 𝐽𝐽 > 𝐸𝐺) 

Thus, these results validate that conventional cointegration procedures are having very 

low power when checked at θ2= 0.8 and θ21= 0.8. On contrast, the ARDL model has 

no power loss compare to Johansen and Juselius cointegration tests. It means in case of 

correct specification, the ARDL model works well than other conventional techniques.  

Similarly, when the values of autoregressive parameters are  θ2 = 0.4 and 0.2, same 

pattern has been found. It clearly indicates that in correct specification cases the ARDL 

model have huge power while conventional cointegration procedures are having huge 

power loss. We cannot compare the power of these tests and ARDL model because as 

we have seen in size analysis these cointegration procedure suffer in size distortion 

problem even in case of correct specification.  

 Secondly, we consider the case of under specification. Table 6.35, shows the results of 

power of Engle and Granger cointegration test under different specifications at different 

values of autoregressive parameter θ2. The first panel of table 6.35, describes the results 

of Engle and Granger cointegration test when θ2=0.8. The power in case of under 

specification is 53.3% with drift. It shows 41.7% power loss when θ2= 0.8 and θ21= 
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0.8. Table 6.36, shows the results of power of Johansen and Juselius cointegration tests 

under different specifications at different values of autoregressive parameter θ2. The 

first panel of table 6.36, describes the results of Johansen and Juselius cointegration test 

when θ2=0.8. The power in case of under specification is 50.2% with drift. It shows 

44.8% power loss when θ2= 0.8 andθ21= 0.8. Table 6.37, shows the results of power 

of ARDL model under different specifications at different values of autoregressive 

parameter θ2. The first panel of table 6.37 describes the results of ARDL model when 

θ2=0.8. The power in case of under specification is 99.0% with drift. It shows 0% power 

loss when θ2= 0.8 andθ21= 0.8. Table 6.35, shows the results of power of Engle and 

Granger cointegration test under different specifications at different values of 

autoregressive parameter θ2. The second panel of table 6.35, describes the results of 

Engle and Granger cointegration test when θ2=0.6. The power in case of under 

specification is 62.6%, it shows 32.4% power loss when θ2= 0.6 and θ21= 0.8. Table 

6.36, shows the results of power of Johansen and Juselius cointegration test under 

different specifications at different values of autoregressive parameter θ2. The second 

panel of table 6.36, describes the results of Johansen and Juselius cointegration test 

when θ2=0.6. The power in case of under specification is 56.4% with drift. It shows 

37.6% power loss when θ2= 0.6 andθ21= 0.8. Table 6.37 shows the results of power of 

ARDL model under different specifications at different values of autoregressive 

parameter θ2. The first panel of table 6.37, describes the results of ARDL model when 

θ2=0.6. The power in case of under specification is 99.0% with drift. It shows 0% power 

loss when θ2= 0.6 and θ21= 0.8.  

Thus, these results validate that conventional cointegration procedure Engle and 

Granger Johansen and Juselius cointegration test are having very low power when  θ2= 

0.8 and θ21= 0.8. On the other hand, the ARDL model shows no power loss compare 
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to Johansen and Juselius cointegration test. It does not mean in case of under 

specification the ARDL model works well than other conventional techniques.  

In case of under specification, ARDL model badly suffers in size distortion problem as 

we have seen in size analysis. So, we cannot say that ARDL has power on the basis of 

these statistics that is in under specification according to our estimation the Johansen 

and Juselius cointegration test works well. Because it has minimum size distortion 

under specification. The order of power of ARDL in case of under specification is given 

in the following equation: 

Power   (JJ > 𝐸𝐺 > 𝐴𝑅𝐷𝐿) 

Similarly at all the values of autoregressive parameter θ2 = 0.4 and 0.2 same pattern 

has been found.   

At third we consider the case of over specification. Table 6.35, shows the results of 

power of Engle and Granger cointegration test over different specifications at different 

values of autoregressive parameter θ2. The first panel of table 6.35, describes the results 

of Engle and Granger cointegration test when θ2=0.8. The power in case of over 

specification is 32.6%. It shows 62.4% power loss when θ2=0.8 and θ21= 0.8. Table 

6.36, shows that the results of power of Johansen and Juselius cointegration test over 

different specifications at different values of autoregressive parameter θ2. The first 

panel of table 6.36, describes the results of Johansen and Juselius cointegration test 

when θ2=0.8. The power in case of under specification is 37.7% with drift and trend. It 

shows 57.3% power loss when θ2= 0.8 and θ21= 0.8. Table 6.37, shows the results of 

power of ARDL model under different specifications at different values of 

autoregressive parameter θ2. The first panel of table 6.37, describes the results of 

ARDL model when θ2=0.8. The power in case of over specification is 99.0% with drift 
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and trend. It shows 0% power loss when θ2= 0.8 and θ21= 0.8. The second panel of 

table 6.35 describes the results of Engle and Granger cointegration test when θ2=0.6. 

The power in case of over specification is 68.5%. It shows 26.5% power loss when θ2= 

0.6 and θ21= 0.8. The second panel of table 6.36 describes the results of Johansen and 

Juselius cointegration test when θ2=0.6. The power in case of under specification is 

74.1% with drift, it shows 20.9% power loss when θ2= 0.6 and θ21= 0.8. The second 

panel of table 6.37, describes the results of ARDL model when θ2=0.6. The power in 

case of under specification is 99.0% with drift. It shows 0% power loss when θ2= 0.6 

and θ21= 0.8.  

Thus, these results validate that conventional cointegration procedure Engle and 

Granger Johansen and Juselius cointegration test are having very low power when we 

check them at θ2= 0.8 and 0.6, and θ21= 0.8. On contrast, the ARDL model shows no 

power loss as compare to Johansen and Juselius cointegration test. It means in case of 

over specification, the ARDL model works well than other conventional techniques.  In 

case of over specification ARDL model does not suffer in size distortion problem as we 

have seen in size analysis. So, we can say that ARDL has more power in case of over 

specification.  The power of ARDL is given as follows; 

Power    (ARDL > 𝐽𝐽 > 𝐸𝐺) 

Similarly at all the values of autoregressive parameter θ2 = 0.4 and 0.2 same pattern 

has been found. It clearly indicates that in over specification ARDL works good as 

compare to other techniques.   

There is a special effect which needs to be analyzed. If we decrease the value of 

autoregressive parameter θ2 from 0.8 to 0.6 and so on, the powers of these procedures 

are increasing. The reason behind this is that power of test depends upon relationship 
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between y and x, in presence of high autoregressive parameter value. That is why as we 

decrease the value of lag of y the relationship between y and x, gets stronger. Other 

reason is that in this analysis we only decrease the value of autoregressive parameter 

θ2 from 0.8 to 0.2 but we do not change parameter value of lag of x. θ21=0.8. Due to 

this reason lag of x. gets strong correlation as we decrease θ2 value. In other words, 

when decrease θ2 value θ21 remians same, then y depends more on x. as compare to its 

own lag.  
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Table 6.38: Power Analysis of Engle and Granger Cointegration Test by using Lag 

and Contemporaneous dependent Series at Different Specifications 

when 𝛒 = 𝟎. 𝟔 

Engle Granger (EG) Cointegration Test 

  𝛒 = 𝟎. 𝟔 

  𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
34.1 52.8 

Drift and Trend  
32.4 35.1 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
59.1 60.3 

Drift and Trend  
68.4 55 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
91.3 76.4 

Drift and Trend  
96.1 60 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
99.8 99.6 

Drift and Trend  
99.9 99.5 
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Table 6.39: Power Analysis of Johansen and Juselius Cointegration Test by using 

Lag and Contemporaneous dependent Series at Different 

Specifications when 𝛒 = 𝟎. 𝟔 

Johansen and Juselius (JJ) Cointegration Test 

  𝛒 = 𝟎. 𝟔 

  𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
40.5 48.2 

Drift and Trend  
36.3 38.8 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
61.7 55.6 

Drift and Trend  
71.2 56.8 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
93.3 66.2 

Drift and Trend  
97.7 94 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 98 
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Table 6.40 Power Analysis of ARDL Model by using Lag and Contemporaneous 

dependent Series at Different Specifications when 𝛒 = 𝟎. 𝟔 

ARDL Model 

  𝛒 = 𝟎. 𝟔 

  𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
99 99 

Drift and Trend  
99 99 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 99 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 100 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 100 

 

Table 6.38, shows the results of power of Engle and Granger cointegration test under 

different specifications at different values of autoregressive parameter θ2 when 

covariance ρ = 0.6. At first we consider correct specification with drift and drift and 
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trend cases. The first panel of table 6.38, describes the results of Engle and Granger 

cointegration test when θ2=0.8. The power in case of correct specification is 34.1% 

with drift. It shows 60.9% power loss when autoregressive parameter θ2= 0.8 and x lag 

value coefficient θ21= 0.8. The power under correct specification is 35.1% with drift 

and trend. It shows 59.9% power loss when lag value parameter of y  is θ2= 0.8 and x 

lag value coefficient is θ21= 0.8. Table 6.39 describes the results of power of Johansen 

and Juselius cointegration test under different specifications at different values of 

autoregressive parameter θ2. Firstly, we consider correct specification with drift and 

drift and trend cases. The first panel of table 6.39, refers the results of Johansen and 

Juselius cointegration test when θ2=0.8. The power in case of correct specification is 

40.5% with drift. It shows 54.5% power loss when θ2= 0.8 and x lag value coefficient 

is θ21= 0.8. The power under correct specification is 38.8% with drift and trend. It 

shows 56.2% power loss when θ2= 0.8 andθ21= 0.8.  Table 6.40, describes the results 

of power of ARDL model under different specifications at different values of 

autoregressive parameter θ2. Firstly, we consider correct specification with drift and 

drift and trend cases. The first panel of table 6.40, refers the results of ARDL model 

when θ2=0.8. The power in case of correct specification is 99.0% with drift. It shows 

0% power loss when θ2= 0.8 and θ21= 0.8. The power under correct specification is 

99.0% with drift and trend. It shows 0% power loss at θ2= 0.8 and θ21= 0.8.  

The second panel of table 6.38, illustrates the power results of Engle and Granger 

cointegration test when θ2=0.6. The power in case of correct specification is 59.1% 

with drift. It shows 35.9% power loss when θ2= 0.6 and θ21= 0.8. The power under 

correct specification is 55.0% with drift and trend, it shows 40.0% power loss when 

θ2= 0.8 and θ21= 0.8. The second panel of table 6.39 given above explains the power 

results of Johansen and Juselius cointegration test when θ2= 0.6. The power in case of 
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correct specification is 61.7% with drift, it shows 33.3% power loss when θ2= 0.6 and 

θ21= 0.8. The power under correct specification is 56.8% with drift and trend, it shows 

38.2% power loss when θ2= 0.8 and θ21= 0.8. The second panel of table 6.40 given 

above describes the power results of ARDL model when θ2=0.6. The power in case of 

correct specification is 99.0% with drift, it shows 0% power loss when θ2= 0.6 and θ21= 

0.8. The power under correct specification is 99.0% with drift and trend, it shows 0% 

power loss when θ2= 0.8 andθ21= 0.8. The order of statistics of power in case of correct 

specification is following: 

Power   (ARDL > 𝐽𝐽 > 𝐸𝐺) 

Thus, these results validate that conventional cointegration procedures are having very 

low power when checked at θ2= 0.8 and θ21= 0.8. On contrast, the ARDL model has 

no power loss compare to Johansen and Juselius cointegration tests. It means in case of 

correct specification, the ARDL model works well than other conventional techniques.  

Similarly, when the values of autoregressive parameters are  θ2 = 0.4 and 0.2, same 

pattern has been found. It clearly indicates that in correct specification cases the ARDL 

model have huge power while conventional cointegration procedures are having huge 

power loss. We cannot compare the power of these tests and ARDL model because as 

we have seen in size analysis these cointegration procedure suffer in size distortion 

problem even in case of correct specification.  

 Secondly, we consider the case of under specification. Table 6.38, shows the results of 

power of Engle and Granger cointegration test under different specifications at different 

values of autoregressive parameter θ2. The first panel of table 6.38, describes the results 

of Engle and Granger cointegration test when θ2=0.8. The power in case of under 

specification is 52.8% with drift. It shows 42.2% power loss when θ2= 0.8 and θ21= 
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0.8. Table 6.39, shows the results of power of Johansen and Juselius cointegration tests 

under different specifications at different values of autoregressive parameter θ2. The 

first panel of table 6.39, describes the results of Johansen and Juselius cointegration test 

when θ2=0.8. The power in case of under specification is 48.2% with drift. It shows 

46.8% power loss when θ2= 0.8 andθ21= 0.8. Table 6.40, shows the results of power 

of ARDL model under different specifications at different values of autoregressive 

parameter θ2. The first panel of table 6.40 describes the results of ARDL model when 

θ2=0.8. The power in case of under specification is 99.0% with drift. It shows 0% power 

loss when θ2= 0.8 andθ21= 0.8. Table 6.38, shows the results of power of Engle and 

Granger cointegration test under different specifications at different values of 

autoregressive parameter θ2. The second panel of table 6.38, describes the results of 

Engle and Granger cointegration test when θ2=0.6. The power in case of under 

specification is 60.3%, it shows 34.7% power loss when θ2= 0.6 and θ21= 0.8. Table 

6.39, shows the results of power of Johansen and Juselius cointegration test under 

different specifications at different values of autoregressive parameter θ2. The second 

panel of table 6.39, describes the results of Johansen and Juselius cointegration test 

when θ2=0.6. The power in case of under specification is 55.6% with drift. It shows 

44.4% power loss when θ2= 0.6 andθ21= 0.8. Table 6.40 shows the results of power of 

ARDL model under different specifications at different values of autoregressive 

parameter θ2. The first panel of table 6.40, describes the results of ARDL model when 

θ2=0.6. The power in case of under specification is 99.0% with drift. It shows 0% power 

loss when θ2= 0.6 and θ21= 0.8.  

Thus, these results validate that conventional cointegration procedure Engle and 

Granger Johansen and Juselius cointegration test are having very low power when  θ2= 

0.8 and θ21= 0.8. On the other hand, the ARDL model shows no power loss compare 
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to Johansen and Juselius cointegration test. It does not mean in case of under 

specification the ARDL model works well than other conventional techniques.  

In case of under specification, ARDL model badly suffers in size distortion problem as 

we have seen in size analysis. So, we cannot say that ARDL has power on the basis of 

these statistics that is in under specification according to our estimation the Johansen 

and Juselius cointegration test works well. Because it has minimum size distortion 

under specification. The order of power of ARDL in case of under specification is given 

in the following equation: 

Power   (JJ > 𝐸𝐺 > 𝐴𝑅𝐷𝐿) 

Similarly at all the values of autoregressive parameter θ2 = 0.4 and 0.2 same pattern 

has been found.   

At third we consider the case of over specification. Table 6.38, shows the results of 

power of Engle and Granger cointegration test over different specifications at different 

values of autoregressive parameter θ2. The first panel of table 6.38, describes the results 

of Engle and Granger cointegration test when θ2=0.8. The power in case of over 

specification is 32.4%. It shows 62.6% power loss when θ2=0.8 and θ21= 0.8. Table 

6.39, shows that the results of power of Johansen and Juselius cointegration test over 

different specifications at different values of autoregressive parameter θ2. The first 

panel of table 6.39, describes the results of Johansen and Juselius cointegration test 

when θ2=0.8. The power in case of under specification is 36.3% with drift and trend. It 

shows 58.7% power loss when θ2= 0.8 and θ21= 0.8. Table 6.40, shows the results of 

power of ARDL model under different specifications at different values of 

autoregressive parameter θ2. The first panel of table 6.40, describes the results of 

ARDL model when θ2=0.8. The power in case of over specification is 99.0% with drift 
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and trend. It shows 0% power loss when θ2= 0.8 and θ21= 0.8. The second panel of 

table 6.38 describes the results of Engle and Granger cointegration test when θ2=0.6. 

The power in case of over specification is 68.4%. It shows 26.6% power loss when θ2= 

0.6 and θ21= 0.8. The second panel of table 6.39 describes the results of Johansen and 

Juselius cointegration test when θ2=0.6. The power in case of under specification is 

71.2% with drift, it shows 23.8% power loss when θ2= 0.6 and θ21= 0.8. The second 

panel of table 6.40, describes the results of ARDL model when θ2=0.6. The power in 

case of under specification is 100.0% with drift. It shows 0% power loss when θ2= 0.6 

and θ21= 0.8.  

Thus, these results validate that conventional cointegration procedure Engle and 

Granger Johansen and Juselius cointegration test are having very low power when we 

check them at θ2= 0.8 and 0.6, and θ21= 0.8. On contrast, the ARDL model shows no 

power loss as compare to Johansen and Juselius cointegration test. It means in case of 

over specification, the ARDL model works well than other conventional techniques.  In 

case of over specification ARDL model does not suffer in size distortion problem as we 

have seen in size analysis. So, we can say that ARDL has more power in case of over 

specification.  The power of ARDL is given as follows; 

Power  (ARDL > 𝐽𝐽 > 𝐸𝐺) 

Similarly at all the values of autoregressive parameter θ2 = 0.4 and 0.2 same pattern 

has been found. It clearly indicates that in over specification ARDL works good as 

compare to other techniques.   

There is a special effect which needs to be analyzed. If we decrease the value of 

autoregressive parameter θ2 from 0.8 to 0.6 and so on, the powers of these procedures 

are increasing. The reason behind this is that power of test depends upon relationship 
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between y and x, in presence of high autoregressive parameter value. That is why as we 

decrease the value of lag of y the relationship between y and x, gets stronger. Other 

reason is that in this analysis we only decrease the value of autoregressive parameter 

θ2 from 0.8 to 0.2 but we do not change parameter value of lag of x. θ21=0.8. Due to 

this reason lag of x. gets strong correlation as we decrease θ2 value. In other words, 

when decrease θ2 value θ21 remians same, then y depends more on x. as compare to its 

own lag.  
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Table 6.41: Power Analysis of Engle and Granger Cointegration Test by using Lag 

and Contemporaneous dependent Series at Different Specifications 

when 𝛒 = 𝟎. 𝟒 

Engle Granger (EG) Cointegration Test 

 𝛒 = 𝟎. 𝟒 

 𝛉𝟐= 0.8 

  Data Generating Process 

  Drift Drift and Trend 

Test  Equation 

Drift 
33.3 51.6 

Drift and Trend 
32.2 33.1 

 𝛉𝟐= 0.6 

  Data Generating Process 

  Drift Drift and Trend 

Test  Equation 

Drift 
58.3 58.6 

Drift and Trend 
67.8 54.5 

 𝛉𝟐= 0.4 

  Data Generating Process 

  Drift Drift and Trend 

Test  Equation 

Drift 
90.9 75.8 

Drift and Trend 
96.4 58.1 

 𝛉𝟐= 0.2 

  Data Generating Process 

  Drift Drift and Trend 

Test  Equation 

Drift 
98.9 99 

Drift and Trend 
98 99 
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Table 6.42: Power Analysis of Johansen and Juselius Cointegration Test by using 

Lag and Contemporaneous dependent Series at Different 

Specifications when 𝛒 = 𝟎. 𝟒 

Johansen and Juselius (JJ) Cointegration Test 

  𝛒 = 𝟎. 𝟒 

  𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
39.7 45.8 

Drift and Trend  
34.9 37.7 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
60.8 54.4 

Drift and Trend  
70.6 55.9 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
92.4 66 

Drift and Trend  
97.3 89 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
99 98 

Drift and Trend  
99 99 
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Table 6.43: Power Analysis of ARDL Model by using Lag and Contemporaneous 

dependent Series at Different Specifications when 𝛒 = 𝟎. 𝟒 

ARDL Model 

  𝛒 = 𝟎. 𝟒 

  𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
99 99 

Drift and Trend  
99 99 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 99 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 100 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 100 

 

Table 6.41, shows the results of power of Engle and Granger cointegration test under 

different specifications at different values of autoregressive parameter θ2 when 

covariance ρ = 0.4. At first we consider correct specification with drift and drift and 
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trend cases. The first panel of table 6.41, describes the results of Engle and Granger 

cointegration test when θ2=0.8. The power in case of correct specification is 33.3% 

with drift. It shows 61.7% power loss when autoregressive parameter θ2= 0.8 and x lag 

value coefficient θ21= 0.8. The power under correct specification is 33.1% with drift 

and trend. It shows 61.9% power loss when lag value parameter of y  is θ2= 0.8 and x 

lag value coefficient is θ21= 0.8. Table 6.42 describes the results of power of Johansen 

and Juselius cointegration test under different specifications at different values of 

autoregressive parameter θ2. Firstly, we consider correct specification with drift and 

drift and trend cases. The first panel of table 6.42, refers the results of Johansen and 

Juselius cointegration test when θ2=0.8. The power in case of correct specification is 

39.7% with drift. It shows 55.3% power loss when θ2= 0.8 and x lag value coefficient 

is θ21= 0.8. The power under correct specification is 37.7% with drift and trend. It 

shows 56.3% power loss when θ2= 0.8 and θ21= 0.8. Table 6.43, describes the results 

of power of ARDL model under different specifications at different values of 

autoregressive parameter θ2. Firstly, we consider correct specification with drift and 

drift and trend cases. The first panel of table 6.43, refers the results of ARDL model 

when θ2=0.8. The power in case of correct specification is 99.0% with drift. It shows 

0% power loss when θ2= 0.8 and θ21= 0.8. The power under correct specification is 

99.0% with drift and trend. It shows 0% power loss at θ2= 0.8 and θ21= 0.8.  

The second panel of table 6.41, illustrates the power results of Engle and Granger 

cointegration test when θ2=0.6. The power in case of correct specification is 58.3% 

with drift. It shows 36.7% power loss when θ2= 0.6 and θ21= 0.8. The power under 

correct specification is 54.5% with drift and trend, it shows 40.5% power loss when 

θ2= 0.8 and θ21= 0.8. The second panel of table 6.42 given above explains the power 

results of Johansen and Juselius cointegration test when θ2= 0.6. The power in case of 
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correct specification is 60.8% with drift, it shows 34.2% power loss when θ2= 0.6 and 

θ21= 0.8. The power under correct specification is 55.9% with drift and trend, it shows 

39.1% power loss when θ2= 0.8 and θ21= 0.8. The second panel of table 6.43 given 

above describes the power results of ARDL model when θ2=0.6. The power in case of 

correct specification is 99.0% with drift, it shows 0% power loss when θ2= 0.6 and θ21= 

0.8. The power under correct specification is 99.0% with drift and trend, it shows 0% 

power loss when θ2= 0.8 andθ21= 0.8. The order of statistics of power in case of correct 

specification is following: 

Power  (ARDL > 𝐽𝐽 > 𝐸𝐺) 

Thus, these results validate that conventional cointegration procedures are having very 

low power when checked at θ2= 0.8 and θ21= 0.8. On contrast, the ARDL model has 

no power loss compare to Johansen and Juselius cointegration tests. It means in case of 

correct specification, the ARDL model works well than other conventional techniques.  

Similarly, when the values of autoregressive parameters are  θ2 = 0.4 and 0.2, same 

pattern has been found. It clearly indicates that in correct specification cases the ARDL 

model have huge power while conventional cointegration procedures are having huge 

power loss. We cannot compare the power of these tests and ARDL model because as 

we have seen in size analysis these cointegration procedure suffer in size distortion 

problem even in case of correct specification.  

 Secondly, we consider the case of under specification. Table 6.41, shows the results of 

power of Engle and Granger cointegration test under different specifications at different 

values of autoregressive parameter θ2. The first panel of table 6.41, describes the results 

of Engle and Granger cointegration test when θ2=0.8. The power in case of under 

specification is 51.6% with drift. It shows 38.4% power loss when θ2= 0.8 and θ21= 
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0.8. Table 6.42, shows the results of power of Johansen and Juselius cointegration tests 

under different specifications at different values of autoregressive parameter θ2. The 

first panel of table 6.42, describes the results of Johansen and Juselius cointegration test 

when θ2=0.8. The power in case of under specification is 45.8% with drift. It shows 

49.2% power loss when θ2= 0.8 andθ21= 0.8. Table 6.43, shows the results of power 

of ARDL model under different specifications at different values of autoregressive 

parameter θ2. The first panel of table 6.43 describes the results of ARDL model when 

θ2=0.8. The power in case of under specification is 99.0% with drift. It shows 0% power 

loss when θ2= 0.8 andθ21= 0.8. Table 6.41, shows the results of power of Engle and 

Granger cointegration test under different specifications at different values of 

autoregressive parameter θ2. The second panel of table 6.41, describes the results of 

Engle and Granger cointegration test when θ2=0.6. The power in case of under 

specification is 58.6%, it shows 36.4% power loss when θ2= 0.6 and θ21= 0.8. Table 

6.42, shows the results of power of Johansen and Juselius cointegration test under 

different specifications at different values of autoregressive parameter θ2. The second 

panel of table 6.42, describes the results of Johansen and Juselius cointegration test 

when θ2=0.6. The power in case of under specification is 54.4% with drift. It shows 

40.6% power loss when θ2= 0.6 and θ21= 0.8. Table 6.43 shows the results of power 

of ARDL model under different specifications at different values of autoregressive 

parameter θ2. The first panel of table 6.43, describes the results of ARDL model when 

θ2=0.6. The power in case of under specification is 99.0% with drift. It shows 0% power 

loss when θ2= 0.6 and θ21= 0.8.  

Thus, these results validate that conventional cointegration procedure Engle and 

Granger Johansen and Juselius cointegration test are having very low power when  θ2= 

0.8 and θ21= 0.8. On the other hand, the ARDL model shows no power loss compare 
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to Johansen and Juselius cointegration test. It does not mean in case of under 

specification the ARDL model works well than other conventional techniques.  

In case of under specification, ARDL model badly suffers in size distortion problem as 

we have seen in size analysis. So, we cannot say that ARDL has power on the basis of 

these statistics that is in under specification according to our estimation the Johansen 

and Juselius cointegration test works well. Because it has minimum size distortion 

under specification. The order of power of ARDL in case of under specification is given 

in the following equation: 

Power  (JJ > 𝐸𝐺 > 𝐴𝑅𝐷𝐿) 

Similarly at all the values of autoregressive parameter θ2 = 0.4 and 0.2 same pattern 

has been found.   

At third we consider the case of over specification. Table 6.41, shows the results of 

power of Engle and Granger cointegration test over different specifications at different 

values of autoregressive parameter θ2. The first panel of table 6.41, describes the results 

of Engle and Granger cointegration test when θ2=0.8. The power in case of over 

specification is 32.3%. It shows 62.7% power loss when θ2=0.8 and θ21= 0.8. Table 

6.42, shows that the results of power of Johansen and Juselius cointegration test over 

different specifications at different values of autoregressive parameter θ2. The first 

panel of table 6.42, describes the results of Johansen and Juselius cointegration test 

when θ2=0.8. The power in case of under specification is 34.9% with drift and trend. It 

shows 60.1% power loss when θ2= 0.8 and θ21= 0.8. Table 6.43, shows the results of 

power of ARDL model under different specifications at different values of 

autoregressive parameter θ2. The first panel of table 6.40, describes the results of 

ARDL model when θ2=0.8. The power in case of over specification is 99.0% with drift 
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and trend. It shows 0% power loss when θ2= 0.8 and θ21= 0.8. The second panel of 

table 6.41 describes the results of Engle and Granger cointegration test when θ2=0.6. 

The power in case of over specification is 67.8%. It shows 27.2% power loss when θ2= 

0.6 and θ21= 0.8. The second panel of table 6.42 describes the results of Johansen and 

Juselius cointegration test when θ2=0.6. The power in case of under specification is 

70.6% with drift, it shows 24.4% power loss when θ2= 0.6 and θ21= 0.8. The second 

panel of table 6.43, describes the results of ARDL model when θ2=0.6. The power in 

case of under specification is 99.0% with drift. It shows 0% power loss when θ2= 0.6 

and θ21= 0.8.  

Thus, these results validate that conventional cointegration procedure Engle and 

Granger Johansen and Juselius cointegration test are having very low power when we 

check them at θ2= 0.8 and 0.6, and θ21= 0.8. On contrast, the ARDL model shows no 

power loss as compare to Johansen and Juselius cointegration test. It means in case of 

over specification, the ARDL model works well than other conventional techniques.  In 

case of over specification ARDL model does not suffer in size distortion problem as we 

have seen in size analysis. So, we can say that ARDL has more power in case of over 

specification.  The power of ARDL is given as follows; 

Power (ARDL > 𝐽𝐽 > 𝐸𝐺) 

Similarly at all the values of autoregressive parameter θ2 = 0.4 and 0.2 same pattern 

has been found. It clearly indicates that in over specification ARDL works good as 

compare to other techniques.   

There is a special effect which needs to be analyzed. If we decrease the value of 

autoregressive parameter θ2 from 0.8 to 0.6 and so on, the powers of these procedures 

are increasing. The reason behind this is that power of test depends upon relationship 
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between y and x, in presence of high autoregressive parameter value. That is why as we 

decrease the value of lag of y the relationship between y and x, gets stronger. Other 

reason is that in this analysis we only decrease the value of autoregressive parameter 

θ2 from 0.8 to 0.2 but we do not change parameter value of lag of x. θ21=0.8. Due to 

this reason lag of x. gets strong correlation as we decrease θ2 value. In other words, 

when decrease θ2 value θ21 remians same, then y depends more on x. as compare to its 

own lag.  
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Table 6.44: Power Analysis of Engle and Granger Cointegration Test by using Lag 

and Contemporaneous dependent Series at Different Specifications 

when 𝛒 = 𝟎. 𝟐 

Engle Granger (EG) Cointegration Test 

  𝛒 = 𝟎. 𝟐 

  𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
32.1 50.6 

Drift and Trend  
32.3 33 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
58.0 56.4 

Drift and Trend  
66.2 53.1 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
90.0 74.3 

Drift and Trend  
97.9 57.2 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
99 99 

Drift and Trend  
98 99 
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Table 6.45 Power Analysis of Johansen and Juselius Cointegration Test by using 

Lag and Contemporaneous dependent Series at Different 

Specifications when 𝛒 = 𝟎. 𝟐 

Johansen and Juselius (JJ) Cointegration Test 

  𝛒 = 𝟎. 𝟐 

  𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
38.7 43.9 

Drift and Trend  
34 30.1 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
60.1 52.5 

Drift and Trend  
70.3 54.6 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
92.2 66.4 

Drift and Trend  
96.3 90 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 99 

 

 

  



176 
 

Table 6.46: Power Analysis of ARDL Model by using Lag and Contemporaneous 

dependent Series at Different Specifications when 𝛒 = 𝟎. 𝟐 

ARDL Model 

  𝛒 = 𝟎. 𝟐 

  𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
99 99 

Drift and Trend  
99 99 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 99 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 100 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 100 

 

Table 6.44, shows the results of power of Engle and Granger cointegration test under 

different specifications at different values of autoregressive parameter θ2 when 

covariance ρ = 0.2. At first we consider correct specification with drift and drift and 
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trend cases. The first panel of table 6.44, describes the results of Engle and Granger 

cointegration test when θ2=0.8. The power in case of correct specification is 32.1% 

with drift. It shows 62.9% power loss when autoregressive parameter θ2= 0.8 and x lag 

value coefficient θ21= 0.8. The power under correct specification is 33.0% with drift 

and trend. It shows 62.0% power loss when lag value parameter of y  is θ2= 0.8 and x 

lag value coefficient is θ21= 0.8. Table 6.45 describes the results of power of Johansen 

and Juselius cointegration test under different specifications at different values of 

autoregressive parameter θ2. Firstly, we consider correct specification with drift and 

drift and trend cases. The first panel of table 6.45, refers the results of Johansen and 

Juselius cointegration test when θ2=0.8. The power in case of correct specification is 

38.7% with drift. It shows 56.3% power loss when θ2= 0.8 and x lag value coefficient 

is θ21= 0.8. The power under correct specification is 30.1% with drift and trend. It 

shows 64.9% power loss when θ2= 0.8 and θ21= 0.8. Table 6.46, describes the results 

of power of ARDL model under different specifications at different values of 

autoregressive parameter θ2. Firstly, we consider correct specification with drift and 

drift and trend cases. The first panel of table 6.46, refers the results of ARDL model 

when θ2=0.8. The power in case of correct specification is 99.0% with drift. It shows 

0% power loss when θ2= 0.8 and θ21= 0.8. The power under correct specification is 

99.0% with drift and trend. It shows 0% power loss at θ2= 0.8 and θ21= 0.8.  

The second panel of table 6.44, illustrates the power results of Engle and Granger 

cointegration test when θ2=0.6. The power in case of correct specification is 58.0% 

with drift. It shows 37.0% power loss when θ2= 0.6 and θ21= 0.8. The power under 

correct specification is 53.1% with drift and trend, it shows 41.9% power loss when 

θ2= 0.8 and θ21= 0.8. The second panel of table 6.45 given above explains the power 

results of Johansen and Juselius cointegration test when θ2= 0.6. The power in case of 
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correct specification is 60.1% with drift, it shows 34.9% power loss when θ2= 0.6 and 

θ21= 0.8. The power under correct specification is 54.6% with drift and trend, it shows 

40.4% power loss when θ2= 0.8 and θ21= 0.8. The second panel of table 6.46 given 

above describes the power results of ARDL model when θ2=0.6. The power in case of 

correct specification is 99.0% with drift, it shows 0% power loss when θ2= 0.6 and θ21= 

0.8. The power under correct specification is 99.0% with drift and trend, it shows 0% 

power loss when θ2= 0.8 andθ21= 0.8. The order of statistics of power in case of correct 

specification is following: 

Power  (ARDL > 𝐽𝐽 > 𝐸𝐺) 

Thus, these results validate that conventional cointegration procedures are having very 

low power when checked at θ2= 0.8 and θ21= 0.8. On contrast, the ARDL model has 

no power loss compare to Johansen and Juselius cointegration tests. It means in case of 

correct specification, the ARDL model works well than other conventional techniques.  

Similarly, when the values of autoregressive parameters are  θ2 = 0.4 and 0.2, same 

pattern has been found. It clearly indicates that in correct specification cases the ARDL 

model have huge power while conventional cointegration procedures are having huge 

power loss. We cannot compare the power of these tests and ARDL model because as 

we have seen in size analysis these cointegration procedure suffer in size distortion 

problem even in case of correct specification.  

 Secondly, we consider the case of under specification. Table 6.44, shows the results of 

power of Engle and Granger cointegration test under different specifications at different 

values of autoregressive parameter θ2. The first panel of table 6.44, describes the results 

of Engle and Granger cointegration test when θ2=0.8. The power in case of under 

specification is 50.6% with drift. It shows 44.4% power loss when θ2= 0.8 and θ21= 
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0.8. Table 6.45, shows the results of power of Johansen and Juselius cointegration tests 

under different specifications at different values of autoregressive parameter θ2. The 

first panel of table 6.45, describes the results of Johansen and Juselius cointegration test 

when θ2=0.8. The power in case of under specification is 43.9% with drift. It shows 

51.1% power loss when θ2= 0.8 andθ21= 0.8. Table 6.46, shows the results of power 

of ARDL model under different specifications at different values of autoregressive 

parameter θ2. The first panel of table 6.46 describes the results of ARDL model when 

θ2=0.8. The power in case of under specification is 99.0% with drift. It shows 0% power 

loss when θ2= 0.8 andθ21= 0.8. Table 6.44, shows the results of power of Engle and 

Granger cointegration test under different specifications at different values of 

autoregressive parameter θ2. The second panel of table 6.44, describes the results of 

Engle and Granger cointegration test when θ2=0.6. The power in case of under 

specification is 56.4%, it shows 38.6% power loss when θ2= 0.6 and θ21= 0.8. Table 

6.45, shows the results of power of Johansen and Juselius cointegration test under 

different specifications at different values of autoregressive parameter θ2. The second 

panel of table 6.45, describes the results of Johansen and Juselius cointegration test 

when θ2=0.6. The power in case of under specification is 52.5% with drift. It shows 

42.5% power loss when θ2= 0.6 and θ21= 0.8. Table 6.46 shows the results of power 

of ARDL model under different specifications at different values of autoregressive 

parameter θ2. The first panel of table 6.46, describes the results of ARDL model when 

θ2= 0.6. The power in case of under specification is 99.0% with drift. It shows 0% 

power loss when θ2= 0.6 and θ21= 0.8.  

Thus, these results validate that conventional cointegration procedure Engle and 

Granger Johansen and Juselius cointegration test are having very low power when  θ2= 

0.8 and θ21= 0.8. On the other hand, the ARDL model shows no power loss compare 
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to Johansen and Juselius cointegration test. It does not mean in case of under 

specification the ARDL model works well than other conventional techniques.  

In case of under specification, ARDL model badly suffers in size distortion problem as 

we have seen in size analysis. So, we cannot say that ARDL has power on the basis of 

these statistics that is in under specification according to our estimation the Johansen 

and Juselius cointegration test works well. Because it has minimum size distortion 

under specification. The order of power of ARDL in case of under specification is given 

in the following equation: 

Power   (JJ > 𝐸𝐺 > 𝐴𝑅𝐷𝐿) 

Similarly at all the values of autoregressive parameter θ2 = 0.4 and 0.2 same pattern 

has been found.   

At third we consider the case of over specification. Table 6.44, shows the results of 

power of Engle and Granger cointegration test over different specifications at different 

values of autoregressive parameter θ2. The first panel of table 6.44, describes the results 

of Engle and Granger cointegration test when θ2=0.8. The power in case of over 

specification is 32.3%. It shows 62.7% power loss when θ2=0.8 and θ21= 0.8. Table 

6.45, shows that the results of power of Johansen and Juselius cointegration test over 

different specifications at different values of autoregressive parameter θ2. The first 

panel of table 6.45, describes the results of Johansen and Juselius cointegration test 

when θ2=0.8. The power in case of under specification is 34.0% with drift and trend. It 

shows 61.0% power loss when θ2= 0.8 and θ21= 0.8. Table 6.46, shows the results of 

power of ARDL model under different specifications at different values of 

autoregressive parameter θ2. The first panel of table 6.46, describes the results of 

ARDL model when θ2=0.8. The power in case of over specification is 99.0% with drift 
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and trend. It shows 0% power loss when θ2= 0.8 and θ21= 0.8. The second panel of 

table 6.44 describes the results of Engle and Granger cointegration test when θ2=0.6. 

The power in case of over specification is 66.3%. It shows 28.7% power loss when θ2= 

0.6 and θ21= 0.8. The second panel of table 6.45 describes the results of Johansen and 

Juselius cointegration test when θ2=0.6. The power in case of under specification is 

70.3% with drift, it shows 24.7% power loss when θ2= 0.6 and θ21= 0.8. The second 

panel of table 6.46, describes the results of ARDL model when θ2= 0.6. The power in 

case of under specification is 99.0% with drift. It shows 0% power loss when θ2= 0.6 

and θ21= 0.8.  

Thus, these results validate that conventional cointegration procedure Engle and 

Granger Johansen and Juselius cointegration test are having very low power when we 

check them at θ2= 0.8 and 0.6, and θ21= 0.8. On contrast, the ARDL model shows no 

power loss as compare to Johansen and Juselius cointegration test. It means in case of 

over specification, the ARDL model works well than other conventional techniques.  In 

case of over specification ARDL model does not suffer in size distortion problem as we 

have seen in size analysis. So, we can say that ARDL has more power in case of over 

specification.  The power of ARDL is given as follows; 

Power  (ARDL > 𝐽𝐽 > 𝐸𝐺) 

Similarly at all the values of autoregressive parameter θ2 = 0.4 and 0.2 same pattern 

has been found. It clearly indicates that in over specification ARDL works good as 

compare to other techniques.   

There is a special effect which needs to be analyzed. If we decrease the value of 

autoregressive parameter θ2 from 0.8 to 0.6 and so on, the powers of these procedures 

are increasing. The reason behind this is that power of test depends upon relationship 
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between y and x, in presence of high autoregressive parameter value. That is why as we 

decrease the value of lag of y the relationship between y and x, gets stronger. Other 

reason is that in this analysis we only decrease the value of autoregressive parameter 

θ2 from 0.8 to 0.2 but we do not change parameter value of lag of x. θ21=0.8. Due to 

this reason lag of x. gets strong correlation as we decrease θ2 value. In other words, 

when decrease θ2 value θ21 remians same, then y depends more on x. as compare to its 

own lag.  
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Table 6.47: Power Analysis of Engle and Granger Cointegration Test by using 

Contemporaneous dependent Series at Different Specifications  

Engle Granger (EG) Cointegration Test 

  𝛒 = 𝟏 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 
Drift 99.9 99.8 

Drift and Trend  99.8 99.5 

  𝛒 = 𝟎. 𝟖 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 
Drift 76.8 82.3 

Drift and Trend  78.3 64.3 

  𝛒 = 𝟎. 𝟔 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 
Drift 68.3 76.3 

Drift and Trend  71.2 61.4 

  𝛒 = 𝟎. 𝟒 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 
Drift 48.7 50.9 

Drift and Trend  41.9 34.7 

  𝛒 = 𝟎. 𝟐 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 24.5 38.1 

Drift and Trend  23.4 25.2 
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Table 6.48: Power Analysis of Johansen and Juselius Cointegration Test by using 

Contemporaneous dependent Series at Different Specifications  

Johansen and Juselius (JJ) Cointegration Test 

  𝛒 = 𝟏 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 
Drift 93 99.9 

Drift and Trend  95.4 100 

  𝛒 = 𝟎. 𝟖 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 
Drift 81.5 83.2 

Drift and Trend  80.6 88.2 

  𝛒 = 𝟎. 𝟔 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 
Drift 76.3 79.4 

Drift and Trend  77.1 81.8 

  𝛒 = 𝟎. 𝟒 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 
Drift 50.3 51.3 

Drift and Trend  50.6 48.9 

  𝛒 = 𝟎. 𝟐 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 32.1 34.2 

Drift and Trend  28.3 38.9 
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Table 6.49: Power Analysis of ARDL Model by using Contemporaneous 

dependent Series at Different Specifications  

ARDL Model 

  𝛒 = 𝟏 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 
Drift 90.3 99 

Drift and Trend  93.6 100 

  𝛒 = 𝟎. 𝟖 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 
Drift 88.7 99 

Drift and Trend  94.3 100 

  𝛒 = 𝟎. 𝟔 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 
Drift 81.5 99 

Drift and Trend  93.1 100 

  𝛒 = 𝟎. 𝟒 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 
Drift 80.6 99 

Drift and Trend  77.2 98 

  𝛒 = 𝟎. 𝟐 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 56.3 99 

Drift and Trend  67.9 60.2 

 

Table 6.47, shows the results of power of Engle and Granger cointegration test under 

different specifications at different values of covariance ρ when covariance ρ.  At first 

we consider correct specification with drift and drift and trend cases. The first panel of 
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table 6.47, describes the results of Engle and Granger cointegration test when ρ = 1. 

The power in case of correct specification is 99.9% with drift. It shows 0% power loss 

when ρ = 1. The power under correct specification is 99.5% with drift and trend. It 

shows 0% power loss. Table 6.48 describes the results of power of Johansen and 

Juselius cointegration test under different specifications at different values of ρ. Firstly, 

we consider correct specification with drift and drift and trend cases. The first panel of 

table 6.48, refers the results of Johansen and Juselius cointegration test when ρ = 1. The 

power in case of correct specification is 93.0% with drift. It shows 2.0% power loss. 

The power under correct specification is 100% with drift and trend. It shows 0% power 

loss. Table 6.49, describes the results of power of ARDL model under different 

specifications at different values of ρ. Firstly, we consider correct specification with 

drift and drift and trend cases. The first panel of table 6.49, refers the results of ARDL 

model when ρ = 1. The power in case of correct specification is 90.3% with drift. It 

shows 4.7% power loss. The power under correct specification is 99.0% with drift and 

trend. It shows 0% power loss. 

The second panel of table 6.47, illustrates the power results of Engle and Granger 

cointegration test when ρ = 0.8. The power in case of correct specification is 76.8% 

with drift. It shows 18.2% power loss. The power under correct specification is 64.3% 

with drift and trend, it shows 30.7% power loss. The second panel of table 6.48 given 

above explains the power results of Johansen and Juselius cointegration test when ρ =

0.8. The power in case of correct specification is 81.5% with drift, it shows 14.5% 

power loss. The power under correct specification is 88.2% with drift and trend, it 

shows 6.8% power loss. The second panel of table 6.49 given above describes the power 

results of ARDL model when ρ = 0.8. The power in case of correct specification is 

88.7% with drift, it shows 6.3% power loss. The power under correct specification is 
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100.0% with drift and trend, it shows 0% power loss. The order of statistics of power 

in case of correct specification is following: 

Power (ARDL > 𝐽𝐽 > 𝐸𝐺) 

Thus, these results validate that conventional cointegration procedures are having very 

high power at different values of ρ. On contrast, the ARDL model has no power loss 

compare to Johansen and Juselius and Engle and Granger cointegration tests, because 

these procedures are having severe size problem. It means in case of correct 

specification, the ARDL model works well than other conventional techniques.  

Similarly, when the values of autoregressive parameters are  ρ = 0.6 and so on, same 

pattern has been found. It clearly indicates that in correct specification cases the ARDL 

model have huge power while conventional cointegration procedures are having huge 

power loss. We cannot compare the power of these tests and ARDL model because as 

we have seen in size analysis these cointegration procedure suffer in size distortion 

problem even in case of correct specification.  

 Secondly, we consider the case of under specification. Table 6.47, shows the results of 

power of Engle and Granger cointegration test under different specifications at different 

values of ρ. The first panel of table 6.47, describes the results of Engle and Granger 

cointegration test when ρ = 1. The power in case of under specification is 99.8% with 

drift. It shows 0% power loss. Table 6.48, shows the results of power of Johansen and 

Juselius cointegration tests under different specifications at different values of ρ. The 

first panel of table 6.48, describes the results of Johansen and Juselius cointegration test 

when ρ = 1. The power in case of under specification is 99.0% with drift. It shows 0% 

power loss. Table 6.49, shows the results of power of ARDL model under different 

specifications at different values of ρ. The first panel of table 6.49 describes the results 



188 
 

of ARDL model when ρ = 1. The power in case of under specification is 99.0% with 

drift. It shows 0% power loss when θ2= 0.8 andθ21= 0.8. Table 6.47, shows the results 

of power of Engle and Granger cointegration test under different specifications at 

different values of ρ. The second panel of table 6.47, describes the results of Engle and 

Granger cointegration test when ρ = 0.8. The power in case of under specification is 

82.3%, it shows 12.7% power loss. Table 6.48, shows the results of power of Johansen 

and Juselius cointegration test under different specifications at different values of ρ. 

The second panel of table 6.48, describes the results of Johansen and Juselius 

cointegration test when ρ = 0.8. The power in case of under specification is 83.2% with 

drift. It shows 11.8% power loss. Table 6.49 shows the results of power of ARDL model 

under different specifications at different values of ρ. The first panel of table 6.49, 

describes the results of ARDL model when ρ = 0.8. The power in case of under 

specification is 99.0% with drift. It shows 0% power loss.  

Thus, these results validate that conventional cointegration procedure Engle and 

Granger Johansen and Juselius cointegration test are having very high power. On the 

other hand, the ARDL model shows no power loss compare to Johansen and Juselius 

and Engle and Granger cointegration tests because they suffer in size problem. It does 

not mean in case of under specification the ARDL model works well than other 

conventional techniques.  

In case of under specification, ARDL model badly suffers in size distortion problem as 

we have seen in size analysis. So, we cannot say that ARDL has power on the basis of 

these statistics that is in under specification according to our estimation the Johansen 

and Juselius cointegration test works well. Because it has minimum size distortion 

under specification. The order of power of ARDL in case of under specification is given 

in the following equation: 
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Power   (JJ > 𝐸𝐺 > 𝐴𝑅𝐷𝐿) 

Similarly at all the values of ρ same pattern has been found.   

At third we consider the case of over specification. Table 6.47, shows the results of 

power of Engle and Granger cointegration test over different specifications at different 

values of ρ. The first panel of table 6.47, describes the results of Engle and Granger 

cointegration test when ρ = 1. The power in case of over specification is 99.8%. It 

shows 0% power loss. Table 6.48, shows that the results of power of Johansen and 

Juselius cointegration test over different specifications at different values of ρ. The first 

panel of table 6.48, describes the results of Johansen and Juselius cointegration test 

when ρ. The power in case of under specification is 95.4% with drift and trend. It shows 

0% power loss. Table 6.49, shows the results of power of ARDL model under different 

specifications at different values of ρ. The first panel of table 6.46, describes the results 

of ARDL model when ρ = 1. The power in case of over specification is 93.4% with 

drift and trend. It shows 1.6% power loss. The second panel of table 6.47 describes the 

results of Engle and Granger cointegration test when ρ = 0.8. The power in case of over 

specification is 78.3%. It shows 16.7% power loss. The second panel of table 6.48 

describes the results of Johansen and Juselius cointegration test when ρ = 0.8. The 

power in case of under specification is 80.6% with drift, it shows 14.4% power loss. 

The second panel of table 6.49, describes the results of ARDL model when ρ = 0.8. The 

power in case of under specification is 94.3% with drift. It shows 0.7% power loss. 

Thus, these results validate that conventional cointegration procedure Engle and 

Granger and Johansen and Juselius cointegration test are having very low power. On 

contrast, the ARDL model shows no power loss as compare to Johansen and Juselius 

cointegration test. It means in case of over specification, the ARDL model works well 
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than other conventional techniques.  In case of over specification ARDL model does 

not suffer in size distortion problem as we have seen in size analysis. So, we can say 

that ARDL has more power in case of over specification.  The power of ARDL is given 

as follows; 

Power    (ARDL > 𝐽𝐽 > 𝐸𝐺) 

Similarly at all the values of ρ same pattern has been found. It clearly indicates that in 

over specification ARDL works good as compare to other techniques.   

There is a special effect which needs to be analyzed. If we decrease the value of ρ from 

1 to 0.8 and so on, the powers of these procedures are decreasing. The reason behind 

this is that power of test depends upon relationship between y and x, in presence of 

covariance term ρ. That is why as we decrease the value of ρ the relationship between 

y and x, gets weaker.  
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CHAPTER 7  

FORECASTING PERFORMANCE OF ARDL ON REAL DATA 

AND COMPARISON WITH COINTEGRATION TESTS AND OLS 

In this chapter we check the forecast performance of ARDL model and commonly used 

conventional cointegration procedures, Engle and Granger (EG), and Johansen and 

Juselius (JJ) cointegration tests. The forecast performance is tested on the basis of real 

data. The real data consist of gross domestic product (GDP, at constant LCU) and 

household final consumption expenditures (HFC, at constant LCU) for the period of 

1960 to 2016. The data based on ten lower middle income countries Pakistan, 

Bangladesh, India, Sri-Lanka, Indonesia, Bolivia, Cameroon, Morocco, Nicaragua and 

Philippines. In this analysis we used same country series for forecasting, the dependent 

variable is gross domestic product (GDP, at constant LCU) and independent variable is 

household final consumption expenditures (HFC, at constant LCU) in all cases.  

In this analysis Root Mean Square Error (RMSE) has been used to compare the forecast 

performance of ARDL model and conventional procedures. The figure 3, is showing 

the RMSE statistics obtained after forecasting through these procedures: 

Figure 7.1: The Root Mean Square Error (RMSE) after Forecasting 

 

Figure 7.1 Represents the RMSE statistics obtained after forecasting. These statistics are taken from table 

30 given below. 
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Figure 7.1 shows that the forecast performance of ARDL model is better as compare to 

conventional EG and JJ procedures. The RMSE statistics for ARDL model in all cases 

remains smaller from the RMSE for EG and JJ procedures except only one case of 

Bolivia (BOL). Figure 7.1 also shows that performance of JJ cointegration procedure is 

better than EG cointegration test. The RMSE statistics are given below in table 30: 

Table 7.1: The results of Root Mean Square Error (RMSE) after Forecasting  

Countries ARDL EG JJ 

Bangladesh (BGD) 0.02607 0.03786 0.03027 

Bolivia (BOL) 0.02450 0.01681 0.03273 

Cameroon (CMR) 0.02167 0.02958 0.02704 

Indonesia (IDN) 0.02818 0.05836 0.04142 

India (IND) 0.03295 0.05298 0.03578 

Morocco (MAR) 0.03286 0.04758 0.03869 

Nicaragua (NIC) 0.04923 0.13033 0.17397 

Pakistan (PAK) 0.02251 0.03491 0.02681 

Philippines (PHL) 0.02415 0.02434 0.03023 

Sri Lanka (LKA) 0.05140 0.05882 0.05817 

 

Table 7.1 illustrates the RMSE statistics of ARDL, EG and JJ procedures. These RMSE 

are calculated after forecasting. RMSE indicates the deviation of forecasted values from 

actual values. That is why the smaller value of RMSE shows less deviation from actual 

values and higher value shows higher variation. The results in table 7.1 clearly indicate 

that the RMSE statistics of ARDL remains smaller in all cases apart from Bolivia (BOL) 

case. In case of EG the second row is having circle which indicates that in this particular 

case EG performs well as compare to ARDL model. In other cases ARDL r performs 

better as compare to EG. While in case of JJ, rectangles are indicting that EG performs 

better than JJ procedure in only three cases. The overall condition is that ARDL model 

performs well as compare to conventional cointegration procedures EG and JJ, and JJ 
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cointegration procedure performs well as compare to EG. On the basis of this analysis, 

we can express performance of these procedures as: 

Forecast Performance  (ARDL > 𝐽𝐽 > 𝐸𝐺) 

The results are theoretically admissible because, ARDL model is having both 

contemporaneous and lag values of independent variable. While JJ procedure contains 

only lag values of independent variable and EG procedure is based on static function. 

That is why, ARDL has more power to explain the relations instead of these 

conventional procedures.  

7.1 Measuring the Probability of Spurious Regression 

The size analysis is performed to measure the probability of spurious regression. After 

running regression between independent series if we got significant results, it counts as 

spurious regression. In this analysis we compare the ARDL model with conventional 

cointegration procedures Engle and Granger (EG), Johansen and Juselius (JJ) and 

ordinary least square (OLS) on the basis of real data. 

7.1.1 Comparison between ARDL model and conventional cointegration 

procedures EG and JJ 

In this analysis we used data given above of gross domestic product (GDP, at constant 

LCU) and Household Final consumption expenditures (HFC, at constant LCU) in all 

cases. But for this analysis, we take gross domestic product (GDP, at constant LCU) as 

dependent variable and Household Final consumption expenditures (HFC, at constant 

LCU) series of all other countries as independent variable. It means, we used 

statistically independent series because HFC of one country has no relation with GDP 

of any other country. After running regression if we got significant results, it counts as 

spurious regression. Same procedure was done with series of all countries to estimate 

the probability of spurious regression. The results are given in followingtables:   
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Table 7.2: The Probability of Spurious Regression by using Engle and Granger 

Cointegration  

Gross Domestic Product (at, constant LCU) 
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)   BGD BOL CMR IDN IND LKA MAR NIC PAK PHL 

BGD 1 1 0 0 0 0 0 0 0 0 

BOL 1 1 0 0 1 0 0 0 0 0 

CMR 0 0 1 1 0 1 1 0 1 1 

IDN 0 0 0 1 0 0 0 0 1 0 

IND 1 1 0 0 1 0 0 0 0 0 

LKA 0 0 0 0 0 1 1 0 1 0 

MAR 0 0 0 1 0 0 1 0 1 0 

NIC 0 0 0 0 0 0 0 1 0 0 

PAK 0 0 1 1 0 1 1 0 1 0 

PHL 0 1 0 0 0 0 0 0 0 1 

 Total 2 3 1 3 1 2 3 0 4 1 

Table 7.2 shows the probability of spurious regression after employing EG cointegration procedure. 

We used two Step procedure. In first step simple OLS regression is employed and generate a 

residual fromby using parametersof OLS regression. In second step we tested the stationary of 

residual series. If seriesis stationary it means series are cointegrated. 1’s are showing series are 

cointegrated and 0’s mean notcointegrated. Residual analysis is also employed for validation of 

results. 
 

The table 7.2 shows the results of Engle and Granger cointegration test. In this matrix 

“1” means the statistically independent variables are cointegrated and “0” means 

variables are not cointegrated. In this analysis, we are ignoring the diagonal 1’s because 

these are the relationship between same country series which means between dependent 

series.  After employing EG cointegration test on independent series we got 20 

significant relations out of 90 regression. It means the probability of spurious regression 

after employing EG procedure is 22.2%. It shows 15.2% size distortion on the basis of 

5% level of significance. It indicates that EG procedure is also suffering in size 

distortion problem.    

Table 7.3: The Probability of Spurious Regression by using Johansen and Juselius 

Cointegration  

Gross Domestic Product (at, constant LCU) 
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  BGD BOL CMR IDN IND LKA MAR NIC PAK PHL 

BGD 1 1 0 0 1 0 0 1 1 0 

BOL 1 1 0 0 1 0 0 0 0 0 

CMR 0 0 1 0 1 0 0 0 1 0 

IDN 0 0 0 1 1 0 1 0 1 0 

IND 1 1 1 1 1 0 0 0 1 1 

LKA 0 1 0 0 1 1 1 0 1 0 

MAR 0 0 1 0 1 0 1 0 1 1 

NIC 0 0 0 0 1 0 0 1 0 1 

PAK 1 0 0 0 1 0 1 0 1 0 

PHL 1 0 1 0 1 0 0 0 0 1 

 Total 4 3 3 1 9 0 3 1 6 3 

Table 7.3 shows the probability of spurious regression after employing JJ cointegration procedure. 

We took three steps in this  procedure. In first step VAR model is being used. In second step we used 

the lag selection criteria for lag selection. In third step we employed JJ procedure and take decision 

on thebasis of Unrestricted Cointegration Rank Test (Trace) statistics. 1’s are showing series are 

cointegrated and 0’s mean not cointegrated. Residual analysis are also employed for validation of 

results.  

 

The table 7.3 demonstrates the results of Johansen and Juselius cointegration procedure. 

The “1” means the statistically independent variables are cointegrated and “0” means 

variables are not cointegrated. In this analysis we are ignoring the diagonal 1’s because 

these are the relationship between same country series, means between dependent 

series.  After employing JJ cointegration test on independent series we got 33 

significant relations out of 90 regressions. It means the probability of spurious 

regression after employing JJ procedure is 33.67%. It shows 28.67% size distortion on 

the basis of 5% level of significance. It indicates that JJ procedure is also suffering in 

size distortion problem.   
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Table 7.4: The Probability of Spurious Regression by using ARDL Model 

Gross Domestic Product (at, constant LCU) 
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  BGD BOL CMR IDN IND LKA MAR NIC PAK PHL 

BGD 1 0 0 0 0 0 0 1 1 0 

BOL 1 1 0 0 0 0 0 0 0 0 

CMR 0 0 1 0 0 0 0 0 1 0 

IDN 0 0 0 1 0 0 0 0 0 0 

IND 0 1 0 0 1 0 0 0 0 0 

LKA 0 0 0 0 0 1 0 0 0 0 

MAR 0 0 0 0 0 0 1 0 1 0 

NIC 0 0 0 0 0 0 0 1 0 1 

PAK 0 0 0 0 0 0 0 0 1 0 

PHL 0 0 0 0 0 0 0 0 0 1 

 Total 1 1 0 0 0 0 0 1 3 1 

Table 7.4 shows the probability of spurious regression after employing ARDL Model. We Used F-

stat to check the joint significance of lag and current values of independent variable. All the decision 

are taken on the basis of F-stat. 1’s are showing series are cointegrated and 0’s mean not cointegrated. 

Residual analysis are also employed for validation of results. 
 

The table 7.4 represents the results of ARDL model. The “1” means the statistically 

independent variables are cointegrated and “0” means variables are not cointegrated. In 

this analysis we are ignoring the diagonal 1’s because these are the relationship between 

same country series, means between dependent series.  After employing ARDL model 

on independent series we got 7 significant relations out of 90 regression. It means the 

probability of spurious regression after employing ARDL model is 7.78%. It shows 

2.78% size distortion on the basis of 5% level of significance which is negligible.  

This analysis indicates that conventional cointegration procedures EG and JJ are 

suffering in size distortion problem while ARDL model tackle this problem by 

including lag values. It means the major cause of spurious regression is missing lag 

dynamics and by including the lag values, we can overcome the problem of spurious 

regression.  It has theoretical justification, when we regress independent series, the 

independent variable starts working as a proxy of relevant variable and captures the 
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effect of relevant variable that is why it becomes significant. But when we introduce 

the lag value of dependent variable as independent variable which is potential 

determinant, it captures the effect and irrelevant variable becomes insignificant.  

7.2 Comparison between OLS and ARDL Model on the Basis of Real Data 

In this section we present inferences based on real data. The real data are based on Gross 

domestic product of thirty seven countries Albania, Antigua and Barbuda, Argentina, 

Austria, Bahamas, Bahrain, Barbados, Belgium, Botswana, Brazil, Brunei Darussalam, 

Cabo Verde, Canada, Iraq Comoros, Congo, Costa Rica, Denmark, Dominica, El 

Salvador, Fiji, Finland, France, Gabon, Gambia, Germany, Grenada, Guinea-Bissau, 

Guyana, Honduras, Hong Kong, Iceland, Ireland, Israel, Italy, Kiribati and Luxembourg 

from 1980 to 2014. We employed the ADF unit root test and came to know all the series 

are stationary at first difference. All the series are statistically independent of each 

other. We regress all series on each other by employing ordinary least square (OLS) 

and ARDL models, the results are given in table 7.5. 

Table 7.5: Comparison between OLS and ARDL Models in Case of Real Data 

  OLS ARDL (1, 1) ARDL (2, 2) 

 Xt xt-1 xt F-stat xt-2 xt-1 xt F-stat 

Percentile 5 8.431 -4.288 -1.094 0.241 -1.062 -3.973 -0.639 0.181 

Percentile 25 12.457 -2.224 0.358 1.515 -0.092 -1.998 0.486 1.120 

Percentile 50 17.103 -0.933 1.615 3.527 0.561 -0.903 1.509 2.440 

Percentile 75 24.898 0.185 2.844 6.802 1.343 -0.154 2.835 4.720 

Percentile 95 42.320 1.430 4.834 18.233 2.658 0.879 4.937 10.817 

Positive 

significant  930 15 391 474 108 4 386 384 

Negative 

significant  0 269 12 0 9 232 2 0 

Total significant  930 284 403 474 117 236 388 384 

 Percentages 

  100 26.667 43.333 50.968 12.581 25.376 41.720 41.290 
The asymptotic significance value of t-statistics at 5% level of significance is 1.96, while The asymptotic 

significance value for ARDL (1, 1) of F-stat is 3.3158 and for ARDL (2, 2) is 2.9466.  
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We used percentiles to explain such a huge amount of results in simplest form, detail 

estimations are given below in appendix. The 5th percentile is indicating that 5% values 

are equal or less than of this value or 95% values are greater than this value. We used 

t-statistics for OLS and F-stat for ARDL model to check the joint significance of all 

lagged values of independent variable. In case of OLS, the value of 5thpercentile is 

8.431 which shows that 5% value are less than this value. It indicates that 95% t-

statistics values are greater than this value. The 25th, 50th and 75th percentiles are equal 

to 1st, 2nd and 3rd quartiles. The 25th percentile or 1st quartile shows that 25% values are 

less than or 75% values are greater than this value. In the same way we can interpret 

50th and 75th percentiles. The values of OLS t-statistics are 12.457, 17.103 and 24.898 

for 1st, 2nd and 3rd quartiles respectively.  In the last panel of table the total percentages 

are given, we can see that the values of OLS t-statistics are 100% significant. It indicates 

that the probability of spurious regression is 100%.  

In case of ARDL (1, 1), we used F-stat for joint significance, the value of F-stat at 5th 

percentile is 0.241, and it means all values in 5% of F-stat are insignificant. The value 

first quartile of F-stat is 1.515 which means that 25% of F-stat values are less than those 

values. The value of 2nd quartile of F-stat is 3.527 which indicates that 50% value of F-

stat are less than those values. Th50th percentile or 2nd quartiles are also considered as 

median of data. It indicates that 50% value of F-stat are less that asymptotic significance 

value which is 3.3158. The value of third quartile is 6.802 and the value of 95th 

percentile is 18.233. The total percentage of significant values is 50.968.  In other words 

out of 933 regressions only 474 times regression came up with spurious results. It 

clearly indicates that the ARDL (1, 1) model reduced the probability of spurious 

regression from 100% to 51 %. There is more than 49 percent reduction in probability 
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of spurious regression only by using ARDL (1, 1) model. The ARDL (2, 2) model is 

used to check that how ARDL model behaves in over specification case.   

In case of ARDL (2, 2) the value of F-stat at 5th percentile is 0.181, and it means all 

values in 5% of F-stat are less than critical value. The value of 25th percentile F-stat is 

1.120 which means that 25% of F-stat values are less than these values. The value of 

50th percentile F-stat is 2.2440 which indicates that 50% of F-stat values are less than 

this values. It indicates that 50% value of of F-stat are less than asymptotic significance 

value which 2.9466. The value of 75th percentile is 4.720 and the value of 95th percentile 

is 10.817. The total percentage of significant values is 41.290. In other words out of 

933 regression only 384 time regression came up with spurious results. It clearly 

indicates that the ARDL (2, 2) model reduced the probability of spurious regression 

from 100% to 41 %. It also shows that in case of over specification ARDL model also 

works better and reduces the probability of spurious regression. The lag values of 

dependent variables are significant in all cases. For further detail see, appendix.   

7.2.1 Comparison between OLS and ARDL Model on the Basis of Real Data 

with Residual Analysis  

The real data is based on Gross domestic product of thirty seven countries from 1980 

to 2014. We employed the ADF unit root test and came to know that all the series are 

stationary at first difference. All the series are statistically independent of each other. 

We regress all other series on Albania and found that all the regression came up with 

significant results. Even though all series are independent of each other. As we can see 

in table 7.6 which consists of OLS regression results. All the GDP series are having 

statistically significant relations. The P-values indicate that all the relation are highly 

significant even at 5% level of significance.  
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The table 7.8, shows the residual analysis of linear regression model. It shows that all 

the results of autocorrelation are significant at 5% level of significance. While the 

results of LM test for heteroscedasticity are also significant, expect 15 cases. It means 

out of 36 regression only 15 regression residuals are facing heteroscedasticity problem.  

The7.7, shows the results of ARDL model which significantly reduced the probability 

of spurious regression from 100% to approximately 5%. It also rejects the common 

misconception about the spurious regression that it commonly prevails due to unit root. 

Nevertheless, the missing relevant variable is a major cause of spurious regression. As 

we introduced the lag values the probability of spurious regression reduced 

significantly.  We used F-test to check the joint significance of lag and current values 

of independent variable. The P-values indicates that all the relation are insignificant 

even at 5% level of significance except 2 cases.  The table 7.9 presents the residual 

analysis of ARDL model. As we can see that the autocorrelation test are insignificant 

at 5% except Argentina and Brunei Darussalam, they are insignificant at 1%.  The 

hetroscedasticity test statistics are insignificant at 5% except Argentina, Canada but in 

case of Canada it is insignificant at 1%.  It indicates that all the regression are 

econometrically valid except 2 or 3 cases and ARDL can be used as an alternative tool 

for the reduction of spurious regression instead of conventional methods.  
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Table 7.6: Results after running Simple Linear Regression Model 

 

Countries ATG ARG AUT BHS BHR BRB BEL BWA BRA BRN CPV CAN 

Co-eff 

P-value 

173.456 

[0.0000] 

0.845535 

[0.0000] 

2.79251 

[0.0000] 

115.61 

[0.0000] 

55.0787 

[0.0000] 

1176.54 

[0.0000] 

2.44742 

[0.0000] 

6.94373 

[0.0000] 

0.374535 

[0.0000] 

89.9904 

[0.0000] 

3.37695 

[0.0000] 

0.355487 

[0.0000] 

 

Countries COM COG CRI DNK DMA SLV FJI FIN FRA GAB GMB DEU 

Co-effi 

P-value 

9.22622 

[0.0000] 

0.558613 

[0.0000] 

0.245078 

[0.0000] 

0.299897 

[0.0000] 

682.991 

[0.0000] 

69.922 

[0.0000] 

158.877 

[0.0000] 

4.29561 

[0.0000] 

0.278377 

[0.0000] 

0.127738 

[0.0000] 

32.1748 

[0.0000] 

0.20898 

[0.0000] 

 

Countries GRD GNB GUY HND HKG ISL IRQ IRL ISR ITA KIR LUX 

Co-eff 

P-value 

324.926 

[0.0000] 

1.98374 

[0.0000] 

2.03643 

[0.0000] 

3.9283 

[0.0000] 

0.2911 

[0.0000] 

0.374548 

[0.0000] 

0.0050 

[0.0000] 

2.78307 

[0.0000] 

0.630868 

[0.0000] 

0.319785 

[0.0000] 

5020.83 

[0.0000] 

13.7727 

[0.0000] 

 

Table 7.7: Results after employing ARDL model 

 

Countries 

 

ATG 

 

ARG 

 

AUT 

 

BHS 

 

BHR 

 

BRB 

 

BEL 

 

BWA 

 

BRA 

 

BRN 

 

CPV 

 

CAN 

F-stat 

P-value 

2.2113 

[0.1271] 

2.3136 

[0.0984] 

1.9177  

[0.1515] 

3.3884  

[0.024]* 

2.3568  

[0.0949] 

0.97170 

[0.4211] 

1.5636  

[0.2220] 

1.2890 

[0.2991] 

2.6769  

[0.0679] 

2.9427 

[0.0517] 

2.5011 

[0.0692] 

1.7673 

[0.1781] 

 

Countries 

 

COM 

 

COG 

 

CRI 

 

DNK 

 

DMA 

 

SLV 

 

FJI 

 

FIN 

 

FRA 

 

GAB 

 

GMB 

 

DEU 

F-stat 

P-value  

2.5938  

[0.0741] 

1.0733  

[0.3776] 

2.4079 

[0.0900] 

0.55250 

[0.6510] 

1.3533  

[0.2789] 

2.5329 

[0.0789] 

3.9684  

[0.018]* 

2.7890  

[0.0605] 

2.4591  

[0.0905] 

0.75471 

[0.4795] 

1.7834 

[0.1751] 

1.2943 

[0.2900] 

 

Countries 

 

GRD 

 

GNB 

 

GUY 

 

HND 

 

HKG 

 

ISL 

 

IRQ 

 

IRL 

 

ISR 

 

ITA 

 

KIR 

 

LUX 

F-stat 

P-value 

2.5668 

[0.0947] 

1.8490 

[0.1631] 

2.7830  

[0.0609] 

2.2760  

[0.1034] 

1.4923 

 [0.2399] 

2.1955  

[0.1301] 

2.1649  

[0.1163] 

2.8124  

[0.0591] 

2.2770 

[0.1033] 

0.19603  

[0.8231] 

2.5335  

[0.0666] 

3.0034 

[0.0658] 

The coefficient values are given in table 1 and 2. The P values are in square brackets. The table 2 consists on the F-stat coefficient value which is used to check the joint 

significance of independent variable and its lag values. Under null hypothesis H0: restrictions are valid. * shows the values which are significant at less than 5% level of 

significance.   
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Table 7.8: Residual Analysis after simple linear regression Model 

Countries ATG ARG AUT BHS BHR BRB BEL BWA BRA BRN CPV CAN 

AR (1-2) 

P-value 

108.46  

[0.0000] 

37.166 

[0.0000] 

74.421 

[0.0000] 

50.957 

[0.0000] 

44.826 

[0.0000] 

28.088 

[0.0000] 

58.430 

[0.0000] 

47.607 

[0.0000] 

46.912 

[0.0000] 

70.425 

[0.0000] 

42.454 

[0.0000] 

93.299 

[0.0000] 

Hetro test 

P-value 

4.8584 

[0.0144] 

11.807 

[0.0002] 

3.0080 

[0.0650] 

3.4207 

[0.0464] 

10.664 

[0.0003] 

1.8093 

[0.1818] 

4.6607 

[0.0176] 

6.8516 

[0.0037] 

1.5076 

[0.2383] 

0.38325 

[0.6850] 

12.618 

[0.0001] 

0.42721 

[0.6564] 

 

Countries 

 

COM 

 

COG 

 

CRI 

 

DNK 

 

DMA 

 

SLV 

 

FJI 

 

FIN 

 

FRA 

 

GAB 

 

GMB 

 

DEU 

AR (1-2) 

P-value 

23.463 

[0.0000] 

27.073 

[0.0000] 

48.132 

[0.0000] 

192.11 

[0.0000] 

49.202 

[0.0000] 

92.324 

[0.0000] 

70.445 

[0.0000] 

52.093 

[0.0000] 

179.65 

[0.0000] 

108.46 

[0.0000] 

37.166 

[0.0000] 

176.23 

[0.0000] 

Hetro test 

P-value 

3.9430 

[0.0306] 

0.47118 

[0.6290] 

12.139 

[0.0001] 

2.6543 

[0.0874] 

6.0150 

[0.0065] 

1.4328 

[0.2550] 

0.93896 

[0.4026] 

0.56898 

[0.5723] 

1.9298 

[0.1634] 

4.8584 

[0.0144] 

11.807 

[0.0002] 

3.0440 

[0.0631] 

 

Countries 

 

GRD 

 

GNB 

 

GUY 

 

HND 

 

HKG 

 

ISL 

 

IRQ 

 

IRL 

 

ISR 

 

ITA 

 

KIR 

 

LUX 

AR (1-2) 

P-value 

51.204 

[0.0000] 

44.374 

[0.0000] 

60.715 

[0.0000] 

38.748 

[0.0000] 

43.418 

[0.0000] 

46.786 

[0.0000] 

17.337 

[0.0000] 

70.961 

[0.0000] 

56.707 

[0.0000] 

271.27 

[0.0000] 

36.165 

[0.0000] 

55.628 

[0.0000] 

Hetro test 

P-value 

0.84706 

[0.4390] 

1.8925 

[0.1688] 

1.7900 

[0.1849] 

9.6925 

[0.0006] 

6.4124 

[0.0049] 

0.32064 

[0.7282] 

8.8652 

[0.0010] 

0.0082 

[0.9917] 

9.2912 

[0.0008] 

4.0579 

[0.0279] 

0.54471 

[0.5858] 

4.9846 

[0.0138] 
 

Table 7.9: Residual Analysis after ARDL Model 

Countries ATG ARG AUT BHS BHR BRB BEL BWA BRA BRN CPV CAN 

AR (1-2) 

P-value 

3.2957 

[0.0530] 

4.8584 

[0.0144] 

2.8581 

[0.0770] 

1.8220 

[0.1834] 

1.9423 

[0.1653] 

1.5511 

[0.2325] 

4.0584 

[0.1144] 

2.4124 

[0.1110] 

2.5211 

[0.1014] 

3.5946 

[0.0431] 

2.0736 

[0.1477] 

0.91149 

[0.4154] 

Hetro test 

P-value 

0.32156 

[0.9195] 

173.456 

(0.000) 

1.7750 

[0.1287] 

1.7026 

[0.1461] 

1.4521 

[0.2257] 

1.0165 

[0.4624] 

173.456 

(0.8006) 

1.3759 

[0.2572] 

1.9732 

[0.0911] 

0.83462 

[0.6020] 

0.74033 

[0.6804] 

2.5478 

[0.0341] 

 

Countries 

 

COM 

 

COG 

 

CRI 

 

DNK 

 

DMA 

 

SLV 

 

FJI 

 

FIN 

 

FRA 

 

GAB 

 

GMB 

 

DEU 

AR (1-2) 

P-value 

2.6788 

[0.0891] 

2.5176 

[0.1017] 

2.2340 

[0.1289] 

1.6776 

[0.2080] 

2.4530 

[0.1073] 

2.6688 

[0.0898] 

1.9338 

[0.1665] 

2.9251 

[0.0730] 

4.1468 

[0.5284] 

3.2957 

[0.0530] 

2.0250 

[0.1539] 

2.4418 

[0.1067] 

Hetro test 

P-value 

2.1383 

[0.0684] 

0.85294 

[0.5871] 

1.4666 

[0.2201] 

0.90939 

[0.5422] 

1.3667 

[0.2612] 

1.4615 

[0.2221] 

2.6555 

[0.0285] 

2.0190 

[0.0841] 

3.0658 

[0.2147] 

0.32156 

[0.9195] 

2.4831 

[0.0380] 

2.1177 

[0.0869] 

 

Countries 

 

GRD 

 

GNB 

 

GUY 

 

HND 

 

HKG 

 

ISL 

 

IRQ 

 

IRL 

 

ISR 

 

ITA 

 

KIR 

 

LUX 

AR (1-2) 

P-value 

3.0651 

[0.0638] 

3.3840 

[0.0507] 

3.0038 

[0.0670] 

3.3708 

[0.1499] 

2.2546 

[0.1267] 

3.1490 

[0.0596] 

1.0909 

[0.3520] 

2.4140 

[0.1109] 

1.6316 

[0.2166] 

3.2739 

[0.0539] 

0.92427 

[0.4117] 

3.2180 

[0.0564] 

Hetro test 

P-value 

0.82311 

[0.5628] 

1.2434 

[0.3214] 

2.2719 

[0.0691] 

0.26387 

[0.9486] 

1.1274 

[0.3885] 

0.60599 

[0.7231] 

0.68400 

[0.7276] 

1.6800 

[0.1520] 

1.9253 

[0.0990] 

1.5242 

[0.2112] 

2.0197 

[0.0848] 

1.3186 

[0.2857] 

AR null hypothesis H0: There is autocorrelation. LM test for Hetroskedastic with null hypothesis H0: There is no hetroskedasticity  
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CHAPTER 8 

PESARAN’S BOUND TESTING VERSUS UNRISTRICTED ARDL 

APPROACH`  

The Pesaran (1998) has introduced a method for testing long run relationship based on 

ECM version of Hendry ARDL model. The method has become so popular that most 

people cannot differentiate between Pesaran ARDL model and the parent Hendry 

(1978) ARDL model, whereas, in fact, the later is known to econometricians long 

before the Pesaran version of ARDL. Pesaran’s equation is a restricted version of 

Hendry equation. Pesaran et al. (1996) and Pesaran (1997) proposed a single equation 

ARDL (autoregressive distributed lag) approach for testing long run as an alternative 

of Engle and Granger and Engle and Yoo procedures. The Pesaran ARDL approach 

provides explicit tests for the presence of long run relationship, instead of assuming 

uniqueness. Suppose we have two variables yt and xt  and the generalized Hendry 

ARDL model equation is following: 

yt = β0 + ∑ βi
p
i=1 dyt−i + ∑ δi

q
i=0 xt−i + ε1t         (8.1) 

Equation 8.1 was proposed by Hendry for time series modeling and he stated that 

it provides convenient way of following General to Simple methodology. Hendry 

shows that numerous theoretical models can be driven from the equations similar 

to 8.1. On the other hand, the equation proposed by Pesaran for testing long run 

relationship is 

dyt = θ10 + θ11yt−1 + θ12xt−1 + ∑ βi
p
i=1 dyt−i + ∑ δi

q
i=0 dxt−i + ε1t (8.2) 

One can see that it is just like the a re-specification of equation 8.1 proposed by 

Hendry (1978), the Pesaran model is also restricted version of Hendry ARDL model 
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by imposing restrictions on Hendry ARDL model as in equation 8.1. The Pesaran 

regression equations can be derived as:    

dyt = θ10 + θ11yt−1 + θ12xt−1 + ∑ βi
p
i=1 dyt−i + ∑ δi

q
i=0 dxt−i + ε1t       (8.3) 

dxt = θ10 + θ11yt−1 + θ12xt−1 + ∑ βi
p
i=1 dxt−i + ∑ δi

q
i=0 dyt−i + ε1t      (8.4) 

The Pesaran equations 8.3 and 8.4 are similar to Error Correction Version of ARDL 

equation 8.1, because just like the error correction model, the equation contains all 

difference form variables and error correction term which mentioned without 

differencing. Pesaran argued that this model can be used for testing long run and short 

run relationships. The F test is employed to find out joint significance for short run and 

long run relationships. The hypotheses for long run and short run relationships are 

following: 

H0 = θ11 = θ12 = 0                    There is no long run relationship 

H1 = θ11 = θ12 ≠ 0                    There is long run relationship  

The hypotheses for short run relationship are following: 

H0 = βi = δi = 0                      There is no short run relationship  

H1 = βi = δi ≠ 0                      There is short run relationship 

The F statistic (Wald test) for these hypotheses tested in each of the models can be 

denoted as  

Fx1(x1t |x2t ) (8.5) 

Fx2(x2t |x1t ) (8.6) 

The distribution of Wald test is non-standard asymptotically under the null of no 

cointegration. Pesaran and Shin (1995) revealed that asymptotically valid inference on 
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short run and long run parameters could be made by employing ordinary least square 

estimations of ARDL model. So, the ARDL model order is properly augmented to grant 

for contemporary correlation among the stochastic elements of the data generating 

processes involved in estimation.  

As stated by Pesaran the beauty of Pesaran’s model is that it can differentiate between 

genuine and spurious relationship without knowing about stationarity. Since Pesaran 

ECM version of ARDL is a restriction of the generalized ARDL model, thus, the simple 

ARDL (DHSY version) should also be utilized to differentiate between genuine and 

spurious relationship. This study shows that actually it is possible to use unrestricted 

ARDL model to differentiate between genuine and spurious relationship. Pesaran has 

devised two set of critical values, first applicable when the series are stationery and 

second applicable when the series are nonstationary. The Pesaran ARDL procedure is 

only used for nonstationary series and involves prior specification decisions. Pesaran 

ARDL model procedure estimates short run effects by taking differencing in equation 

and long run effect through bound testing. Pesaran et al. (2001) provided critical values 

of two bounds, upper and lower which are being used for cointegration. The lower 

bound considers variables are stationary and they have no long run relationship. The 

upper bound considers variables are nonstationary and they have long run relationship. 

While the Hendry ARDL model used least square regression and there is no need of 

special critical values and it also works in stationary time series case. The simple ARDL 

model provides only static relationships.    

However the Pesaran equation is based on difference form variables and if the original 

series are stationary, the differencing will produce negative moving average (NMA) 

which will yield the power problem. 
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8.1 Probability of Spurious Regression with Pesaran’s Bound Testing and 

Unristricted ARDL Equation 

The size analysis is performed to quantify the distortion in probability of type I error. 

It can be expressed in following way: 

Size = Prob (reject H0| when H0 is true) 

The size distortion can be regarded as probability of spurious regression because size 

is the probability of getting significant coefficients when actually there is no 

relationship. The size is measured after employing Pesaran’s bound testing and Hendry 

ARDL model with different specifications. For this analysis, the independent 

autoregressive stationary and nonstationary time series are being generated by 

following equation 5.1 with different specifications i.e. without drift and trend, without 

drift, with drift and with drift and trend. Since Pesaran’s equation is restricted version, 

it cannot supersede the Hendry version. This is intuition but the exact results are 

summarized in table 8.1 from Monte Carlo simulations. These results are summarized 

after 100,000 simulations: 

The figure 8.1 given below is based on results of table 8.1. When autoregressive 

parameters θ1 = θ2 are equal to 1, it means series are nonstationary. Figure 8.1, shows 

the comparison among the probability of spurious regression with Pesaran ARDL 

model and ARDL model. This comparison has been made on the different 

specifications.  
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Figure 8.1: Size of Pesaran ARDL Version and Hendry ARDL model Version for 

Testing Long Run Relationship.  

 

 

Figure 8.1 shows the probability of spurious regression on the basis of Pesaran’s cointegration 

equation and Autoregressive Distributed Lag models. The F test is used for joint significance 

of current and lag values of independent variable in ARDL models. 

 

In first case, when series have no drift and trend we got 19.5% probability of spurious 

regression by employing bond testing and only 6.40% with Hendry ARDL model. It 

shows that in case of without drift and trend Pesaran ARDL model procedure suffers in 

size problem while ARDL has no size distortion in this case.  In second case, when 

series have linear trend we got 10.11% probability of spurious regression by using 

Pesaran ARDL model and 81.40% with Hendry ARDL model. In this case Hendry 

ARDL model performs badly due to under specification. In third case when series have 

drift only, we got 10.24% probability of spurious regression by using Pesaran ARDL 

model and 7.00% with Hendry ARDL model. In this case Hendry ARDL model 

perform very well as compare to Pesaran ARDL model because in this case Pesaran 

ARDL model has more size distortion as compare to Hendry ARDL model. In fourth 

case when series have drift and linear trend, we got 25.06% probability of spurious 
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regression by using Pesaran ARDL model and 80.70% with Hendry ARDL model. In 

this case Hendry ARDL model performs due to under specification. All these results 

show that Hendry ARDL model has good size in case of exact and under specification 

and badly perform in case of trend misspecification. While Pesaran ARDL model 

performs good in trend misspecification case due to difference term and it has huge size 

distortion in all other cases as compare to Hendry ARDL model. 

The figure 8.2 is based on the results of table 8.1. When autoregressive parameters θ1 = 

θ2 are equal to 0.8, means series are stationary. Figure 8.2, shows the comparison among 

the probability of spurious regression with Pesaran ARDL model and Hendry ARDL 

model. This comparison has been made on different specifications.  

In first case when series have no drift and trend we got 42.80% probability of spurious 

regression by employing bond testing and only 6.10% with Hendry ARDL model. It 

shows that in case of without drift and trend Pesaran ARDL model procedure suffers in 

huge size problem while ARDL has no size distortion in this case.  In second case when 

series have linear trend we got 9.75% probability of spurious regression by using 

Pesaran ARDL model and 34.60% with Hendry ARDL model. In this case Hendry 

ARDL model performs badly due to under specification and Pesaran ARDL model has 

less size distortion due to difference terms. 
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Figure 8.2: Size of Pesaran ARDL Model and Hendry ARDL Model with 

Stationary Series at different Specification when θ1 = θ2 = 0.8 

 

 

Figure 8.2 shows the probability of spurious regression on the basis of Pesaran’s cointegration 

equation and Autoregressive Distributed Lag models. The F test is used for joint significance 

of current and lag values of independent variable in ARDL models. 

 

In third case when series have drift only we got 31.93% probability of spurious 

regression by using Pesaran ARDL model and 6.10% with Hendry ARDL model. In 

this case Hendry ARDL model perform very well as compare to Pesaran ARDL model 

because in this case Pesaran ARDL model has more size distortion as compare to 

Hendry ARDL model. In forth case when series have drift and linear trend we got 

21.76% probability of spurious regression by using Pesaran ARDL model and 38.70% 

with Hendry ARDL model. In this case Hendry ARDL model performs badly due to 

under specification. All these results show that Hendry ARDL model has good size in 

case of exact and under specification and badly perform in case of trend 

misspecification. While Pesaran ARDL model performs good in trend misspecification 

case due to difference term and it has huge size distortion in all other cases as compare 

to Hendry ARDL model. The complete results of size analysis are given in table 8.1:  
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Table 8.1: Probability of Spurious Regression with Pesaran ARDL model and 

Hendry ARDL models 

 Hendry ARDL (1, 1) Pesaran ARDL model 

 xt xt-1 yt-1 F-stat F-stat 

𝛉𝟏= 𝛉𝟐 𝐚𝟏= 𝐛𝟏= 0 = 𝐚𝟐= 𝐛𝟐= 0 (no drift, no trend) 

1 6.6 6.6 100.0 6.4 19.5 

0.8 6.2 6.2 99.7 6.1 42.8 

0.6 6.0 6.0 95.8 6.0 79.9 

0.4 5.8 5.9 95.9 5.7 95.8 

0.2 5.8 5.9 21.1 5.6 99.3 

 𝐚𝟏= 𝐛𝟏= 0 (no drift) 

1 94.9 81.8 100.0 80.4 10.11 

0.8 16.0 6.5 100.0 34.6 9.75 

0.6 16.9 17.1 100.0 25.4 7.80 

0.4 29.3 30.5 99.0 13.8 15.80 

0.2 47.1 49.6 90.2 11.4 28.11 

       𝐚𝟐= 𝐛𝟐= 0 (with drift) 

1 6.1 8.0 100.0 7.0 10.24 

0.8 6.2 6.6 100.0 6.1 31.93 

0.6 6.0 6.2 99.4 6.1 68.47 

0.4 5.9 6.0 80.8 5.9 90.48 

0.2 6.0 6.0 25.2 5.6 97.92 

 𝐚𝟏= 𝐛𝟏=𝐚𝟐= 𝐛𝟐 ≠ 0 (with drift and trend) 

1 95.9 83.1 100.0 81.7 25.06 

0.8 11.5 8.4 100.0 38.7 21.76 

0.6 31.1 8.5 99.9 24.9 22.62 

0.4 49.9 17.1 98.4 19.9 39.35 

0.2 67.5 36.3 86.1 9.20 57.06 

 

The series have only autoregressive structure; this means the series has strong 

dependence on its own past. But the error terms of Series x are independent of the terms 

in y. Therefore, x should not appear in the equation of y, and if it appears, it indicates 

spurious regression. In first row of first panel of table 8.1, the results are indicating that 
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when series are nonstationary, the autoregressive parameters θ1=1 and θ2=1 having no 

drift and trend (a1= b1= 0 =a2= b2= 0) then after employing Pesaran ARDL model, we 

get 19.5%, actual empirical size at sample size of 50. So on the basis of 5% nominal 

size, the probability of spurious regression is 14.5%. In Hendry ARDL models, F-test 

is being used to test the joint significance of current and lag values of independent 

variables, the F-stat value after employing Hendry ARDL (1, 1) model is found only 

6.4% which shows only 1.4% probability of spurious regression on the basis of 5% 

nominal level of significance at sample size of 50. It means Hendry ARDL (1, 1) 

reduced the probability of spurious regression from 19.5% to only 6.4%. It shows that 

Pesaran ARDL model with nonstationary series having no drift and trend produce huge 

size distortion and Hendry ARDL model has no size distortion in this case.  

In second row, of first panel of table 8.1, the results are indicating that by employing 

Pesaran ARDL model, we get 42.8% actual empirical. So with 5% nominal size, the 

probability of spurious regression is 37.8%. The F-stat value after employing ARDL 

(1, 1) model is found only 6.1% which shows only 1.1% probability of spurious 

regression. In indicates that the Pesaran ARDL model has huge size distortion with 

stationary time series while Hendry ARDL model has no size problem in this case. It 

means Pesaran ARDL model has huge size distortion in this case with both stationary 

and nonstationary time series and Hendry ARDL model has no size problem in this 

case. The results of first panel of table 8.1 illustrate as we reduce the values of 

autoregressive parameters from 0.8 to 0.6 and so on, the Pesaran ARDL model got more 

size distortion. It indicates that as we move faraway from unit root the Pesaran ARDL 

model performs badly. 
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In first row, of second panel, of table 8.1, the results are indicating that when series are 

nonstationary, the autoregressive parameters θ1=1 and θ2=1 having no drift (a1= b1= 

0) then after employing Pesaran ARDL model, we get 10.11%, actual empirical size. 

So on the basis of 5% nominal size, the probability of spurious regression is 5.11%. 

The F-stat value after employing Hendry ARDL (1, 1) model is found only 81.4% 

which shows only 75.4% probability of spurious regression on the basis of 5% nominal 

level of significance. It indicates that in case of linear trend misspecification Hendry 

ARDL model has huge size while Pesaran ARDL model has less size distortion due to 

difference terms.  

In second row, of second panel, of table 8.1 when the series are stationary, the results 

are indicating that by employing Pesaran ARDL model, we get 9.75% actual empirical. 

So with 5% nominal size, the probability of spurious regression is 4.75%. The F-stat 

value after employing Hendry ARDL (1, 1) model is found 34.6% which shows only 

29.6% probability of spurious regression. In indicates that the Pesaran ARDL model 

has size distortion with stationary time series while Hendry ARDL model has huge size 

problem in this case due to trend misspecification. The results of second panel of table 

8.1 illustrate as we reduce the values of autoregressive parameters from 0.8 to 0.6 and 

so on, the Pesaran ARDL model got more size distortion. It indicates that as we move 

faraway from unit root the Pesaran ARDL model performs badly. When the values of 

autoregressive parameters are 0.4 and 0.2 the probability of spurious regression with 

Pesaran ARDL model are more than the Hendry ARDL model. It shows that Pesaran 

ARDL model has huge size distortion with stationary time series but with nonstationary 

time series Pesaran ARDL model has less size distortion in case of trend 

misspecification.  The next two panel has same fashion that is why we are not 

interpreting them here.  
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8.2 Robustness of Size to Misspecification  

In this analysis, we evaluate the robustness of Pesaran ARDL model and Hendry ARDL 

model with different specifications on the basis of size analysis. The possible three 

specification cases which have been considered in this analysis are, under, exact and 

over specified regression. The Monte Carlo simulations have been used in this analysis. 

All the results in table 8.2 summarized after 100,000 times simulations.  The series have 

been generated by using data generating process in equation 5.1. In this analysis only 

independent nonstationary series are used with autoregressive parameter specification 

θ1=1 and θ1=1.  

Specification Cases 

  Data Generating Process 

  Drift Drift and Trend 

Test  Equation 
Drift Exactly Specified Under Specified 

Drift and Trend Over Specified Exactly Specified 

 

The results are summarized in table 8.2 given below. The first panel of table 8.2 given above 

describes the results of Pesaran ARDL model. The size in cases of exact specification is 10.24% 

in case of only drift and 4.2% in case of drift and trend. It shows the probabilities of spurious 

regression in case of both exact specification cases are 5.24% and 0% respectively on the basis 

of 5% nominal level of significance. The second panel of table 8.2 illustrates the results of 

Hendry ARDL model. In case of correct specification with drift and drift and trend, the 

size distortions (probabilities of spurious regression) are very minor 1.1% and 3.4% 

respectively. The size of Hendry ARDL model with correct specifications are 6.1% 

with drift and 8.4% with drift and trend, which is negligible. The order of statistics of 

spuriousness in case of correct specification is given in following equation: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝑃𝑒𝑠𝑎𝑟𝑎𝑛 𝐴𝑅𝐷𝐿 𝑀𝑜𝑑𝑒𝑙

> 𝐻𝑒𝑛𝑑𝑟𝑦 𝐴𝑅𝐷𝐿 𝑀𝑜𝑑𝑒𝑙) 
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Table 8.2 Size Analysis under Different Specifications 

Pesaran ARDL model Test 

 

  
Data Generating Process 

  Drift  Drift and Trend  

Test  Equation 

Drift 10.24 25.06 

Drift and Trend  8.37 4.42 

Hendry ARDL model 

 

  
Data Generating Process 

  Drift  Drift and Trend  

Test  Equation 

Drift 6.1 87.7 

Drift and Trend  7 8.4 

 

These statistics clearly indicates that Pesaran ARDL model has probabilities of spurious 

regression even in correct specifications and Hendry ARDL model has very minor 

spurious regression probability which is theoretically negligible.  

Secondly, we consider the case of under specification. The first panel of table 8.2 which 

is showing the size results of Pesaran ARDL model, indicates that the size is 25.06%. 

It means there is 20.06% probability of spurious regression. The second panel of table 

8.2 indicates that the probability of spurious regression is 87.7% which is too high. The 

order of statistics of spuriousness in case of under specification is given in the following 

equation: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛  (Hendry 𝐴𝑅𝐷𝐿 𝑀𝑜𝑑𝑒𝑙

> 𝑃𝑒𝑠𝑎𝑟𝑎𝑛 𝐴𝑅𝐷𝐿 𝑀𝑜𝑑𝑒𝑙)  
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Thus, these results demonstrate that Pesaran ARDL model has huge probability of 

spurious regression even in under specification but Hendry ARDL model has very high 

spurious regression probability. It means in case of under specification Hendry ARDL 

model works worse than other Pesaran ARDL model but both procedures are suffering 

in huge size distortion problem. 

Thirdly, we take the case of over specification. The first panel of table 8.2 which is 

showing the size results of Pesaran ARDL model indicates that the size is 8.37%. It 

means that there is 3.37% probability of spurious regression. The second panel of table 

8.2 indicates that the probability of spurious regression is 7% with Hendry ARDL 

model. The order of statistics of spuriousness in case of over specification is given in 

the following equation: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛  (𝑃𝑒𝑠𝑟𝑎𝑛 𝐴𝑅𝐷𝐿 > 𝐻𝑒𝑛𝑑𝑟𝑦 𝐴𝑅𝐷𝐿 𝑀𝑜𝑑𝑒𝑙) 

Thus, these results validate that Pesaran ARDL model suffer in size distortion problem 

even in correct specifications and Hendry ARDL model has very minor spurious 

regression probability. After size analysis we conclude that the Hendry ARDL model 

works better than other Pesaran ARDL model except under specification. However, in 

case of trend misspecification Pesaran ARDL model works better than Hendry ARDL 

model with nonstationary time series.    

8.3 Power Analysis  

Power analysis is performed to assess the probability of rejection the null hypothesis, 

when the alternative hypothesis is true. As the statistical power of test increases, the 

probability of type II error is decreased. It can be expressed in following way: 

Power = Prob (reject H0| whenH1 is true) 
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In this study, we employ power analysis by following equation 6.1 to measure the power 

of Pesaran ARDL model and Hendry ARDL model with different specifications in 

different scenarios. The Monte Carlo simulations have been used in this analysis. All 

the results in the tables given below have been summarized after 100,000 times 

simulations.   

It is important thing that as Pesaran model suffers in size distortion problem, it is 

generally accepted that power cannot be compared for when size is not same and the 

test with no size distortion becomes preferable. The size analysis shows that Pesaran 

ARDL model and Hendry ARDL model have size distortion in trend misspecification 

but Hendry ARDL model has more size distortion in this case. In case of without drift 

and trend time series the Hendry ARDL model has no size distortion while Pesaran 

ARDL model has size distortion. In case with drift time series the Hendry ARDL model 

has no size distortion while Pesaran ARDL model has size distortion.  

Another important thing is that the Pesaran ARDL model has huge size distortion with 

stationary time series and it is going to be high when we move faraway from unit root. 

While Hendry ARDL model perform well in both cases. This concludes that Pesaran 

ARDL model cannot be used as a remedy of spurious regression with stationary time 

series. The reason behind this size distortion is negative moving average (NMA). It also 

has size distortions in nonstationary case.  

In first row of first panel of table 8.3, the results are indicating that when series are 

nonstationary, θ1=1 and θ2=0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0 and 

θ21=0.8, then the F-stat value after employing Hendry ARDL (1, 1) model is indicating 

that the power of Hendry ARDL (1, 1) model is 93.9% which shows 1.1% power loss 

at 5% nominal size. While the power of Pesaran ARDL model procedure is 99.7% 
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which shows no power loss. But it is not the real power because Pesaran ARDL model 

has size distortion. 

Table 8.3: Power Analysis of Lag Dependent Series without Drift and Trend 

 Hendry ARDL (1, 1) Pesaran ARDL model 

 xt xt-1 yt-1 F-stat F-stat 

𝛉𝟏=𝛉𝟐 θ21= 0.8 

1 95.9 6.7 100.0 93.9 99.7 

0.8 91.5 6.0 100.0 85.6 99.23 

0.6 48.8 6.0 100.0 56.4 98.47 

0.4 18.4 5.9 92.6 19.9 99.5 

0.2 8.4 5.9 36.4 11.3 99.83 

 θ21= 0.6 

1 86.5 6.2 100.0 84.3 99.25 

0.8 68.0 6.1 100.0 60.2 94.47 

0.6 21.0 5.9 99.7 20.7 95.13 

0.4 9.4 6.0 86.3 10.6 98.07 

0.2 6.6 5.8 29.6 6.8 99.95 

       θ21= 0.4 

1 67.1 6.1 100.0 74.6 95.7 

0.8 21.8 6.1 100.0 30.6 79.02 

0.6 8.5 6.0 98.9 21.4 87.11 

0.4 6.7 5.9 78.1 11.9 96.16 

0.2 6.1 6.0 25.1 7.2 99.06 

 θ21= 0.2 

1 19.8 5.2 100.0 27.6 57.53 

0.8 7.0 6.2 99.9 9.5 48.77 

0.6 6.3 5.9 97.0 7.5 74.46 

0.4 6.3 5.9 71.7 6.4 92.15 

0.2 6.1 5.8 22.4 6.1 98.27 

 

  



218 
 

Table 8.4: Power Analysis of Lag Dependent Series without drift  

 Hendry ARDL (1, 1) Pesaran ARDL model 

 xt xt-1 yt-1 F-stat 

𝛉𝟏=𝛉𝟐 θ21= 0.8 

1 
90.9 31.0 100.0 97.87 

0.8 
86.8 5.6 100.0 99.8 

0.6 
82.7 5.7 100.0 87.56 

0.4 
33.1 23.3 100.0 71.38 

0.2 
8.8 53.5 99.5 70.43 

 θ21= 0.6 

1 
84.1 26.2 100.0 97.86 

0.8 
82.1 27.4 100.0 97.61 

0.6 
42.9 6.7 100.0 73.41 

0.4 
10.7 27.6 100.0 60.57 

0.2 
6.6 56.8 99.0 61.33 

       θ21= 0.4 

1 
76.1 15.1 100.0 97.98 

0.8 
67.72 28.82 100.00 99.16 

0.6 
10.32 9.61 100.00 46.01 

0.4 
6.47 31.68 99.97 36.86 

0.2 
15.86 58.24 97.83 44.72 

 θ21= 0.2 

1 
21.9 10.2 100.0 98.01 

0.8 
9.4 26.3 100.0 92.32 

0.6 
7.7 14.2 100.0 18.77 

0.4 
17.6 33.7 99.8 21.55 

0.2 
34.3 56.4 95.4 33.27 
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Table 8.5: Power Analysis of Lag Dependent Series with drift  

 Hendry ARDL (1, 1) Pesaran ARDL model 

 xt xt-1 yt-1 F-stat 

𝛉𝟏=𝛉𝟐 θ21= 0.8 

1 
94.3 7.7 100.0 99.9 

0.8 
96.7 6.0 100.0 99.03 

0.6 
53.2 5.9 100.0 98.59 

0.4 
16.7 5.8 94.8 99.33 

0.2 
7.1 5.9 37.9 99.97 

 θ21= 0.6 

1 
89.0 6.9 100.0 99.86 

0.8 
76.3 6.0 100.0 95.82 

0.6 
20.7 5.9 100.0 97.23 

0.4 
8.0 6.0 89.0 98.13 

0.2 
5.8 5.9 30.9 99.91 

       θ21= 0.4 

1 
57.6 4.6 100.0 99.15 

0.8 
28.8 6.1 100.0 97.35 

0.6 
6.7 6.0 99.6 97.13 

0.4 
5.5 5.9 81.6 98.7 

0.2 
5.7 5.7 26.0 99.64 

 θ21= 0.2 

1 
11.9 2.7 100.0 92.01 

0.8 
5.7 6.0 100.0 52.41 

0.6 
5.8 5.9 98.4 76.51 

0.4 
5.7 5.8 74.1 94.32 

0.2 
5.8 5.9 22.7 99.2 
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Table 8.6: Power Analysis of Lag Dependent Series with drift  

 Hendry ARDL (1, 1) Pesaran ARDL model 

 xt xt-1 yt-1 F-stat 

𝛉𝟏=𝛉𝟐 θ21= 0.8 

1 
95.9 7.1 100.0 98.01 

0.8 
99.9 17.9 100.0 99.68 

0.6 
84.2 7.6 100.0 88.14 

0.4 
32.6 23.3 100.0 71.85 

0.2 
7.8 51.6 99.5 71.8 

 θ21= 0.6 

1 
81.5 6.9 100.0 98.28 

0.8 
97.6 17.9 100.0 99.57 

0.6 
45.3 9.9 100.0 70.45 

0.4 
10.4 27.9 100.0 55.49 

0.2 
6.9 54.7 98.9 60.29 

       θ21= 0.4 

1 
67.1 6.1 100.0 98.9 

0.8 
73.7 17.6 100.0 99.54 

0.6 
11.3 13.3 100.0 50.04 

0.4 
6.8 31.2 100.0 41.67 

0.2 
17.5 56.2 97.7 45.41 

 θ21= 0.2 

1 
19.8 4.6 100.0 98.5 

0.8 
13.0 13.6 100.0 92.45 

0.6 
7.6 17.2 100.0 16.04 

0.4 
19.0 32.4 99.8 21.75 

0.2 
37.6 54.1 95.1 33.73 

 

In second row of first panel of table 8.3, the results are representing that when series 

are stationary, θ1= 0.8 and θ2 = 0.8, having no drift and trend, a1= b1= 0 =a2= b2= 0 

and θ21=0.8, then the F-stat value after employing Hendry ARDL (1, 1) model is 
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showing that the power of Hendry ARDL (1, 1) model is 85.6% which shows 14.4% 

power loss at 5% nominal size. In first row of second panel of table 8.3, the results are 

indicating that when series are nonstationary, θ1=1 and θ2=0.8, having no drift and 

trend, a1= b1= 0 =a2= b2= 0 and θ21=0.6, then the F-stat value after employing Hendry 

ARDL (1, 1) model is indicates that the power of Hendry ARDL (1, 1) model is 84.3% 

which shows 10.7% power loss at 5% nominal size. The power of Pesaran ARDL model 

99.25 which shows 0% power loss. In second row of second panel of table 6.1, the 

results are representing that when there is stationary series, θ1= 0.8 and θ2 = 0.8, having 

no drift and trend, a1= b1= 0 =a2= b2= 0 and θ21=0.6, then the F-stat value after 

employing Hendry ARDL (1, 1) model is indicating that the power of Hendry ARDL 

(1, 1) model is 60.2% which shows 34.8% power loss at 5% nominal size.  

The Pesaran ARDL model test is showing no power loss on all values of autoregressive 

parameters which are misleading due to size distortion. While Hendry ARDL model 

has no size distortion in without drift and trend specifications. That is why it has real 

powers on all the values of which are more than Pesaran ARDL model test power. It 

clarifies that when series are stationary or nonstationary without having drift and trend 

Hendry ARDL works better than Pesaran ARDL model.   

In first row of first panel of table 8.4, the results show that when we regressed 

nonstationary series θ1=1 and θ2=0.8, without drift, a1= b1= 0 and θ21 = 0.8. The F-

test is used only in one case for displaying the joint significance of independent lag and 

current value. So, table 8.4, 8.5, and 8.6 have only t-stat values. After employing 

Hendry ARDL (1, 1) model, the power of current value of x is 90.9%. It means that 

there is only 4.1% power loss. The reason behind it might be we did not include linear 

trend in Hendry ARDL model, if we include linear trend, it may provide more power. 

The figure of lag value of x is showing only 31% power which means 59% power loss. 
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As we know that y value is determined through lag value of x, but the current value are 

more significant as compare to lag value of x.  The reason is that there is 

multicollinearity effect.  The current and lag values of x variable are collinear that is 

why the effect shifts into current value in Hendry ARDL model (1, 1). The power of 

Pesaran ARDL model without drift or time series with linear trend is 97.7% which 

shows 0% power loss.  

 In second row of first panel of table 8.4, the results illustrate that when we regressed 

stationary series θ1=0.8 and θ2=0.8, without drift, a1= b1= 0 and θ21 = 0.8 after 

employing Hendry ARDL (1, 1) model, the power of current value of x is 86.8% which 

means only 8.6% power loss.  The reason behind it is that we did not include linear 

trend in Hendry ARDL. If we include linear trend, it may provide more power. The 

figure of lag value of x is showing only 5.6% power which means 89.4% power loss. 

While the power of Pesaran ARDL model is 99.8% which means no power loss.  

When the series have linear trend and tests have trend misspecification problem, then 

Pesaran ARDL model is performed well as compare to Hendry ARDL model in case of 

nonstationary time series. But both tests have size distortion problem in trend 

misspecification case. Same pattern has been found on other values of θ21 like, 0.6 and 

so on.  

Though in some cases when the values of parameter𝑠    θ1, θ2, and θ21, series are 

stationary the Pesaran ARDL model shows more power, yet we cannot consider it 

because as we have seen in size analysis the Pesaran ARDL model suffers badly in size 

problem and ARDL in all cases has less size problem. That is why, we cannot say that 

Pesaran ARDL model has more power.  
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Similarly results in tables 8.5 and 8.6 also show that two scenarios of lag dependent 

series with drift and with drift and trend depict the same fashion. So, the interpretations 

of these cases are approximately alike. The own lag values of y are highly significant 

in all cases, but one thing which is necessary to consider is that as we reduce the value 

of autoregressive terms, the significance of  lag values also  decreases in case of Hendry 

ARDL model and not in Pesaran ARDL model.  

8.3.1 Robustness of Power to Misspecification  

Table 8.7, shows the results of power of Pesaran ARDL model test under different 

specifications at different values of autoregressive parameter θ2. At first we consider 

correct specification with drift and drift and trend cases. The first panel of table 8.7, 

describes the results of Pesaran ARDL model test when θ2=0.8. The power in case of 

correct specification is 99.45% with drift. It shows 0% power loss when autoregressive 

parameter θ2= 0.8 and x lag value coefficient θ21= 0.8. The power under correct 

specification is 98.58% with drift and trend. It shows 0% power loss when lag value 

parameter of y  is θ2= 0.8 and x lag value coefficient is θ21= 0.8. Table 8.8, describes 

the results of power of Hendry ARDL model under different specifications at different 

values of autoregressive parameter θ2. 
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Table 8.7: Power Analysis of Hendry ARDL model by using Lag Dependent Series 

at Different Specifications 

Pesaran ARDL model  

 𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
99.45 99.99 

Drift and Trend  95.69 98.58 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 99.52 99.26 

Drift and Trend  95.81 95.3 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 99.7 90.9 

Drift and Trend  95.47 96.69 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 99.85 81.08 

Drift and Trend  97.03 98.01 
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Table 8.8: Power Analysis of Hendry ARDL model by using Lag Dependent Series 

at Different Specifications 

Hendry ARDL model 

 𝛉𝟐= 0.8 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
98.1 98.7 

Drift and Trend  
99 99.9 

  𝛉𝟐= 0.6 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
99.3 99 

Drift and Trend  
99 99.9 

  𝛉𝟐= 0.4 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
99.5 99 

Drift and Trend  
99 100 

  𝛉𝟐= 0.2 

  Data Generating Process 

  Drift   Drift and Trend  

Test  Equation 

Drift 
100 99 

Drift and Trend  
99 100 
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Firstly, we consider correct specification with drift and drift and trend cases. The first 

panel of table 8.8, refers the results of Hendry ARDL model when θ2=0.8. The power 

in case of correct specification is 98.1% with drift. It shows 0% power loss when θ2= 

0.8 and θ21= 0.8. The power under correct specification is 99.9% with drift and trend. 

It shows 0% power loss at θ2= 0.8 and θ21= 0.8.  

The second panel of table 8.7, illustrates the power results of Pesaran ARDL model test 

when θ2=0.6. The power in case of correct specification is 99.52% with drift. It shows 

0% power loss when θ2= 0.6 andθ21= 0.8. The power under correct specification is 

95.3% with drift and trend, it shows 0% power loss when θ2= 0.8 and θ21= 0.6. The 

second panel of table 8.8 given above describes the power results of Hendry ARDL 

model when θ2=0.6. The power in case of correct specification is 99.3% with drift, it 

shows 0% power loss when θ2= 0.6 and θ21= 0.8. The power under correct 

specification is 99.9% with drift and trend, it shows 0% power loss when θ2= 0.8 

andθ21= 0.8.  

Here we have seen both tests performed very well and they have no power loss at correct 

specification case. But the size analysis clears that in case of correct specification with 

only drift, the Pesaran ARDL model suffers in size distortion. Thus because of size 

problem we cannot say Pesaran ARDL model has 0% loss in this case. While Hendry 

ARDL model has no size problem in this case, so we can consider the power of Hendry 

ARDL model as real power. Nonetheless, in case of correct specification with drift and 

trend the Hendry ARDL model suffers in size problem but it is negligible because it is 

less than 10% nominal significance level. The order of statistics of power in case of 

correct specification is following: 

𝑃𝑜𝑤𝑒𝑟 (Hendry 𝐴𝑅𝐷𝐿 𝑀𝑜𝑑𝑒𝑙 > Pesaran  ARDL Model) 
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Similarly, when the values of autoregressive parameters are  θ2 = 0.4 and 0.2, same 

pattern has been found. It clearly indicates that in correct specification cases the Hendry 

ARDL model has good power while Pesaran ARDL model procedure is having huge 

power loss. We cannot compare the power of these tests and Hendry ARDL model 

because as we have seen in size analysis the cointegration procedure suffer in size 

distortion problem even in case of correct specification.  

 Secondly, we consider the case of under specification. Table 8.7, shows the results of 

power of Pesaran ARDL model test under different specifications at different values of 

autoregressive parameter θ2. The first panel of table 8.7, describes the results of Pesaran 

ARDL model test when θ2=0.8. The power in case of under specification is 99.9% with 

drift. It shows 0% power loss when θ2= 0.8 andθ21= 0.8. Table 6.31, shows the results 

of power of Hendry ARDL model under different specifications at different values of 

autoregressive parameter θ2. The first panel of table 6.31 describes the results of 

Hendry ARDL model when θ2=0.8. The power in case of under specification is 98.7% 

with drift. It shows 0% power loss when θ2= 0.8 andθ21= 0.8.  

The second panel of table 6.29, describes the results of Engle and Granger cointegration 

test when θ2=0.6. The power in case of under specification is 99.26%, it shows 0% 

power loss when θ2= 0.6 andθ21= 0.8. Table 8.8 shows the results of power of Hendry 

ARDL model under different specifications at different values of autoregressive 

parameter θ2. The first panel of table 8.8, describes the results of Hendry ARDL model 

when θ2=0.6. The power in case of under specification is 99.0% with drift. It shows 

0% power loss when θ2= 0.6 and θ21= 0.8.  

Thus, these results validate that Pesaran ARDL model test and Hendry ARDL model 

are having very good powers with 0% power loss. In case of under specification, 
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Hendry ARDL model badly suffers in size distortion problem as we have seen in size 

analysis. So, we cannot say that ARDL has good power on the basis of these statistics 

that is in under specification according to our estimation Pesaran ARDL model works 

well because it has huge size distortion but less as compare Hendry ARDL model in 

this case. The order of power of ARDL in case of under specification is given in the 

following equation: 

𝑃𝑜𝑤𝑒𝑟  (𝑃𝑒𝑠𝑟𝑎𝑛 𝐴𝑅𝐷𝐿 𝑀𝑜𝑑𝑒𝑙 > Hendry 𝐴𝑅𝐷𝐿 𝑀𝑜𝑑𝑒𝑙) 

Similarly at all the values of autoregressive parameter θ2 = 0.4 and 0.2 same pattern 

has been found.   

At third we consider the case of over specification. Table 8.7, shows the results of power 

of Engle and Granger cointegration test over different specifications at different values 

of autoregressive parameter θ2. The first panel of table 8.7, describes the results of 

Pesaran ARDL model test when θ2=0.8. The power in case of over specification is 

95.69%.  It shows 0% power loss when θ2=0.8 andθ21= 0.8. Table 8.8, shows the 

results of power of Hendry ARDL model under different specifications at different 

values of autoregressive parameter θ2. The first panel of table 8.8, describes the results 

of Hendry ARDL model when θ2=0.8. The power in case of over specification is 

98.1%. It shows 0% power loss when θ2= 0.8 andθ21= 0.8.  

The second panel of table 8.7 describes the results of Pesaran ARDL model test when 

θ2=0.6. The power in case of over specification is 95.81%. It shows 0% power loss 

when θ2= 0.6 and θ21= 0.8. The second panel of table 8.8, describes the results of 

Hendry ARDL model when θ2=0.6. The power in case of under specification is 99.3% 

with drift. It shows 0% power loss when θ2= 0.6 and θ21= 0.8.  
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Thus, these results validate that the Hendry ARDL model has more power as compare 

to Pesaran ARDL model test. Also in this case Pesaran ARDL model and Hendry 

ARDL model have size distortions but the Pesaran ARDL model has more a compare 

to Hendry ARDL model. These size distortions are negligible because both are less than 

10% nominal level of significance. In case of over specification Hendry ARDL model 

does not suffer in size distortion problem as we have seen in size analysis. So, we can 

say that ARDL has more power in case of over specification.  The power of ARDL is 

given as follows; 

𝑃𝑜𝑤𝑒𝑟  (𝐻𝑒𝑛𝑑𝑟𝑦  𝐴𝑅𝐷𝐿 𝑀𝑜𝑑𝑒𝑙 > 𝑃𝑒𝑠𝑎𝑟𝑎𝑛 𝐴𝑅𝐷𝐿 𝑀𝑜𝑑𝑒𝑙)  

Similarly at all the values of autoregressive parameter θ2 = 0.4 and 0.2 same pattern 

has been found. It clearly indicates that in over specification ARDL works good as 

compare to other techniques.   
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CHAPTER 9 

TRACING DYNAMIC LINKAGES & SPILLOVER EFFECT 

BETWEEN PAKISTANI & LEADING FOREIGN STOCK 

MARKETS WITH ARDL & GARCH MODELS 

9.1 Introduction 

Modern econometric tools are used for investigating volatility co-movement between 

the financial markets. The global financial integration started in the mid-1980s, 

consequently risk and return Co-movements between the financial markets were 

observed at that time. The growing economic integration of intercontinental financial 

markets has attained significance since last three decades. The major factors behind this 

observed globalization are extensive growth of technology, easy capital flow and 

financial links between the economies. That is why, the analysis of the nature and level 

of linkages between different financial markets is significant for financial institutes, 

portfolio managers and market players. Engle et al. (1990) proposed the meteor shower 

hypothesis to trace out intra-market co-movements”.  The global financial crisis of 2008 

was one of the worst financial crises of US history. It not only triggered imbalances in 

US economy but also impacted a major part of overall global economy. Most of the 

global financial crises initiated from US economy and due to the strong 

interdependence of US economy with other economies these crises impacted all 

integrated economies at some extent. The key reasons identified by the academic 

researchers behind this crisis were excessively relaxed monetary policy, regulatory 

failures in macro prudential and micro prudential levels, the accumulation of global 

balance of payment inequalities and flaws in the international financial planning (Kawai 

et al., 2012). 
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Owing to investment linkages with US economy the effect of financial crisis 

transmitted into Pakistan (Amjad & Din, 2010) and Dubai economy (Onour, 2010).  

Likewise, Dubai financial market had also impressively impacted Dubai’s economic 

growth. The portfolio investment in Dubai financial market got reduced 24% in 2009. 

When financial crisis effects transmitted into Pakistan economy, the economy was 

facing some internal issues like political instability, bad governance, deficit in current 

account, rising unemployment, energy crisis and failure of macroeconomic policies. 

Pakistan and Dubai both countries have significant relationship in different sectors of 

economy. Dubai is one of the emerging markets of UAE. Over 1.2 million emigrants 

of Pakistan are providing their services in UAE. Their remittances significantly 

contributed to Pakistan’s foreign reserves. UAE is the second prominent source of 

remittances from Pakistani emigrants. Pakistan expatriates provided $2.52 billion 

remittances in 2013-14 with 19.57% share in total remittances of.  Similarly, UAE has 

major share in Pakistan exports and imports. In 2013-14 UAE had 8% share of total 

Pakistan’s exports and 17% share in imports. At the occasion of UAE cityscape “7th 

annual property and real estate exhibition” 2008 in Dubai more than 100 Pakistani 

investors invested over $100 million for the booking of construction projects. There 

were a large number of Pakistani investors out of 40,000 visitors from all over the world 

who took part in this exhibition.  

The objective of this study is to investigate the direct and indirect linkages between 

Pakistani and leading foreign stock markets in general and particularly during the global 

financial crisis of 2007-08. The leading stock markets having linkages with 

international financial system and US stock markets are selected from different regions 

of the world. In this study we analyze direct linkages between Pakistani and leading 

foreign stock markets by using whole data set. We also explore the indirect linkages 
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between Pakistani and US stock markets through Dubai financial market by using 

whole and both subsets of data. All these findings help us in formulating more effective 

short run and long-run policies to tackle the effect of such global crises in favor of 

sustainable economic growth. 

9.2 Literature Review    

There exists strong integration of global economies through different financial or real 

links. Crisis in one part of the world is much likely to transmit to other parts. In 2007, 

when global markets experienced a huge wave of financial crisis due to United State 

sub-prime mortgage crisis. It not only impacted domestic economy of USA but also 

other economies of the world which are integrated directly or indirectly with US 

economy. Global financial crisis is one of the major factors which have shifted 

concentration on the dynamic linkages between the financial markets. Owing to the 

dynamic linkages, the information transmission is also existed between financial 

markets. The information transmission mechanisms were quantified through returns 

and volatilities (Padhi & Lagesh, 2012). Angkinand et al. (2009) investigated that how 

the financial crisis in US markets  impacted 17 developed economies from 1973-2009, 

and they found the spillover effects from the US to other industrial countries were 

highest after collapse of  U.S subprime mortgage market in the summer of 2007. 

Chelley (2005) explained the links of United State stock market with UK and European 

stock markets. The results showed strong bilateral relationship between US and UK 

stock markets while relationship of US market with other European economies was also 

found. The business cycle movements in the United Kingdom economy are more 

sensitive to disturbances in US relative to other European economies. Alsukker (2010) 

explored that US mortgage crisis 2008 affected Dubai financial market. Initially 

Dubai’s economy tolerated the effect of global financial crisis but on 25 Nov, 2009 
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Dubai demanded suspension on debt repayment from world. Gomez and Ahmad (2009) 

examined that the neighbor country of Dubai, Abu Dhabi presented a loan of $10 billion 

for the management of its debt. At that time Dubai’s amount of debt was roughly $59 

billion and the overall global debt was 10 times more than that of Dubai’s debt. Onour 

(2010) investigated that spillover effect of US Mortgage crisis 2008, badly affected oil 

producing countries including Dubai. The portfolio investment in Dubai financial 

market decreased up to 42%. When there was global financial crisis in 2008, Amjad 

and Din (2010) found that Pakistan economy was also facing an entire financial crisis 

at that time. Draz (2011) examined that Pakistan economy faced five financial crises 

(1958, 1974, 1979, 1997 and 2008) which badly affected Pakistan economy. They also 

explored that Pakistan economy was affected form global financial crisis 2008. There 

is empirical   linkage between global financial crisis  and Pakistani stock markets (Ali 

& Afzal, 2012; Zia-ur-Rehman et al., 2013; Attari & Safdar, 2013;Tahir et al., 2013). 

Mukherjee and Mishra (2008) explored that volatility spillover effect and linkages 

between India and other twelve emerging Asian and developed countries. Jeyanthi 

(2010), Sinha and Sinha (2010) investigated the relationships and volatility spillover 

effect among India, UK, Japan and USA stock markets and by incorporating the 

structural change. They concluded that there is volatility spillover from Japan and USA 

stock market’s to Indian stock markets. Sok-Gee and Karim (2010) examined that there 

exists volatility spillover among five countries of ASEAN, Japan and USA. They found 

that USA stock market has more mean and volatility spillover effect on ASEAN stock 

markets as compare to Japan stock market. Alikhanov (2013) examined the volatility 

spillover effect between the eight European stock markets and oil price market and 

found a strong spillover effect from US to European stock and oil markets. Wongswa 

(2006) studied that there was strong indications of transmission of information from 
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US and Japan to Thailand and Korea. Due to the information transmission there was 

co-moment among the markets and also revealed the transmission from developed to 

emerging equity markets.  

All the studies which we have reviewed conclude that the global financial crisis 2008 

primarily, originated due to the creation and expansion of bubbles in housing and 

subprime markets of US. It triggered imbalances in US economy and also in those 

economies which were directly and indirectly integrated with US economy. Pakistan 

and Dubai economies were also affected by global financial crisis 2008 at some extent. 

At that time co-movements were also observed between the financial markets 

(particularly stock markets) due to direct and indirect linkages with global financial 

system. Studies related to Pakistan describe that the effect of global financial crisis 2008 

transmitted into Pakistan economy through four main linkages, one of them is stock 

market. In this study we trace out direct and indirect linkages between Pakistani and 

leading foreign stock markets. These studies only investigated direct dynamic linkages 

between the financial markets (stock). There are no or very little traces of indirect 

information transmission. In this study, we have tried to find out direct linkages 

between the leading global stock markets and also indirect dynamic linkages between 

Pak-US stock markets through Dubai financial market.   

9.3 Econometric Methodology and Model Specification 

To describe the variation of conditional variance with respect to time, Engle (1982) proposed 

Autoregressive conditional hetroscedastic (ARCH) model. Although ARCH model is a 

substantial contribution in econometric tools, it has some problems like long lag length 

and non-negativity restriction on parameters. Bollerslev (1986) introduced generalized 

autoregressive conditional hetroscedastic (GARCH) model, which improves the unique 

specification with the addition of lag value of conditional variance, which acts like 
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smoothing term. GARCH model cannot analyze Asymmetric and leverage effect. 

Glosten, Jagannathan and Runkle (1993) proposed GJR-GARCH model. GJR-GARCH 

model is a significant extension of standard GARCH model. It contains asymmetric 

term in conditional variance equation. To avoid any non-convergence problem in this 

study, we employ appropriate univariate GARCH type model such as GARCH (p, q) 

and GJR-GARCH (p, q) to estimate volatility models and to explore mean and volatility 

spillover effect. Following the technique of Hamao et al. (1990), we explored spillover 

effect between Pakistani and foreign stock markets.  

The financial series at level are trendy in nature. It is impossible to estimate a robust 

model if the series is trendy. To deal with trend we used the log difference return.  

Rt = loge(lt/lt−1) 

𝑙𝑡= Financial time series at level i.e. stock indices and exchange rates at the end of time 

t.    

𝑙𝑡−1= First lag of financial time series.  

9.3.1 ARCH (q) Model  

Engle (1982) introduced the Autoregressive conditional hetroscedastic (ARCH) model. 

This model overcomes all short comings which existed in previous models. In this 

model Engle, introduced conditional mean and conditional variance equations. 

Empirically the conditional mean equation follows ARMA (p, q) process and the 

conditional variance depends upon the square of past values of error process 휀𝑡.  
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The general description of ARCH model is: 

Conditional mean equation 

Rt = α0 + βXt + εt (9.1) 

 

Conditional variance equation 

σt
2 = θ0 + ∑ θi

q
i=1 εt−1

2  (9.2) 

Where  θ0 > 0, θi ≥ 0       i= 1,2,…….., q 

In conditional mean equation Rt represents the return which is linear function of Xt. 

 𝑤ℎ𝑒𝑟𝑒 𝛽 shows the vector of parameters. Empirically 𝛽𝑋𝑡 illustrates ARMA (m, n) 

process with different specifications. In some cases it may be ARMA (0, 0). According 

to the “Efficient Market Hypothesis (EMH)” Rt represents mean reversion behavior and it 

is unpredictable. In conditional variance equation the restriction on coefficients is that 

they must be non-negative. 𝜎𝑡
2 Represents conditional variance which depends upon 

lags of squared past value of 휀𝑡 process.  

9.3.2 GARCH (p, q) Model  

Linear ARCH (q) model has some problems. First, sometime we  take long lag length 

‘q’ due to this number of parameters are going to increase. As a result there is loss of 

degree of freedom. Second, there is non-negativity condition of parameters. Bollerslev 

(1986) proposed Generalized autoregressive conditional hetroscedastic (GARCH) 

model.  
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The general description of GARCH model is:   

Conditional mean equation 

Rt = α0 + βXt + εt  (9.3) 

 

Conditional variance equation 

σt
2 = θ0 + ∑ θi

q
i=1 εt−1

2 + ∑ φj
p
i=1 σt−1

2   (9.4) 

Where θ0 > 0, θi ≥ 0, φj ≥ 0 

In GARCH (p, q) model the conditional variance depends upon square of past values 

of process 휀𝑡 and lag of conditional variance𝜎𝑡−1
2 . The condition of non-negativity of 

parameter is also applied in this model.    

9.3.3 Asymmetric GARCH Models 

Simple GARCH type models deal with the symmetric effect of bad and good news on 

volatility. These models do not take into account the asymmetries which are associated 

with the distribution. In financial econometrics literature, Asymmetric GARCH type 

models consider the asymmetries of response to bad or good news. Asymmetric 

GARCH models account for leverage effect. The leverage effect indicates the negative 

correlation between the assets returns and the volatility of the assets return (Black 1976) 

which shows the magnitude of bad and good news are different. 
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9.3.3.1 GJR-GARCH (p, q) Model 

Glosten, Jagannathan and Runkle introduced (GJR) model in 1993. GJR model is a 

significant extension of simple GARCH model. This model also captures the 

asymmetries in ARCH process. GJR model also account for the leverage effect in a 

financial series.  

The general representation of the GJR model is: 

Conditional mean equation  

Rt = α0 + βXt + εt (9.5) 

 

Conditional variance equation 

σt
2 = θ0 + ∑ θi

q
i=1 εt−i

2 + ∑ δi
q
i=1 εt−i

2 Gt + ∑ φj
p
i=1 σt−j

2
 (9.6) 

Where θ0 > 0, θi ≥ 0, φi ≥ 0 

 0 ≤ δi ≥ 1  Range of leverage effect parameter. 

Gt = 1 when εt−1 < 0 and Gt = 0 when εt−1 ≥ 0 

Gt = 1 when 휀𝑡−1 < 0  illustrates bad news or the negative shock and Gt = 0 when 

휀𝑡−1 ≥ 0 indicates good news or positive shock. GJR model also shows that bad news 

has more impact (휃𝑖 + 𝛿𝑖). The good news has less impact (휃𝑖). If the 𝛿𝑖> 0, it means 

that there is leverage effect and shows that response to shock is distinct. If the 𝛿𝑖= 0, it  

means symmetric response to distinct shock (In other words both news have same 

impact). Condition (휃𝑖+𝜑𝑖+
𝛿𝑖

2
<1) shows the persistence of shock.  
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9.3.4 GARCH (p, q) Model (for Exploring Spillover Effect) 

Conditional Mean equation 

Rt,k = α0 + βXt + π1Rt,s + εt (9.7) 

 

Conditional Variance equation 

σt,k
2 = θ0 + ∑ θi

q
i=1 εt−1

2 + ∑ φj
p
i=1 σt−1

2 + π2Rt,s
2  (9.8) 

Rt,k Shows the return series of K market. Rt,s describes the return series of S market 

which is used as a regressor in conditional mean equation of K markets return series. 

π1, Represents the parameter of S market returns series. σt,k
2 , Denotes the conditional 

variance of K market. Rt,s
2  Indicates the squared returns series of S markets which is 

used as a regressor in conditional variance equation of K markets return series. π2, 

Demonstrates the parameter of squared return series of S market. We trace out the co-

movements among these markets by following the technique of Hamao et al. (1990). 

According to Hamao et al. (1990), the residuals of one return series introduce as a 

regressor in conditional mean equation of other return series for mean spillover effect. 

For volatility spillover effect, the squared residuals of one return series is introduced as 

a regressor in conditional variance equation of other return series. Instead of using 

residuals and squared residuals we use return series and squared return series. 

According to “The Efficient Market Hypothesis (EMH) return are unpredictable and 

show mean reversion behavior”. To check the mean spillover effect between two series, 

the return series of one market is introduced as regressor in other market return series. 

For volatility spillover effect the square of return series of one market is introduced as 

regressor in the conditional variance equation of other market. 
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9.4 Estimations and Analysis 

In this section at first we employ the graphical and descriptive analysis on series for 

understanding about the characteristics of series. At second, we employed the GRACH 

models and ARDL models to measure the spillover effect between Pakistani and 

leading foreign markets.  

9.4.1 Graphical Analysis 

Figure 9.1, shows that in beginning all series have upward trend than sharp decline and 

then again there is an upward trend continuously. This sharp decline is due to global 

financial crises 2008. It also shows that series are overall upward trendy at level. In 

figure 9.1, the series are (KSE 100) from Pakistan Stock market, Standard and Poor 

(S&P 500), Dow Jones, Nasdaq 100 are from USA and  Dubai financial market 

(DFMGI). Daily data are used for the period of 2005 to 2014. To check spillover effect 

we synchronized the data in term of dates.   

Figure 9.1: Graphs of Series of Stock prices at level  

 

Figure 9.1 shows the series of raw data of stock market prices of KSE 100, S&P500, Dow Jones, 

Nasdaq 100, and DFMGI. All the series are upward trendy with some fluctuations. The downward 

break exist in all series, it is because of global financial crises.  
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Figure 9.2 given below represents return series of Karachi stock market indices. In 

financial econometrics, spread characterized as volatility. In return series spread does not 

remain constant, it is known as Hetroscedasticity.  The circles in figure 9.2, are indicating 

the low and high volatility which denote the spread of problem of autocorrelation. If we 

combine all effects, then it indicates ARCH (Auto-Regressive Conditional Hetroscedasticity) 

effect. We can easily distinguish between low volatility clustering and high volatility 

clustering period. The greater depreciation from constant level (mean of return series) 

indicates high volatility clustering and less depreciation illustrates low volatility 

clustering. In the same way, we can plot and analyze return series of other stock 

markets. 

Figure 9.2: Graph of Squared Return Series 

 

The figure 9.3,  illustrates the distribution of the return series. The distribution of return 

series is non-normal. In this graph green line shows the normal reference distribution 

of return series. The red line indicates the actual distribution of the return series. 

Histograms describes the outliers (extreme values) in return series. The distribution of 
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return series has heavy tails and is leptokurtic. This all is due to different response of 

market players by having same information from the same market. 

Figure 9.3: Graphs Distribution of the Return Series 

 

Figure 9.4, presents ACF (Auto-correlation function) and PACF (Partial Auto-

correlation function) of return series. The green straight lines in this graph show 95 

percent confidence interval, if there is any bar of ACF and PACF outside these lines it 

means that lag the values are significantly vary from zero. The ARMA (p, q) process 

species through the significant lags of ACF and PACF. The ACF species the MA (q) 

process, PACF species the AR (p) process. In this graph 1st, 2nd, 3rd, 4th, 10th, 17th and 

18th lags of ACF are significant and 1st, 3rd, 4th, 10th, 11th, 12th, 17th and 18th lags of 

PACF are significant. These lags format ARMA (p, q) process in conditional mean 

equation.  It means auto correlation and partial autocorrelation exist in the return series. 

We can also analyze cyclical behavior in return series through ACF and PACF graphs. 
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Figure 9.4: Graphs of ACF and PACF of Return Series 

 

Figure 9.5, shows the graph of ACF and PACF of square return series. 1st to 20th lags 

of ACF significantly differ from zero and 1st……...8th, 10th, 13th, 14th, 19th and 20th lags 

of PACF are statistically significant. In the same manner square return series ACF and 

PACF may provide an indication about the critical lags in conditional variance equation 

structure of GARCH (p, q) model. It Means there is autocorrelation and partial 

autocorrelation in the square return series. 

Figure 9.5: Graphs of ACF and PACF of Square of Return Series 
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9.5 Descriptive Statistics  

The initial statistics of return series of stock markets indices are given in the table 9.1. 

They unveil some indications about the behavior of stock markets. The distributions of 

return are non-normal, heavy tails and leptokurtic. The mean of all return series are 

about zero which implies that return series show mean reversion behavior. Standard 

deviation of return series describe the dispersion from mean value which show that 

return series have greater standard deviation. It  means more deviation from mean value. 

The skewness deals with the asymmetry of the distribution. The distributions of KSE 

100, S&P 500, NASDAQ 100, DJI, and DFMGI return series are negatively skewed 

which means that the return of these stock markets are less than average return. The 

Jarque-Bera test with null hypothesis of normal distribution is employed. Jarque-Bera 

statistics of all return series are significant which shows the distribution of all return 

series are non-normal. 

Table 9.1: Summary of Statistics of Stock returns 

Series 
 

Mean 

 

Standard 

deviation 

 

Skewness 

 

Jarque 

Bera 

 

Excess 

Kurtosis 

 

Q-stat 

(5) 

 

Q2-stat  

(5) 

 

ARCH 

1-2 

 

KPSS 

 

KSE  

100 

 

0.0006 

 

0.0132 

 

-0.3854 

(0.000) 

 

1098.1 

(0.000) 

 

3.1075 

(0.000) 

 

76.120 

(0.000) 

 

1167.51 

(0.000) 

 

266.88 

(0.000) 

 

0.2073 

 

S&P  

500 

 

0.0002 

 

0.0127 

 

-0.3409 

(0.000) 

 

14088 

(0.000) 

 

11.448 

(0.000) 

 

45.484 

(0.000) 

 

1131.31 

(0.000) 

 

266.72 

(0.000) 

 

0.1965 

 

NASDAQ 

100 

 

0.0003 

 

0.0136 

 

-0.1587 

(0.000) 

 

7985.9 

(0.000) 

 

8.6282 

(0.000) 

 

24.928 

(0.000) 

 

765.777 

(0.000) 

 

156.96 

(0.000) 

 

0.2005 

 

DJI 

 

0.0001 

 

0.0116 

 

-0.0851 

(0.077) 

 

14168 

(0.000) 

 

11.499 

(0.000) 

 

45.037 

(0.000) 

 

1123.85 

(0.000) 

 

283.89 

(0.000) 

 

0.1548 

 

DFMGI 

 

0.0001 

 

0.0183 

 

-0.8778 

(0.000) 

 

13612 

(0.000) 

 

11.135 

(0.000) 

 

32.381 

(0.000) 

 

166.23 

(0.000) 

 

44.647 

(0.000) 

 

0.4874 

Null Hypotheses (All Null Hypotheses are for nth order) 

KPSS H0: Return series is level stationary, Asymptotic significant values 1% (0.739), 5% 

(0.463), 10% (0.347). Q-stat (return series) there is no serial autocorrelation. Q2-stat (square 

return series) H0: there is no serial autocorrelation. Jarque-Bera H0: distribution of series is 

normal. LM-ARCH H0: there is no ARCH effect. Use these Asymptotic Significance values of t-

stat 1% (0.01), 5% (0.05), 10% (0.1) and compare these critical values with P-values (Probability values). 

P-values are in the parenthesis.  
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The Excess kurtosis of all returns series are significant which means that return series 

distributions are leptokurtic and it also indicates that probability of large values is more 

than normal return series. Q-stat of return series are significant, rejecting the null 

hypothesis of no autocorrelation return series. This shows that there is serial 

autocorrelation in return series. Q-stat of squared return series is significant, rejecting 

the null hypothesis of no autocorrelation in squared return series. This shows that there 

is serial autocorrelation in square return series. LM-ARCH test validates that there is 

ARCH effect in return series. KPSS is a unit root test with null hypothesis of stationary 

series.  KPSS test results of all variables show that the estimated values lies in 

acceptance region [less than given three significance values 1% (0.739), 5% (0.463), 10% 

(0.347)] which shows the null hypothesis is accepted and  return series are level 

stationary. 

9.6 Tracing Spillover Effect 

In section 9.6, we explored the direct and indirect linkages between Pakistani (KSE 

100) and leading foreign stock markets (S&P 500, NASDAQ 100, DOWJONES, and 

DFMGI). We investigated the co-movements among these markets by using the 

technique of Hamao et al. (1990). We traced out the information transmission between 

individual markets to check the ‘Meteor Shower’ hypothesis of Engle. To explore mean 

spillover effect between two markets, the return series of one market is introduced as 

regressor in conditional mean equation of other market. If it is significant, it means 

there is mean spillover effect. For volatility spillover effect the square return series of 

one market is introduced as regressor in the conditional variance equation of other 

market. If it is significant, it means there is volatility spillover effect. If spillover is one 

sided, it is called unidirectional spillover. If it is two sided, it is called bidirectional 

spillover. In ARDL models, we introduced the series of one stock market into the 
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equation of other stock market. If it is significant, it means there is a spillover effect 

from one series to other series. In ARDL models, we are using series without making 

them stationary or series at level because the experiments have proven in chapter 5, 6, 

and 7 that for ARDL modeling there is no need to make series stationary but in GARCH 

type modeling we used return series instead of series at level. 

9.6.1 Tracing direct and indirect linkages between Pakistan, US and Dubai 

stock markets  

Now we explore the spillover effect between Pakistani (KSE 100), USA (S&P 500, 

NASDAQ 100 and DJI) and Dubai financial market (DFMGI) by using daily data from 

2005 to 2014. 

Table 9.2.a Volatility Spillover Effect by using GARCH models (Bidirectional 

Analyses for Daily Data) 

Parameters 

 

Spillover direction 

Mean spillover effect 

𝑹𝒕 

(𝝅𝟏) 

Volatility Spillover effect 

𝑹𝒕
𝟐 

(𝝅𝟐) 

KSE 100 to S&P 500 

ARMA(1,1) GARCH (1,2) 

0.0169 

(0.1293) 

0.0015 

(0.4331) 

S&P 500 to KSE 100 

ARMA(1,2) GJR (1,1) 

0.0067 

(0.0000) 

-0.0010 

(0.0000) 

KSE 100 to NASDAQ 100 

ARMA(1,0) GARCH (1,1) 

0.0119 

(0.4178) 

0.0045 

(0.0973) 

NASDAQ 100 to KSE 100 

ARMA(1,1) GJR (1,1) 

0.0116 

(0.0000) 

-0.0009 

(0.0000) 

KSE 100 to DJI 

ARMA(0,0) GARCH (1,1) 

0.0096 

(0.3784) 

0.0022 

(0.1750) 

DJI to KSE 100 

ARMA(1,1) GJR (1,1) 

-0.0019 

(0.0000) 

-0.0024 

(0.0000) 

KSE 100 to DFMGI 

ARMA(1,1) GARCH (1,1) 

0.0650 

(0.0443) 

0.0185 

(0.0788) 

DFMGI to KSE 100 

ARMA(1,0) GARCH (1,1) 

0.0153 

(0.0000) 

-0.0011 

(0.0000) 

S&P 500 to DFMGI 

ARMA(1,1) GARCH (1,1) 

0.0820 

(0.0028) 

0.0036 

(0.5462) 
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Parameters 

 

Spillover direction 

Mean spillover effect 

𝑹𝒕 

(𝝅𝟏) 

Volatility Spillover effect 

𝑹𝒕
𝟐 

(𝝅𝟐) 

DFMGI to S&P 500 

ARMA(1,1) GARCH (2,1) 

0.0161 

(0.0328) 

-0.0002 

(0.1585) 

NASDAQ 100 to DFMGI 

ARMA(1,1) GARCH (1,1) 

0.0671 

(0.0056) 

0.0022 

(0.7160) 

DFMGI to NASDAQ 100 

ARMA(0,0) GARCH (1,1) 

0.0217 

(0.0257) 

-0.0003 

(0.6331) 

DJI to DFMGI 

ARMA(1,1) GARCH (1,1) 

0.0827 

(0.0056) 

0.0046 

(0.5194) 

DFMGI to DJI 

ARMA(1,0) GARCH (2,1) 

0.0159 

(0.0240) 

-0.0001 

(0.3720) 

Null Hypotheses(All Null Hypotheses are for nth order)  

Mean spillover H0:𝜋1= 0 No mean spillover, volatility spillover H0: 𝜋2= 0 No volatility spillover. P-values 

are in the parenthesis. 

 

In table 9.2a, the parameter of return series 𝜋1 and parameter of squared return series 

𝜋2 of S&P 500 are statistically significant in conditional mean and variance equations 

of KSE 100 but there is no reverse effect from KSE 100 to S&P 500. It shows there is 

unidirectional mean and volatility spillover effect from S&P 500 to KSE 100. Similarly, 

the parameter of return series 𝜋1 and parameter of squared return series 𝜋2 of NASADQ 

100, DJI, and DFMGI in conditional mean and variance equations of KSE 100 are 

statistically significant. It means there is also mean and volatility spillover effect from 

NASADQ 100, DJI, and DFMGI to KSE 100. This clearly indicates that the disturbance 

in returns and volatility of return in NASADQ 100, DJI, and DFMGI affect the return 

and volatility of KSE 100 but there is no reverse effect from KSE 100 to these markets. 

The parameter of return series 𝜋1of S&P 500, NASADQ 100, DJI are significant in 

conditional mean equations of DFMGI, which means there is mean spillover effect from 

S&P 500, NASADQ 100, and DJI to DFMGI. While the parameter of squared return 

series 𝜋2 of S&P 500, NASADQ 100, and DJI in conditional variance equations of 
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DFMGI are statistically insignificant. It means there is volatility spillover effect from 

these markets to DFMGI. The parameter of return series 𝜋1of DFMGI is significant in 

conditional mean equations of S&P 500, NASADQ 100, and DJI, which means there is 

mean spillover effect from DFMGI to S&P 500, NASADQ 100, and DJI. While the 

parameter of squared return series 𝜋2 of DFMGI in conditional variance equations of 

S&P 500, NASADQ 100, DJI are statistically insignificant. It means there is volatility 

spillover effect from DFMGI to S&P 500, NASADQ 100, and DJI.  

There are bidirectional mean and volatility spillover effects between KSE 100 and 

DFMGI. Because the parameter of return series 𝜋1 and parameter of squared return 

series 𝜋2 of DFMGI are statistically significant in conditional mean and variance 

equations of KSE 100 but there is also reverse mean and volatility spillover effect from 

KSE 100 to DFMGI. It shows there is bidirectional mean and volatility spillover effect 

between DFMGI and KSE 100. 

This evidently shows that DFMGI, S&P 500, NASADQ 100, and DJI have direct mean 

and volatility effect on KSE 100 but also there is indirect effect from S&P 500, 

NASADQ 100, and DJI to KSE 100 through DFMGI.  For the validations of results the 

residual analysis are employed the results are given in table (9.2.a) 

 

Table 9.2.b Residual Analysis (of estimation in table 9.2.a, Daily data) 

Table 9.2.b given in appendix shows that the validity of results is also approved by the 

residual analysis.  
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Table 9.2.b: Residual Analysis  
          

Parameter 

Series 

Jarque 

Bera 

Q-Stat 

(5) 

Q-Stat 

(10) 

Q2-Stat 

(5) 

Q2-Stat 

 (10) 

LM -

ARCH 

(1-2) 

LM-

ARCH 

(1-5) 

KSE 100 to  

S&P 500 

519.91 

(0.0000) 

4.5809 

(0.2051) 

7.5260 

(0.4810) 

1.1042 

(0.5757) 

9.8357 

(0.1980) 

0.2195 

(0.8029) 

0.2308 

(0.9492) 

S&P 500 to  

KSE 100 

4157.1 

(0.0000) 

1.0655 

(0.5869) 

9.6531 

(0.2090) 

0.8109 

(0.8468) 

2.9143 

(0.9396) 

0.1368 

(0.8721) 

0.1614 

(0.9765) 

KSE 100 to  

NASDAQ 100 

211.08 

(0.0000) 

2.7090 

(0.6074) 

5.7941 

(0.7603) 

5.9844 

(0.1123) 

15.662 

(0.0474) 

2.7596 

(0.0635) 

1.1853 

(0.3138) 

NASDAQ 100 

to  

KSE 100 

5847.7 

(0.0000) 

3.5112 

(0.3193) 

16.882 

(0.0313)* 

0.8004 

(0.8493) 

2.6895 

(0.9523) 

0.1104 

(0.8954) 

0.1585 

(0.9775) 

KSE 100 to  

DJI 

441.53 

(0.0000) 

11.755 

(0.038)* 

14.776 

(0.1404) 

8.3740 

(0.0388)* 

18.127 

(0.0202) 

3.8385 

(0.0216) 

1.6138 

(0.1529) 

DJI to  

KSE 100 

1198.1 

(0.0000) 

4.8240 

(0.1851) 

16.462 

(0.036)* 

0.86921 

(0.8328) 

2.1575 

(0.9757) 

0.0613 

(0.9405) 

0.1691 

(0.9740) 

KSE 100 to  

DFMGI 

13571 

(0.0000) 

4.7337 

(0.1923) 

10.608 

(0.2248) 

3.0709 

(0.3808) 

7.4353 

(0.4904) 

0.1503 

(0.8604) 

0.6138 

(0.6893) 

DFMGI to  

KSE 100 

2453.1 

(0.0000) 

10.055 

(0.0395)* 

26.834 

(0.0148)* 

1.1986 

(0.7533) 

4.4112 

(0.8182) 

0.1127 

(0.8934) 

0.2381 

(0.9457) 

S&P 500 to  

DFMGI 

13131 

(0.0000) 

7.6998 

(0.0526) 

13.595 

(0.0929 

3.1527 

(0.3686) 

7.9966 

(0.4337) 

0.1441 

(0.8658) 

0.7641 

(0.6638) 

DFMGI to  

S&P 500 

491.25 

(0.0000) 

4.6889 

(0.1960) 

6.6039 

(0.5799) 

5.8411 

(0.0539) 

12.523 

(0.0845) 

2.5586 

(0.0776) 

1.1151 

(0.3500) 

NASDAQ 100 

to  

DFMGI 

13236 

(0.0000) 

7.6817 

(0.0530) 

13.448 

(0.0973) 

3.1950 

(0.3625) 

7.9185 

(0.4414) 

0.1746 

(0.8398) 

0.6385 

(0.6704) 

DFMGI to  

NASDAQ 100 

191.57 

(0.0000) 

6.8647 

(0.2308) 

9.7689 

(0.4609) 

5.6420 

(0.1303) 

14.328 

(0.0736) 

2.6055 

(0.0741) 

1.1185 

(0.3482) 

DJI  to  

DFMGI 

13059 

(0.0000) 

7.5169 

(0.0571) 

13.317 

(0.1013) 

3.2428   

(0.3556) 

8.1727 

(0.4167) 

0.1524 

(0.8586) 

0.6473 

(0.6636) 

DFMGI to  

DJI 

377.36 

(0.0000) 

3.8701 

(0.4238) 

6.8827 

(0.6493) 

3.3924 

(0.1833) 

9.9342 

(0.1923) 

1.1531 

(0.3158) 

0.6552 

(0.6575) 

Null Hypotheses(All Null Hypotheses are for nth order) 

Q-stat (return series) there is no serial autocorrelation. Q2-stat (square return series) H0: there 

is no serial autocorrelation. Jarque-Bera H0: distribution of series is normal. LM-ARCH H0: 

there is no ARCH effect. P-values are in the parenthesis. 

 

The table 9.2.b illustrate the post estimation results (Residual analysis). The Jarque-

Bera test (Normality test) with null hypothesis the distribution of returns are normal 

which shows non normal residuals. The Q-stat are insignificant up to 10th lags which 
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means that we should accept null hypothesis that there is no serial autocorrelation in 

the standardized residuals. The Q-stat on squared standardized residuals is insignificant 

up to 10th lags with null hypothesis that there is no serial autocorrelation in squared 

standardized residuals. LM-ARCH test is also insignificant up to 5th lags, accept null 

hypothesis, no ARCH effect remains in series residuals. These results show that there 

is no econometric problem left in residuals. It means the results of table 8.2b are valid. 

To find out the spillover effect from ARDL model, we put the return series of one 

market into the equation of other market. If the series coefficient is significant, it means 

there is spillover effect from one market to other. We employed F-test to test the joint 

significance of the lag values of independent variable. The results of ARDL model are 

following: 

Table 9.3.a Volatility Spillover effect by using ARDL models (Bidirectional 

Analyses for daily data) 

Spillover direction F-stat Spillover direction F-stat 

S&P 500 to KSE 100 
7.7533  

(0.0000)** 
KSE 100 to S&P 500   

2.1043 

(0.0498)* 

NASDAQ 100 to KSE 100 
8.2386  

(0.0000)* 
KSE 100 to NASDAQ 100  

1.0408 

 (0.3966) 

DJI to KSE 100 
8.5006  

(0.0000)* 
KSE 100 to DJI   

2.7247 

(0.0122)* 

DFMGI to KSE 100 
1.2125 

 (0.2966) 
KSE 100 to DFMGI 

1.7483  

(0.1060) 

S&P 500 to DFMGI 
9.3317  

(0.0000)* 
DFMGI to S&P 500   

1.8346  

(0.0886) 

NASDAQ 100 to DFMGI 
8.0958  

(0.0000)* 
DFMGI to NASDAQ 100  

0.93565 

(0.4680) 

DJI to DFMGI 
7.0650  

(0.0000)* 
DFMGI to DJI 

1.7298  

(0.1101) 

 

Table 9.3.a shows that the S&P 500, NASADQ 100, and DJI series coefficients are 

significant in the equation of KSE 100. It means there is spillover effect from S&P 500, 
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NASADQ 100, and DJI to KSE 100. But there is no spillover effect found from KSE 

100 to S&P 500, NASADQ 100, and DJI because there coefficients are insignificant in 

the equation of KSE 100. It shows that there is unidirectional spillover effect from S&P 

500, NASADQ 100, and DJI to KSE 100. The DFMGI series coefficients are significant 

in the equation of KSE 100 and KSE 100 series coefficients are significant in the 

equation of DFMGI. It means there is bidirectional spillover effect between DFMGI 

and KSE 100.  

The results in table 9.3.a also show that the S&P 500, NASADQ 100, and DJI series 

coefficients are significant in the equation of DFMGI and DFMGI series coefficients 

are also significant in the equation of S&P 500, NASADQ 100, and DJI. It means there 

is bidirectional spillover effect between S&P 500, NASADQ 100, DJI and DFMGI. 

These results support the results of GARCH models because the directions of spillover 

remain same. This shows that DFMGI, S&P 500, NASADQ 100, and DJI have direct 

spillover effect on KSE 100 but also there is indirect effect from S&P 500, NASADQ 

100, and DJI to KSE 100 through DFMGI. For the validation of ARDL results, we 

employed the residual analysis. The results are given following: 
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Table 9.3.b Residual Analysis of ARDL model with Daily data 

Spillover direction AR 1-7 test ARCH 1-7 test Hetero test 

S&P 500 to KSE 100 
3.6514  

(0.0261)** 

289.91 

 (0.0000)* 

32.262 

(0.0000)* 

KSE 100 to S&P 500   
0.92310 

 (0.3974) 

58.190 

(0.0000)* 

12.279  

(0.0000)* 

NASDAQ 100 to KSE 100 
0.11061  

(0.8953) 

 54.757 

(0.0000)* 

11.154  

(0.0000)* 

KSE 100 to NASDAQ 100  
0.90025  

(0.4066) 

77.090  

(0.0000)* 

5.8409  

(0.0000)* 

DJI to KSE 100 
0.075671  

(0.9271) 

55.372  

(0.0000)* 

10.774  

(0.0000)* 

KSE 100 to DJI   
1.7297 

 (0.1775)  

69.070  

(0.0000)* 

12.863  

(0.0000)* 

DFMGI to KSE 100 
0.29295  

(0.7461) 

62.399  

(0.0000)* 

12.641  

(0.0000)* 

KSE 100 to DFMGI 
11.549  

(0.0000)* 

208.14 

 (0.0000)* 

16.605  

(0.0000)* 

S&P 500 to DFMGI 
13.320  

(0.0000)* 

194.00  

(0.0000)* 

16.519  

(0.0000)* 

DFMGI to S&P 500   
 0.32575 

 (0.7220) 

 55.367  

(0.0000)* 

14.025  

(0.0000)* 

NASDAQ 100 to DFMGI 
0.24342  

(0.7840) 

76.028 

 (0.0000)* 

7.7915  

(0.0000)* 

DFMGI to NASDAQ 100  
 1.6620  

(0.3771) 

51.3824  

(0.0009)* 

1.1127  

(0.0024)*  

DJI to DFMGI 
14.024 

 (0.0000)* 

 199.10  

(0.0000)* 

16.741 

 (0.0000)* 

DFMGI to DJI 
0.73002  

(0.4820) 

65.852 

 (0.0000)* 

14.952  

(0.0000)* 

LM-ARCH H0: there is no ARCH effect. P-values are in the parenthesis. AR H0: there is no 

autocorrelation in residuals.  P-values are in the parenthesis. Hetero test H0: there is no 

Heteroscedasticity in residuals. P-values are in the parenthesis. 

 

Table 9.3.b shows the residual analysis after employing ARDL model. The results 

indicate the ARCH effect and heteroscedasticity still prevail in residuals. It means that 

the results of ARDL model are not reliable. We are using series without making them 

stationary and data is in high frequency (daily data). It shows that ARDL model is 

unable to capture ARCH effect when we are working with daily data. So, we reduce the 

frequency of data and make it weekly by selecting closing price of last day of week. 

Again we measure the spillover effects through GARCH models and ARDL model. 
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Table 9.4.a Volatility Spillover Effect by using GARCH models (Bidirectional 

Analyses for Weekly Data Analysis) 

Parameters 

 

Spillover direction 

Mean spillover effect 

𝑹𝒕 

(𝝅𝟏) 

Volatility Spillover effect 

𝑹𝒕
𝟐 

(𝝅𝟐) 

KSE 100 to S&P 500 

ARMA(1,1) GARCH (1,2) 

0.0153 

(0.1189) 

0.0019 

(0.7802) 

S&P 500 to KSE 100 

ARMA(1,2) GJR (1,1) 

0.0069 

(0.0000) 

-0.0021 

(0.0000) 

KSE 100 to NASDAQ 100 

ARMA(1,0) GARCH (1,1) 

0.0129 

(0.3131) 

0.0056 

(0.1973) 

NASDAQ 100 to KSE 100 

ARMA(1,1) GJR (1,1) 

0.0121 

(0.0000) 

-0.0019 

(0.0000) 

KSE 100 to DJI 

ARMA(0,0) GARCH (1,1) 

0.0196 

(0.2765) 

0.0026 

(0.3754) 

DJI to KSE 100 

ARMA(1,1) GJR (1,1) 

-0.0020 

(0.0000) 

-0.0030 

(0.0000) 

KSE 100 to DFMGI 

ARMA(1,1) GARCH (1,1) 

0.0710 

(0.0341) 

0.0201 

(0.1879) 

DFMGI to KSE 100 

ARMA(1,0) GARCH (1,1) 

0.0243 

(0.0000) 

-0.0015 

(0.0000) 

S&P 500 to DFMGI 

ARMA(1,1) GARCH (1,1) 

0.0945 

(0.0019) 

0.0041 

(0.6891) 

DFMGI to S&P 500 

ARMA(1,1) GARCH (2,1) 

0.0253 

(0.0226) 

-0.0005 

(0.2891) 

NASDAQ 100 to DFMGI 

ARMA(1,1) GARCH (1,1) 

0.0743 

(0.0024) 

0.0031 

(0.8178) 

DFMGI to NASDAQ 100 

ARMA(0,0) GARCH (1,1) 

0.0221 

(0.0169) 

-0.0005 

(0.2901) 

DJI to DFMGI 

ARMA(1,1) GARCH (1,1) 

0.0791 

(0.0048) 

0.0051 

(0.5189) 

DFMGI to DJI 

ARMA(1,0) GARCH (2,1) 

0.0248 

(0.0161) 

-0.0002 

(0.1563) 

Null Hypotheses(All Null Hypotheses are for nth order)  

Mean spillover H0:𝜋1= 0 No mean spillover, volatility spillover H0: 𝜋2= 0 No volatility spillover. P-values 

are in the parenthesis. 

 

In table 9.4.a, the parameter of return series 𝜋1 and parameter of squared return series 

𝜋2 of S&P 500 are statistically significant in conditional mean and variance equations 

of KSE 100 but there is no reverse effect from KSE 100 to S&P 500. It shows there is 

unidirectional mean and volatility spillover effect from S&P 500 to KSE 100. Similarly, 

the parameter of return series 𝜋1 and parameter of squared return series 𝜋2 of NASADQ 
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100, DJI, and DFMGI in conditional mean and variance equations of KSE 100 are 

statistically significant. It means there is also mean and volatility spillover effect from 

NASADQ 100, DJI, and DFMGI to KSE 100. This clearly indicates that the disturbance 

in returns and volatility of return in NASADQ 100, DJI, and DFMGI affect the return 

and volatility of KSE 100 but there is no reverse effect from KSE 100 to these markets. 

The parameter of return series 𝜋1of S&P 500, NASADQ 100, DJI are significant in 

conditional mean equations of DFMGI, which means there is mean spillover effect from 

S&P 500, NASADQ 100, and DJI to DFMGI. While the parameter of squared return 

series 𝜋2 of S&P 500, NASADQ 100, and DJI in conditional variance equations of 

DFMGI are statistically insignificant. It means there is volatility spillover effect from 

these markets to DFMGI. The parameter of return series 𝜋1of DFMGI is significant in 

conditional mean equations of S&P 500, NASADQ 100, DJI, which means there is 

mean spillover effect from DFMGI to S&P 500, NASADQ 100, and DJI While the 

parameter of squared return series 𝜋2 of DFMGI in conditional variance equations of 

S&P 500, NASADQ 100, DJI are statistically insignificant. It means there is volatility 

spillover effect from DFMGI to S&P 500, NASADQ 100, and DJI.  

There are bidirectional mean and volatility spillover effects between KSE 100 and 

DFMGI. Because the parameter of return series 𝜋1 and parameter of squared return 

series 𝜋2 of DFMGI are statistically significant in conditional mean and variance 

equations of KSE 100 but there is also reverse mean and volatility spillover effect from 

KSE 100 to DFMGI. It shows there is bidirectional mean and volatility spillover effect 

between DFMGI and KSE 100. 

This evident shows that DFMGI, S&P 500, NASADQ 100, and DJI have direct mean 

and volatility effect on KSE 100 but also there is indirect effect from S&P 500, 
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NASADQ 100, and DJI to KSE 100 through DFMGI.  For the validations of results, 

the residual analysis are employed the results are given in table 9.4.b:  

Table 9.4.b Residual Analysis of GARCH model with Weekly Data  

 Parameter 

 

Series 

Jarque 

Bera 

Q-Stat 

(5) 

Q-Stat 

(10) 

Q2-Stat 

(5) 

Q2-Stat 

 (10) 

LM -

ARCH 

(1-2) 

LM-

ARCH 

(1-5) 

KSE 100 to  

S&P 500 

518.901 

(0.0000) 

5.3339 

(0.2053) 

6.5432 

(0.3850) 

4.6722 

(0.1767) 

6.7540 

(0.1178) 

0.2671 

(0.6073) 

0.1467 

(0.1786) 

S&P 500 to  

KSE 100 

3363.1 

(0.0000) 

2.1315 

(0.3878) 

7.5021 

(0.1094) 

0.7779 

(0.4478) 

3.7813 

(0.7706) 

0.3287 

(0.6893) 

0.2875 

(0.1767) 

KSE 100 to  

NASDAQ 100 

212.08 

(0.0000) 

2.5430 

(0.5062) 

5.6661 

(0.5472) 

4.9994 

(0.4733) 

13.606 

(0.1334) 

3.8721 

(0.1765) 

1.3765 

(0.1152) 

NASDAQ 100 

to  

KSE 100 

5478.6 

(0.0000) 

3.4302 

(0.1165) 

13.662 

(0.1324) 

0.2224 

(0.4735) 

1.7855 

(0.6975) 

0.65704 

(0.2654) 

0.1109 

(0.6786) 

KSE 100 to  

DJI 

452.58 

(0.0000) 

12.645 

(0.1488) 

11.708 

(0.2356) 

6.3740 

(0.1435) 

15.786 

(0.2442) 

4.7765 

(0.2016) 

1.7338 

(0.1121) 

DJI to  

KSE 100 

1178.2 

(0.0000) 

4.7840 

(0.2665) 

16.542 

(0.3459) 

0.8987 

(0.6304) 

3.2674 

(0.7756) 

0.1672 

(0.6893) 

0.2901 

(0.2007) 

KSE 100 to  

DFMGI 

12067 

(0.0000) 

6.7557 

(0.1542) 

11.638 

(0.1162) 

3.0729 

(0.8903) 

8.4674 

(0.5367) 

0.4789 

(0.4812) 

0.6085 

(0.7483) 

DFMGI to  

KSE 100 

2589.3 

(0.0000) 

10.035 

(0.1465) 

24.740 

(0.1538) 

2.2086 

(0.7756) 

5.3786 

(0.4656) 

0.3176 

(0.6734) 

0.6758 

(0.7145) 

S&P 500 to  

DFMGI 

13451 

(0.0000) 

9.6668 

(0.2676) 

13.6705 

(0.0889) 

4.2527 

(0.3636) 

8.5786 

(0.2787) 

0.5254 

(0.1356) 

0.7987 

(0.5667) 

DFMGI to  

S&P 500 

4712.2 

(0.0000) 

4.6559 

(0.1561) 

7.5549 

(0.4760) 

5.4311 

(0.0983) 

11.654 

(0.1267) 

2.6070 

(0.1642) 

1.5623 

(0.1090) 

NASDAQ 100 

to  

DFMGI 

12415 

(0.0000) 

4.6247 

(0.1764) 

13.408 

(0.1353) 

3.2050 

(0.6167) 

6.7878 

(0.4631) 

0.2463 

(0.1076) 

0.5780 

(0.4464) 

DFMGI to  

NASDAQ 100 

146.54 

(0.0000) 

6.9207 

(0.1472) 

8.7869 

(0.5766) 

5.6020 

(0.6501) 

11.312 

(0.1784) 

1.7765 

(0.1765) 

1.0769 

(0.4572) 

DJI  to  

DFMGI 

14675 

(0.0000) 

7.5329 

(0.2642) 

13.3107 

(0.6014) 

3.2128   

(0.5390) 

9.1651 

(0.2167) 

0.2761 

(0.7776) 

0.6832 

(0.3871) 

DFMGI to  

DJI 

357.06 

(0.0000) 

5.6601 

(0.4535) 

5.87927 

(0.6945) 

2.2342 

(0.2800) 

4.9670 

(0.1467) 

1.2782 

(0.4876) 

0.8971 

(0.7871) 

Null Hypotheses(All Null Hypotheses are for nth order) 

Q-stat (return series) there is no serial autocorrelation. Q2-stat (square return series) H0: there 

is no serial autocorrelation. Jarque-Bera H0: distribution of series is normal. LM-ARCH H0: 

there is no ARCH effect. P-values are in the parenthesis. 

 

The table 9.4.b illustrate the post estimation results (Residual analysis). The Jarque-

Bera test (Normality test) with null hypothesis the distribution of returns are normal 

which show non normal residuals. The Q-stat are insignificant up to 10th lags which 
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means that we should accept null hypothesis that there is no serial autocorrelation in 

the standardized residuals. The Q-stat on squared standardized residuals is insignificant 

up to 10th lags with null hypothesis that there is no serial autocorrelation in squared 

standardized residuals. LM-ARCH test is also insignificant up to 5thlags, accept null 

hypothesis, no ARCH effect remains in series residuals. These results show that there 

is no econometric problem left in residuals. It means the results of table 9.4.b are valid. 

To find out the spillover effect from ARDL model, we put the return series of one 

market into the equation of other market. If the series coefficient is significant it means 

there is spillover effect from one market to other. We employed F-test to test the joint 

significance of the lag values of independent variable. The results of ARDL model are 

following: 

Table 9.5.a Volatility Spillover effect by using ARDL models (Bidirectional 

Analyses for ARDL weekly data) 

Spillover direction F-stat Spillover direction F-stat 

S&P 500 to KSE 100 
6.7401 

(0.0000)** 
KSE 100 to S&P 500   

5.1043 

(0.0098)* 

NASDAQ 100 to KSE 100 
9.3381  

(0.0000)* 
KSE 100 to NASDAQ 100  

2.1409 

(0.3416) 

DJI to KSE 100 
8.5006 

 (0.0000)* 
KSE 100 to DJI   

3.1235 

(0.0101)* 

DFMGI to KSE 100 
1.2308 

 (0.2966) 
KSE 100 to DFMGI 

1.9480 

(0.2140) 

S&P 500 to DFMGI 
7.4518  

(0.0000)* 
DFMGI to S&P 500   

1.8346 

(0.0783) 

NASDAQ 100 to DFMGI 
8.1362  

(0.0000)* 
DFMGI to NASDAQ 100  

1.23563 

(0.5681) 

DJI to DFMGI 
8.0262  

(0.0000)* 
DFMGI to DJI 

1.7298 

(0.1704) 
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Table 9.5.a shows that the S&P 500, NASADQ 100, and DJI series coefficients are 

significant in the equation of KSE 100. It means there is spillover effect from S&P 500, 

NASADQ 100, and DJI to KSE 100. But there is no spillover effect found from KSE 

100 to S&P 500, NASADQ 100, and DJI because there coefficients are insignificant in 

the equation of KSE 100. It shows that there is unidirectional spillover effect from S&P 

500, NASADQ 100, and DJI to KSE 100. The DFMGI series coefficients are significant 

in the equation of KSE 100 and KSE 100 series coefficients are significant in the 

equation of DFMGI. It means there is bidirectional spillover effect between DFMGI 

and KSE 100.  

The results in table 9.5.a also show that the S&P 500, NASADQ 100, and DJI series 

coefficients are significant in the equation of DFMGI and DFMGI series coefficients 

are also significant in the equation of S&P 500, NASADQ 100, and DJI. It means there 

is bidirectional spillover effect between S&P 500, NASADQ 100, and DJI and DFMGI. 

These results support the results of GARCH models because the directions of spillover 

remain same. This shows that DFMGI, S&P 500, NASADQ 100, and DJI have direct 

spillover effect on KSE 100 but also there is indirect effect from S&P 500, NASADQ 

100, and DJI to KSE 100 through DFMGI. For the validation of ARDL results we 

employed the residual analysis. The results are given following: 
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Table 9.5.b Residual Analysis of ARDL model with Weekly Data 

Spillover direction AR 1-7 test ARCH 1-7 test Hetero test 

S&P 500 to KSE 100 
5.6758  

(0.0261)** 

469.61 

 (0.0000)* 

31.412 

 (0.0000)* 

KSE 100 to S&P 500   
1.09315 

 (0.3974) 

48.160 

(0.0000)* 

14.114  

(0.0000)* 

NASDAQ 100 to KSE 100 
0.16067 

 (0.8953) 

 43.552 

(0.0000)* 

9.142 

 (0.0000)* 

KSE 100 to NASDAQ 100  
1.77024 

 (0.4066) 

76.050  

(0.0000)* 

7.3601 

 (0.0000)* 

DJI to KSE 100 
0.178667 

 (0.9271) 

65.573  

(0.0000)* 

12.750 

 (0.0000)* 

KSE 100 to DJI   
3.5691 

 (0.1775)  

68.087  

(0.0000)* 

16.277 

 (0.0000)* 

DFMGI to KSE 100 
1.5694 

 (0.7461) 

59.675  

(0.0000)* 

14.780 

 (0.0000)* 

KSE 100 to DFMGI 
12.156 

 (0.0000)* 

187.169 

 (0.0000)* 

19.616 

 (0.0000)* 

S&P 500 to DFMGI 
16.893 

 (0.0000)* 

173.06  

(0.0000)* 

17.518 

 (0.0000)* 

DFMGI to S&P 500   
 1.3772 

 (0.7220) 

 58.363  

(0.0000)* 

11.120 

 (0.0000)* 

NASDAQ 100 to DFMGI 
0.94649 

 (0.7840) 

64.029 

 (0.0000)* 

8.7516 

 (0.0000)* 

DFMGI to NASDAQ 100  
 3.7290 

 (0.3771) 

63.6893 

(0.0009)* 

2.3178  

(0.0024)*  

DJI to DFMGI 
16.426 

 (0.0000)* 

 183.64  

(0.0000)* 

14.778 

 (0.0000)* 

DFMGI to DJI 
1.53078 

 (0.4820) 

68.876 

 (0.0000)* 

15.990 

 (0.0000)* 

LM-ARCH H0: there is no ARCH effect. P-values are in the parenthesis.AR H0: there is no 
autocorrelation in residuals.  P-values are in the parenthesis. Hetero test H0: there is no 
Heteroscedasticity in residuals. P-values are in the parenthesis. 

 

Table 9.5.b shows the residual analysis after employing ARDL model. The results 

indicate the ARCH effect and heteroscedasticity still prevail in residuals. It means that 

the results of ARDL model are not reliable. We are using series without making them 

stationary and data is in high frequency (weekly data). It shows that ARDL model is 

unable to capture ARCH effect when we are working with weekly data. So, we reduce 

the frequency of data and make it monthly by selecting closing price of last day of week. 

Again we measure the spillover effects through GARCH models and ARDL model. 
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Table 9.6.a Volatility Spillover effect by using GARCH models (Bidirectional 

Analyses for monthly data) 

Parameters 

 

Spillover direction 

Mean spillover effect 

𝑹𝒕 

(𝝅𝟏) 

Volatility Spillover effect 

𝑹𝒕
𝟐 

(𝝅𝟐) 

KSE 100 to S&P 500 

ARMA(1,1) GARCH (1,2) 

0.1152 

(0.2107) 

0.0325 

(0.2111) 

S&P 500 to KSE 100 

ARMA(1,2) GJR (1,1) 

0.0103 

(0.0001) 

-0.0146 

(0.0021) 

KSE 100 to NASDAQ 100 

ARMA(1,1) GARCH (1,1) 

0.0148 

(0.5167) 

0.0032 

(0.0833) 

NASDAQ 100 to KSE 100 

ARMA(1,1) GJR (1,1) 

0.01778 

(0.0000) 

-0.1251 

(0.0002) 

KSE 100 to DJI 

ARMA(1,1) GARCH (1,1) 

0.0096 

(0.3784) 

0.0022 

(0.1750) 

DJI to KSE 100 

ARMA(1,1) GARCH (1,1) 

0.3532 

(0.1171) 

0.5632 

(0.0632) 

KSE 100 to DFMGI 

ARMA(1,1) GJR (1,1) 

0.0711 

(0.0334) 

0.0201 

(0.0657) 

DFMGI to KSE 100 

ARMA(1,1) GARCH (1,1) 

0.0167 

(0.0000) 

-0.0014 

(0.0000) 

S&P 500 to DFMGI 

ARMA(1,1) GARCH (1,2) 

0.0558 

(0.0014) 

0.0041 

(0.5462) 

DFMGI to S&P 500 

ARMA(1,1) GARCH (2,1) 

0.0231 

(0.0433) 

-0.0028 

(0.621) 

NASDAQ 100 to DFMGI 

ARMA(1,1) GARCH (1,1) 

0.0625 

(0.0168) 

0.0164 

(0.6183) 

DFMGI to NASDAQ 100 

ARMA(1,1) GARCH (1,1) 

0.0217 

(0.0364) 

-0.0003 

(0.8941) 

DJI to DFMGI 

ARMA(1,1) GARCH (1,1) 

0.0620 

(0.0019) 

0.0032 

(0.5194) 

DFMGI to DJI 

ARMA(1,1) GARCH (1,1) 

0.0314 

(0.0175) 

-0.0031 

(0.6421) 

Null Hypotheses(All Null Hypotheses are for nth order)  

Mean spillover H0:𝜋1= 0 No mean spillover, volatility spillover H0: 𝜋2= 0 No volatility spillover. P-values 

are in the parenthesis. 
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In table 9.6.a, the parameter of return series 𝜋1 and parameter of squared return series 

𝜋2 of S&P 500 are statistically significant in conditional mean and variance equations 

of KSE 100 but there is no reverse effect from KSE 100 to S&P 500. It shows there is 

unidirectional mean and volatility spillover effect from S&P 500 to KSE 100. Similarly, 

the parameter of return series 𝜋1 and parameter of squared return series 𝜋2 of NASADQ 

100, DJI, and DFMGI in conditional mean and variance equations of KSE 100 are 

statistically significant. It means there is also mean and volatility spillover effect from 

NASADQ 100, DJI, and DFMGI to KSE 100. This clearly indicates that the disturbance 

in returns and volatility of return in NASADQ 100, DJI, and DFMGI affect the return 

and volatility of KSE 100 but there is no reverse effect from KSE 100 to these markets. 

 

The parameter of return series 𝜋1of S&P 500, NASADQ 100, DJI are significant in 

conditional mean equations of DFMGI, which means there is mean spillover effect from 

S&P 500, NASADQ 100, and DJI to DFMGI. While the parameter of squared return 

series 𝜋2 of S&P 500, NASADQ 100, and DJI in conditional variance equations of 

DFMGI are statistically insignificant. It means there is volatility spillover effect from 

these markets to DFMGI. The parameter of return series 𝜋1of DFMGI is significant in 

conditional mean equations of S&P 500, NASADQ 100, and DJI, which means there is 

mean spillover effect from DFMGI to S&P 500, NASADQ 100, and DJI. While the 

parameter of squared return series 𝜋2 of DFMGI in conditional variance equations of 

S&P 500, NASADQ 100, DJI are statistically insignificant. It means there is volatility 

spillover effect from DFMGI to S&P 500, NASADQ 100, and DJI.  

There are bidirectional mean and volatility spillover effects between KSE 100 and 

DFMGI. Because the parameter of return series 𝜋1 and parameter of squared return 

series 𝜋2 of DFMGI are statistically significant in conditional mean and variance 

equations of KSE 100 but there is also reverse mean and volatility spillover effect from 
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KSE 100 to DFMGI. It shows there is bidirectional mean and volatility spillover effect 

between DFMGI and KSE 100. The evident shows that DFMGI, S&P 500, NASADQ 

100, and DJI have direct mean and volatility effect on KSE 100 but also there is indirect 

effect from S&P 500, NASADQ 100, and DJI to KSE 100 through DFMGI.  For the 

validations of results the residual analysis are employed the results are given in table 

9.6.b: 

Table 9.6.b Residual analysis of GARCH Model for Monthly Data 

 Parameter 

Series 

Jarque 

Bera 

Q-Stat 

(5) 

Q-Stat 

(10) 

Q2-Stat 

(5) 

Q2-Stat 

 (10) 

LM -ARCH 

(1-2) 

LM-ARCH 

(1-5) 

KSE 100 to  

S&P 500 

745.80 

(0.0000) 

6.8391 

(0.2051) 

10.2670 

(0.4810) 

3.35421 

(0.5757) 

9.8357 

(0.1980) 

0.2195 

(0.8029) 

0.2308 

(0.9492) 

S&P 500 to  

KSE 100 

4254.3 

(0.0000) 

1.0875 

(0.4865) 

10.658 

(0.3097) 

1.8104 

(0.9465) 

3.9453 

(0.8306) 

1.1662 

(0.3724) 

0.1913 

(0.1745) 

KSE 100 to  

NASDAQ 100 

114.06 

(0.0000) 

1.6091 

(0.7073) 

7.7784 

(0.3604) 

4.6781 

(0.2023) 

12.751 

(0.1498) 

3.5836 

(0.0859) 

0.1556 

(0.2178) 

NASDAQ 100 

to  

KSE 100 

6802.1 

(0.0000) 

5.5109 

(0.1114) 

18.451 

(0.7120) 

0.7022 

(0.4462) 

4.6876 

(0.0823) 

0.3167 

(0.6907) 

0.2505 

(0.7736) 

KSE 100 to  

DJI 

211.54 

(0.0000) 

9.7567 

(0.1380) 

11.241 

(0.1137) 

6.3454 

(0.3088) 

12.153 

(0.2321) 

4.2378 

(0.1215) 

1.3988 

(0.1322) 

DJI to  

KSE 100 

1293.3 

(0.0000) 

6.5656 

(0.1251) 

12.452 

(0.1163) 

2.3714 

(0.1667) 

5.1671 

(0.9654) 

0.2614 

(0.9003) 

0.2678 

(0.3700) 

KSE 100 to  

DFMGI 

237.81 

(0.0000) 

5.7378 

(0.3724) 

29.678 

(0.4543) 

6.0897 

(0.4803) 

6.4663 

(0.4608) 

0.1605 

(0.6607) 

0.3139 

(0.6890) 

DFMGI to  

KSE 100 

3454.4 

(0.0000) 

13.090 

(0.3952) 

24.784 

(0.3445) 

2.1786 

(0.9833) 

6.3189 

(0.4187) 

0.2106 

(0.3532) 

0.1378 

(0.2445) 

S&P 500 to  

DFMGI 

12167 

(0.0000) 

8.8754 

(0.0689) 

11.785 

(0.0734) 

6.1922 

(0.1112) 

5.9986 

(0.1207) 

0.2982 

(0.1411) 

0.7641 

(0.5981) 

DFMGI to  

S&P 500 

561.22 

(0.0000) 

6.6763 

(0.4567) 

8.6039 

(0.7991) 

5.7610 

(0.0765) 

11.740 

(0.0962) 

3.0986 

(0.0800) 

1.2354 

(0.8764) 

NASDAQ 100 

to  

DFMGI 

11864 

(0.0000) 

7.3812 

(0.1535) 

14.788 

(0.0690) 

4.1652 

(0.1656) 

9.9189 

(0.3412) 

0.1689 

(0.8189) 

0.4398 

(0.4701) 

DFMGI to  

NASDAQ 100 

184.45 

(0.0000) 

7.8781 

(0.1306) 

8.9890 

(0.5989) 

7.6765 

(0.1672) 

11.748 

(0.0964) 

3.5653 

(0.0956) 

2.1565 

(0.3587) 

DJI  to  

DFMGI 

10067 

(0.0000) 

6.6789 

(0.0635) 

12.578 

(0.5190) 

4.8978   

(0.6751) 

9.6577 

(0.5198) 

0.3781 

(0.9576) 

0.5876 

(0.3431) 

DFMGI to  

DJI 

467.76 

(0.0000) 

7.7681 

(0.4238) 

3.7687 

(0.4591) 

3.7823 

(0.3431) 

7.9564 

(0.1675) 

3.7861 

(0.7818) 

0.6981 

(0.5536) 

Null Hypotheses(All Null Hypotheses are for nth order) 

Q-stat (return series) there is no serial autocorrelation. Q2-stat (square return series) H0: there is 

no serial autocorrelation. Jarque-Bera H0: distribution of series is normal. LM-ARCH H0: there 

is no ARCH effect. P-values are in the parenthesis. 
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The table 9.6.b illustrates the post estimation results (Residual analysis). The Jarque-

Bera test (Normality test) with null hypothesis the distribution of returns are normal 

which show non normal residuals. The Q-stat are insignificant up to 10th lags which 

means that we should accept null hypothesis that there is no serial autocorrelation in 

the standardized residuals. The Q-stat on squared standardized residuals is insignificant 

up to 10th lags with null hypothesis that there is no serial autocorrelation in squared 

standardized residuals. LM-ARCH test is also insignificant up to 5thlags, accept null 

hypothesis, no ARCH effect remains in series residuals. These results show that there 

is no econometric problem left in residuals it means the results of table 8.6.b are valid. 

To find out the spillover effect from ARDL model we put the return series of one market 

into the equation of other market. If the series coefficient is significant it means there 

is spillover effect from one market to other. We employed F-test to test the joint 

significance of the lag values of independent variable. The results of ARDL model are 

following: 

Table 9.7.a Volatility Spillover effect by using ARDL models (Bidirectional 

Analyses for ARDL Monthly Results) 

Spillover direction F-stat Spillover direction F-stat 

S&P 500 to KSE 100 
4.3644  

(0.0149)** 
KSE 100 to S&P 500   6.4908 

 (0.0022)* 

NASDAQ 100 to KSE 100 
3.2565 

 (0.0145)** 
KSE 100 to NASDAQ 100  2.4784  

(0.0683) 

DJI to KSE 100 
4.0464  

(0.0043)* 
KSE 100 to DJI   3.1857  

(0.0966)*** 

DFMGI to KSE 100 
3.4837 

 (0.0103)** 
KSE 100 to DFMGI 2.2095 

 (0.0479)**  

S&P 500 to DFMGI 
6.0965 

 (0.0002)* 
DFMGI to S&P 500   4.8537  

(0.0012)* 

NASDAQ 100 to DFMGI 
6.7575 

 (0.0003)* 
DFMGI to NASDAQ 100  3.8998  

(0.0028)* 

DJI to DFMGI 
4.0773  

(0.0020)* 
DFMGI to DJI 3.7808 

 (0.0035)* 
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Table 9.7.a shows that the S&P 500, NASADQ 100, and DJI series coefficients are 

significant in the equation of KSE 100. It means there is spillover effect from S&P 500, 

NASADQ 100, and DJI to KSE 100. But there is no spillover effect found from KSE 

100 to S&P 500, NASADQ 100, and DJI because there coefficients are insignificant in 

the equation of KSE 100. It shows that there is unidirectional spillover effect from S&P 

500, NASADQ 100, and DJI to KSE 100. The DFMGI series coefficients are significant 

in the equation of KSE 100 and KSE 100 series coefficients are significant in the 

equation of DFMGI. It means there is bidirectional spillover effect between DFMGI 

and KSE 100.  

The results in table 9.7.a also show that the S&P 500, NASADQ 100, and DJI series 

coefficients are significant in the equation of DFMGI and DFMGI series coefficients 

are also significant in the equation of S&P 500, NASADQ 100, and DJI. It means there 

is bidirectional spillover effect between S&P 500, NASADQ 100, DJI and DFMGI. 

These results support the results of GARCH models because the directions of spillover 

remain same. This shows that DFMGI, S&P 500, NASADQ 100, and DJI have direct 

spillover effect on KSE 100 but also there is indirect effect from S&P 500, NASADQ 

100, and DJI to KSE 100 through DFMGI. For the validation of ARDL results we 

employed the residual analysis. The results are given following:  
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Table 9.7.b Residual Analysis of ARDL model with Monthly Data 

Series AR 1-7 test ARCH 1-7 test Hetero test 

S&P 500 to KSE 100 
1.8101  

(0.0932) 

1.3327  

(0.2425) 

1.8728 

 (0.0560) 

KSE 100 to S&P 500   
1.4507  

(0.1933) 

3.7511 

 (0.0012)* 

1.6972  

(0.0909) 

NASDAQ 100 to KSE 100 
0.97862  

(0.4511) 

 1.3996 

 (0.2136)   

1.7213 

 (0.0626)  

KSE 100 to NASDAQ 100  
 1.1241 

 (0.3546)  

.87330  

(0.5304) 

1.4315  

(0.1154) 

DJI to KSE 100 
 1.4929  

(0.1784) 

1.3684 

 (0.2269) 

 1.5802 

 (0.0979) 

KSE 100 to DJI   
 1.1241 

 (0.3546) 

0.87330  

(0.5304) 

1.4315 

 (0.1154) 

DFMGI to KSE 100 
 1.4929 

 (0.1784) 

1.3684 

 (0.2269) 

1.5802 

 (0.0979)  

KSE 100 to DFMGI 
3.3040 

 (0.0033)* 

1.4336  

(0.2002) 

4.2217 

 (0.0001)* 

S&P 500 to DFMGI 
 1.8983  

(0.0776)  

0.60082 

 (0.7539) 

2.0017  

(0.0749) 

DFMGI to S&P 500   
 1.3842 

 (0.2203)  

 1.6889  

(0.1201) 

1.4790 

 (0.1328)  

NASDAQ 100 to DFMGI 
 2.3331 

 (0.0501) 

0.63288 

 (0.7277) 

2.4133  

(0.0859) 

DFMGI to NASDAQ 100  
 1.2621 

 (0.2771) 

1.3824  

(0.2209) 

1.1127  

(0.3524)   

DJI to DFMGI 
2.1628  

(0.0640) 

1.0568  

(0.3970) 

1.9181 

 (0.0729) 

DFMGI to DJI 
0.38063 

 (0.9117) 

1.3705  

(0.2260) 

0.78667  

(0.7108) 

LM-ARCH H0: there is no ARCH effect. P-values are in the parenthesis. AR H0: there is no 
autocorrelation in residuals.  P-values are in the parenthesis. Hetero test H0: there is no 
Heteroscedasticity in residuals. P-values are in the parenthesis. 

 

Table 9.7.b shows the residual analysis after employing ARDL model. The results 

indicate there is no autocorrelation (AR) up to 7th lag, no ARCH effect up to 7th lag and 

no heteroscedasticity in residuals. It shows that the results of ARDL model are reliable. 

Only one time ARDL is unable to capture the ARCH effect and one time autocorrelation 

and heteroscedasticity. We regressed 14 regression two out of them are unable to 

capture the ARCH effect, it means on the basis of given sample in case of monthly data 

the accuracy of ARDL model is (100 - 2/14)*100 = 85.7%. We may not be able to 

generalize it on this small sample outputs but it is an effort to explore another way to 
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deal with financial series with ARCH effect. It shows that ARDL model is able to 

capture ARCH effect when we are working with monthly data.  

9.7 Conclusion and Policy Implications 

This study investigates the direct and indirect dynamic linkages between Pakistani and 

leading global stock markets. Daily data are used from 2005 to 2014. The appropriate 

univariate GARCH type models and ARDL models are employed to examine 

information transmission between stock markets and modeling volatility. The study 

examined the fluctuating nature and the magnitude of the spillover from US and Gulf 

equity markets to Pakistan stock market KSE 100. The unidirectional spillover effect is 

found from S&P 500, NASADQ 100, and DJI to KSE 100. The bidirectional spillover 

effect is found between DFMGI and KSE 100. While there is a bidirectional spillover 

effect amongst S&P 500, NASADQ 100, DJI, and DFMGI. This study concluded that 

there is direct and indirect spillover effect from leading foreign markets to Pakistan 

stock market. 

One thing that is more important in the study is comparison of GARCH type models 

and ARDL model. The study concluded that the ARDL model is unable to capture 

ARCH effect when data are collected on daily and weekly basis. It only captures the 

ARCH when data are monthly or at less frequency. ARDL model performance on 

capturing the ARCH effect is 85.7% on the basis of given sample of monthly data.  We 

may not be able to generalize these finding on this small sample outputs but it is an 

effort to explore another way to deal with financial series with ARCH effect.  

We conclude that the investors are using these markets in their diversified portfolios. 

Despite the war and terror foreign investors are interested in Pakistani stock markets. 

Particularly the investment in energy sector is more attractive for foreign investors. The 

boom in KSE 100 is not a bubble created by local investors. 
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This study is an important tool for financial institutions, portfolio managers, market 

players and academician to diagnose the nature and level of linkages and information 

transmission between the financial markets. The financial managers get more 

understanding about the management of portfolio which is badly affected by the stock 

prices. The market players may use this information for portfolio diversification and 

hedging. The policy makers can minimize the effects of spread of stock prices. The 

stability of stock prices is very important for portfolio and foreign direct investments, 

which improves macroeconomic stability and positively affect the economic growth. 

Through these results the investors/market players of one market can guess the 

performance of other markets. This study also provides an alternative way to deal with 

ARCH effect.  
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CHAPTER 10 

CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

The conventional econometrics literature considers nonstationarity only reasons of 

spurious regression since decades and propose unit root and cointegration procedures 

to handle this problem. As we discussed in chapter 2, the outputs of these procedures 

are not much reliable because of some specification decisions. These procedures are 

also unable to tackle the problem of spurious regression in stationary time series. We 

offer an alternative procedure for the treatment of this problem in stationary and 

nonstationary time series. 

10.1 Conclusion 

We concluded following results from this research that the unit root and commonly 

used cointegration procedures ordinarily provide misleading results. These procedures 

provide unreliable results due to some specification decisions. Under correct 

specification, they provide optimal size and power but in case of any misspecification 

they undergo in size distortion.  

The specification decisions made on the basis of classical model selection techniques 

often provide spurious results in time series data. The reason behind it might be in case 

of nonstationarity these model specification techniques become worthless. The 

conventional econometric method OLS suffers a lot in size distortion problem, when 

the series are having unit root, and even in case of stationary time series. Whereas, the 

ARDL model has no size distortion problem in both (nonstationary and stationary) 

cases. However, in case of under specification: when data generating process contains 

linear trend but trend is not included in regression model then Both OLS and ARDL 
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models suffer in size distortion problem. But even in case of under specification ARDL 

model significantly reduces the probability of spurious regression as compare to OLS.  

The commonly used conventional cointegration procedures Engle and Granger,  

Johansen and Juselius, and Pesaran ARDL are having severe size distortion problem 

even in case of correct specifications, but ARDL does not show in size problem in case 

of correct specification. On the other hand, in case of over specification conventional 

cointegration procedures show size problem but ARDL has not size problem in case of 

over specification. Nonetheless, in case of under specification ARDL suffers in severe 

size distortion problem as compare to conventional cointegration test. It clarifies that 

the ARDL model is most robust model in case of correct and over specification but not 

in under specification.  

The ARDL model provides better forecasting as compare to conventional cointegration 

procedures in case of real time series data. The ARDL model provides small deviation 

between actual and forecasted values. The experiments refer that ARDL model can be 

used as an alternative tool to tackle the problem of spurious regression in case of 

stationary and nonstationary time series. 

10.2 Limitation of Study 

There is some limitation of this study, first the data generating process which is being 

used in this study is only based on two variables. It means all the experiments are done 

on bivariate regression, but in case of multivariate the results might be varied at some 

extent. Second, this study only deals with autoregressive process but this study should 

be analyzed with autoregressive moving average method. Third, in this study the 

structural breaks are not incorporated in regression analysis.  
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10.3 Future Research Direction 

The work of this study can be extended in future by over coming the limitations of this 

study. First, researcher can use multivariate data generating process for comparison of 

different econometric tools. Second, someone can check the size and power of these 

methods by including structural break in model.  
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APPENDIX A 

Lemma 1. Let’s suppose {𝑌𝑡}1
∞ and {𝑋𝑡}1

∞ are first order autoregressive and generated 

by equation (3.12). If the error terms sequences {𝑢𝑦𝑡}1
∞ and {𝑢𝑥𝑡}1

∞ and independent 

and if {𝑢𝑦𝑡, 𝑢𝑥𝑡}1
∞sustains Assumption 1 conditions then as 𝑇 ↑ ∞, 

(a) 

T−3/2 ∑𝑌𝑡

T

1

⇒ σuy
∫ W(t)

1

0

dt 

T−3/2 ∑𝑋𝑡

T

1

⇒ σux
∫ N(t)

1

0

dt 

(b) 

T−2 ∑Yt
2

T

1

⇒ σuy
2 ∫ W(t)2

1

0

dt 

T−2 ∑Xt
2

T

1

⇒ σux
2 ∫ N(t)2

1

0

dt 

(c) 

T−2 ∑(

T

1

Yt − Y̅)2 ⇒ σuy
2 [∫ W(t)2

1

0

dt − {∫ W(t)
1

0

dt}2] 

T−2 ∑(

T

1

Xt − X̅)2 ⇒ σux
2 [∫ N(t)2

1

0

dt − {∫ N(t)
1

0

dt}2] 

(d) 
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T−2 ∑𝑌𝑡

T

1

𝑋𝑡 ⇒ σuy
σux

∫ N(t)W(t)
1

0

dt 

(e) 

T−2 ∑(

T

r

Yt − 𝑌𝑡−𝑟) ⇒ (r/2){σuy
2 W(1)2 + Ω𝑢0𝑦

} + ∑(

r

j=1

r − j)Ω𝑢𝑦𝑗
 

T−2 ∑(

T

r

Xt − 𝑋𝑡−𝑟) ⇒ (r/2){σux
2 W(1)2 + Ω𝑢0𝑥

} + ∑(

r

j=1

r − j)Ω𝑢𝑥𝑗
 

(f) 

T−1 ∑(

T

r

Yt − 𝑌𝑡−𝑟) + T−1 ∑(

T

r

Xt − 𝑋𝑡−𝑟) ⇒ 𝑟σuy
σux

𝑊(1)𝑁(1) 

where N(t) and W(t) are defined as independent Wiener processes on the C[0, 1] and  

Ω𝑢𝑥𝑗
 and Ω𝑢𝑦𝑗

 are define as following: 

Ω𝑢𝑦𝑗
= lim

T→∞
T−1 ∑ 𝐸𝑇

𝑗=1 (𝑢𝑦𝑡 , 𝑢𝑦𝑡−1)                𝑗 = 0, 1 (3.26) 

Ωuxj
= lim

T→∞
T−1 ∑ ET

j=1 (uxt, uxt−1)                j = 0, 1 (3.27) 

Furthermore, (a) to (f) all condition holds regardless of initial conditions consigned to 

Y0 and X0. In lemma 1 C[0, 1] defines the real valued continuous functions space on 

interval [0, 1]. The Wiener processes W(t) and N(t) in lemma are stochastically 

independent and their path lie between this interval [0, 1]. The results of (a) to (f) of 

lemma 1 establish that properly standardized moments of sample of sequences {uyt}1
∞ 

and {uxt}1
∞ converge weakly to suitably defined functional of Wiener processes N(t) 

and W(t). Every functional of them has a defined non degenerate distribution. The 

arrow sign “⇒” in lemma is representing the weak convergence of related probability 
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measures. So, in case (a) we infer that T−3/2 ∑ 𝑋𝑡
T
1  converges in the distribution to 

distribution of functional σux ∫ N(t)
1

0
dt of Wiener process N(t) on C[0, 1]. We also 

infer that normal limiting distribution of T−3/2 ∑ 𝑋𝑡
T
1  with mean zero and variance is 

given below: 

σux

2 E {∫ ∫ 𝑁
1

0

1

0
(𝑡)𝑁(𝑠)𝑑𝑡𝑑𝑠} = 2σux

2 ∫ ∫ 𝐸
𝑟

0

1

0
{𝑁(𝑟)𝑁(𝑠)}𝑑𝑠𝑑𝑟(3.28) 

σux

2 E {∫ ∫ 𝑁
1

0

1

0
(𝑡)𝑁(𝑠)𝑑𝑡𝑑𝑠} = 2σux

2 ∫ ∫ 𝑠𝑑𝑠𝑑𝑟
𝑟

0

1

0
 (3.29) 

σux

2 E {∫ ∫ 𝑁
1

0

1

0
(𝑡)𝑁(𝑠)𝑑𝑡𝑑𝑠} = σux

2 /3 (3.30) 

For further understanding of these results see Philips (1986, appendix). Now it is easy 

to derive the theorem 1 by considering derived results of lemma 1. 

Theorem 1. Let’s assume the regression equation (3.12)is estimated by employing 

linear regression model and it sustains all condition of lemma 1, then as T approaches 

to infinity  

(a) 

�̂� ⇒  
σuy

2 {∫ 𝑁(𝑡)𝑊(𝑡)𝑑𝑡 − ∫ 𝑁(𝑡)𝑑𝑡 ∫ 𝑊(𝑡)𝑑𝑡
1

0

1

0

1

0
}

σuy
2 {∫ 𝑊(𝑡)21

0
𝑑𝑡 − (∫ 𝑊(𝑡)𝑑𝑡)21

0
}

, 

�̂� = (
σuy

2

σux
2

) 𝜉; 

(b)  

𝑇−2�̂�0 ⇒ σux
(∫ 𝑁

1

0

(𝑡)𝑑𝑡 − 𝜉 ∫ 𝑊(𝑡)𝑑𝑡
1

0

) ; 

(c)   
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𝑇−1/2𝑡�̂�1
= (

𝑈

𝑣
1

2

) 

where  

𝑈 = ∫ 𝑁
1

0

(𝑡)𝑊(𝑡)𝑑𝑡 − ∫ 𝑁
1

0

(𝑡)𝑑𝑡 ∫ 𝑊
1

0

(𝑡)𝑑𝑡, 

𝑣 = {∫ 𝑁
1

0

(𝑡)2 𝑑𝑡 − (∫ 𝑁
1

0

(𝑡)𝑑𝑡)2} {∫ 𝑊
1

0

(𝑡)2 𝑑𝑡 − (∫ 𝑊
1

0

(𝑡))2𝑑𝑡}

− {(∫ 𝑁
1

0

(𝑡)𝑊(𝑡)𝑑𝑡 − ∫ 𝑁
1

0

(𝑡)𝑑𝑡 ∫ 𝑊
1

0

(𝑡)𝑑𝑡)2} ; 

(d) 

T−1/2tβ̂0
⇒

{∫ N
1

0
(t)dt − ξ ∫ W(t)dt

1

0
}  x {∫ W(t)2dt − (∫ W(t)dt

1

0
)21

0
}

[v ∫ W(t)2dt
1

0
]
1

2

; 

(e)  

𝑅2 ⇒
𝜉2 {∫ 𝑊(𝑡)2𝑑𝑡 − (∫ 𝑊(𝑡)𝑑𝑡

1

0
)21

0
}

∫ 𝑁
1

0
(𝑡)2𝑑𝑡 − (∫ 𝑁

1

0
(𝑡)𝑑𝑡)2

; 

(f)  

𝐷𝑊�⃗� 0, 

𝑇𝐷𝑊 ⇒ {(
Ω𝑢0𝑦

𝜎𝑢𝑦
2

) + 𝜉2 (
Ω𝑢0𝑥

𝜎𝑢𝑥
2

)} [∫ 𝑁(𝑡)2𝑑𝑡 − (∫ 𝑁(𝑡)𝑑𝑡
1

0

)2
1

0

− 𝜉2 {∫ 𝑊(𝑡)2𝑑𝑡 − (∫ 𝑊(𝑡)𝑑𝑡
1

0

)2
1

0

}] ; 

(g) 

𝑠 ≥ 1 fixed for all,  
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𝑇(𝑟𝑠 − 1) ⇒ −
𝐴𝑠

𝐵
 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑟𝑠 = 1 + 𝑂𝑃(𝑇

−1); 

where 

𝐴𝑠 = (
𝑠

2
) [{𝑁(1) − 𝜉𝑊(1)} − {∫ 𝑁(𝑡)𝑑𝑡 − 𝜉 ∫ 𝑊(𝑡)𝑑𝑡

1

0

1

0

}]

2

+ (
𝑠

2
) {∫ 𝑁(𝑡)𝑑𝑡 − 𝜉 ∫ 𝑊(𝑡)𝑑𝑡

1

0

1

0

}

2

+ {𝑠 (
Ω𝑢0𝑦

2𝜎𝑢𝑦
2

) + ∑(𝑠 − 𝑗)

𝑠

𝑗=1

(
Ω𝑢𝑦

𝜎𝑢𝑦
2

)}

+ 𝜉2 {𝑠 (
Ω𝑢0𝑥

2𝜎𝑢𝑥
2

) + ∑(𝑠 − 𝑗)

2

𝑗=1

(
Ω𝑢𝑥

𝜎𝑢𝑥
2

)}, 

𝐵 = ∫ 𝑁(𝑡)2𝑑𝑡 − (∫ 𝑁(𝑡)𝑑𝑡
1

0

)

2

− 𝜉2 {∫ 𝑊(𝑡)2𝑑𝑡
1

0

− (∫ 𝑊(𝑡)𝑑𝑡
1

0

)

2

}
1

0

; 

(h)  

𝑇−1𝑄𝑘 = ∑𝑟𝑠

𝑘

𝑠=1

�⃗�  𝑘; 

where 

where N(t) and W(t) are the independent Wiener processes on the C[0, 1]. Theorem 1 

explains the Monte Carlo simulation results stated by Granger and Newbold. In theorem 

1 the (c) shows the conventional t-ratio for slope coefficient 𝑡�̂�1
and (d) shows the t-ratio 

for intercept 𝑡�̂�0
. These t-ratios are used to check the statistical significance of 

regression parameters, but in this regression analysis case they do not follow limiting 

distribution. In fact, 𝑡�̂�1
 and 𝑡�̂�0

 distributions diverge as T increases C0. So, these 

significance tests are not having asymptotically corrected critical values. The rejection 
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of null hypothesis should be expected when we use conventional asymptotic critical 

value (such as 1.96) as we increase the sample size in context of weak stationary time 

series. Thus huge rejection of null hypothesis in Granger and Newbold experiment 

(T=50), therefore it arises as no surprise. Definitely, it is anticipated by correct 

asymptotic theory. Granger and Newbold in their experiments also suggest to use 11.2 

as a new critical value instead of conventional critical value 1.96 at 5% level of 

significance but this suggestion does not have any foundation in asymptotic theory 

according to our results.  
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APPENDIX B 

  OLS ARDL (1, 1) ARDL (2, 2) 

 xt xt-1 xt F-stat xt-2 xt-1 xt F-stat 

 ALB 

Percentile 25 8.396 -0.724 -0.181 1.896 -0.125 -0.468 -0.388 1.564 

Percentile 50 10.426 0.011 0.313 2.950 0.318 -0.124 0.444 2.312 

Percentile 75 12.875 0.687 1.364 4.169 0.831 0.406 1.135 2.793 

Percentile 5 6.171 -1.810 -1.175 0.772 -0.787 -1.636 -0.827 1.264 

Percentile 95 14.847 1.507 2.560 5.627 1.461 0.719 2.051 3.510 

Positive significant  30 0 5 14 0 0 2 6 

Negative significant  0 1 0 0 0 1 0 0 

Total significant  30 1 5 14 0 1 2 6 

Percentages 100 3.333 16.667 46.667 0 3.333 6.667 20 

 AUS 

Percentile 25 16.810 -1.881 0.548 1.194 -1.274 -0.551 0.619 0.042 

Percentile 50 25.525 -1.105 1.474 2.588 -0.485 -0.314 1.392 0.064 

Percentile 75 39.582 0.076 2.181 4.105 0.001 0.137 1.918 0.105 

Percentile 5 11.622 -4.481 -0.443 0.211 -2.320 -1.211 -0.282 0.020 

Percentile 95 57.888 0.840 3.613 15.682 1.063 1.342 2.828 0.210 

Positive significant  30 0 10 13 0 0 6 0 

Negative significant  0 6 1 0 2 0 0 0 

Total significant  30 6 11 13 2 0 6 0 

Percentages 100 20 36.667 43.333 6.667 0 20 0 

 AUT 

Percentile 25 17.870 -4.059 1.006 1.442 -0.233 -2.593 1.385 0.913 

Percentile 50 24.822 -2.224 2.793 5.166 0.294 -1.401 2.716 2.864 

Percentile 75 31.650 -0.638 4.534 11.668 0.812 -0.478 4.392 8.225 

Percentile 5 10.718 -5.058 -0.329 0.455 -0.771 -4.611 -0.095 0.207 

Percentile 95 41.686 0.737 8.051 38.383 1.988 0.329 7.845 24.909 

Positive significant  30 0 19 18 2 0 19 15 

Negative significant  0 16 0 0 0 11 0 0 

Total significant  30 16 19 18 2 11 19 15 

Percentages 100 53.333 63.333 60 6.667 36.667 63.333 50 

 BHR 

Percentile 25 15.164 -0.568 -0.113 2.281 0.250 -1.181 -0.215 1.306 

Percentile 50 18.598 -0.085 0.900 4.026 0.570 -0.669 0.810 1.920 

Percentile 75 31.326 0.637 2.277 6.252 1.056 0.027 2.190 2.892 

Percentile 5 10.899 -1.787 -1.031 0.487 -0.382 -1.883 -0.477 0.401 

Percentile 95 65.590 1.190 3.917 14.122 2.545 0.684 3.399 6.521 

Positive significant  30 0 9 18 3 0 9 7 

Negative significant  0 1 0 0 0 1 0 0 

Total significant  30 1 9 18 3 1 9 7 

Percentages 100 3.333 30 60 10 3.333 30 23.333 
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 BHS 

Percentile 25 12.391 -2.437 0.600 0.850 0.132 -1.618 1.075 1.378 

Percentile 50 15.610 -1.886 1.968 2.001 0.469 -1.276 1.923 2.186 

Percentile 75 19.372 -0.333 3.090 4.885 0.994 -0.637 2.538 3.783 

Percentile 5 7.849 -3.690 -1.026 0.163 -0.855 -2.402 -0.496 0.687 

Percentile 95 29.251 1.131 4.014 9.688 1.691 0.413 4.626 8.969 

Positive significant  30 0 14 10 0 0 13 10 

Negative significant  0 11 0 0 1 3 0 0 

Total significant  30 11 14 10 1 3 13 10 

Percentages 100 36.667 46.667 33.333 3.333 10 43.333 33.333 

 BHA 

Percentile 25 14.872 -1.643 1.206 1.766 0.366 -2.657 0.967 1.201 

Percentile 50 17.167 -1.140 1.746 2.987 1.079 -1.629 1.963 3.049 

Percentile 75 28.970 -0.611 2.320 4.139 2.217 -0.502 2.659 4.634 

Percentile 5 11.670 -2.170 -0.114 0.523 -0.343 -3.374 -0.072 0.322 

Percentile 95 47.314 0.738 3.015 6.896 3.157 0.262 3.765 6.523 

Positive significant  30 0 14 12 10 0 15 16 

Negative significant  0 3 0 0 0 12 0 0 

Total significant  30 3 14 12 10 12 15 16 

Percentages 100 10 46.667 40 33.333 40 50 53.333 

 BHA 

Percentile 25 14.872 -2.654 1.610 2.440 -0.023 -1.746 1.191 2.863 

Percentile 50 17.167 -1.784 2.401 4.177 0.407 -1.330 2.126 4.176 

Percentile 75 28.970 -1.073 3.428 7.948 1.005 -0.542 2.575 4.838 

Percentile 5 11.670 -3.307 0.046 0.440 -0.879 -2.376 0.189 0.745 

Percentile 95 47.314 0.690 4.430 14.468 1.792 0.580 3.693 8.770 

Positive significant  30 0 18 17 1 0 18 20 

Negative significant  0 12 0 0 0 4 0 0 

Total significant  30 12 18 17 1 4 18 20 

Percentages 100 40 60 56.667 3.333 13.333 60 66.667 

 BRN 

Percentile 25 12.628 -0.760 0.789 5.533 0.443 -1.347 -0.194 0.532 

Percentile 50 14.361 -0.253 1.382 11.673 0.730 -0.976 0.871 0.894 

Percentile 75 16.770 0.365 2.228 17.201 1.053 -0.476 1.718 1.992 

Percentile 5 8.998 -1.501 -0.304 0.490 -0.260 -1.767 -0.880 0.257 

Percentile 95 20.028 1.586 3.373 30.018 1.894 0.507 2.340 3.604 

Positive significant  30 1 9 24 1 0 4 3 

Negative significant  0 0 0 0 0 0 0 0 

Total significant  30 1 9 24 1 0 4 3 

Percentages 100 3.333 30 80 3.333 0 13.333 10 

 BWA 

Percentile 25 15.805 -2.252 1.246 1.311 -0.099 -2.218 1.186 1.218 

Percentile 50 22.309 -1.463 2.042 2.584 0.485 -1.532 2.250 2.026 

Percentile 75 32.581 -0.649 3.273 6.445 1.120 -0.722 3.332 4.935 

Percentile 5 11.493 -4.355 0.201 0.488 -0.740 -3.133 0.246 0.396 

Percentile 95 48.080 0.653 4.395 10.600 2.180 0.418 4.204 7.371 
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Positive significant  30 0 16 12 3 0 19 12 

Negative significant  0 10 0 0 0 8 0 0 

Total significant  30 10 16 12 3 8 19 12 

Percentages 100 33.333 53.333 40 10 26.667 63.333 40 

 CAN 

Percentile 25 18.501 -2.961 1.630 1.605 0.370 -3.458 1.363 1.598 

Percentile 50 26.644 -2.329 2.566 4.048 0.847 -2.295 2.973 4.040 

Percentile 75 32.815 -0.733 3.852 7.511 1.966 -0.845 3.932 7.056 

Percentile 5 11.754 -5.048 -0.028 0.175 -1.147 -4.599 0.256 0.739 

Percentile 95 42.234 0.559 4.897 14.125 2.764 0.037 4.947 10.474 

Positive significant  30 0 18 16 7 0 19 17 

Negative significant  0 18 0 0 0 17 0 0 

Total significant  30 18 18 16 7 17 19 17 

Percentages 100 60 60 53.333 23.333 56.667 63.333 56.667 

 COG 

Percentile 25 10.009 0.968 -1.470 0.703 0.228 -0.539 -0.933 0.826 

Percentile 50 11.552 1.338 -1.136 1.585 1.160 -0.043 -0.427 1.807 

Percentile 75 15.836 1.850 -0.504 3.929 1.839 0.513 -0.104 2.927 

Percentile 5 8.452 0.006 -2.878 0.145 -0.882 -1.943 -1.966 0.524 

Percentile 95 19.444 3.744 0.485 8.940 2.848 1.550 0.969 6.204 

Positive significant  30 6 0 8 5 1 0 7 

Negative significant  0 0 6 0 0 1 1 0 

Total significant  30 6 6 8 5 2 1 7 

Percentages 100 20 20 26.667 16.667 6.667 3.333 23.333 

 CPV 

Percentile 25 15.952 -2.308 1.635 4.653 -0.007 -2.152 1.478 2.154 

Percentile 50 19.772 -1.678 2.626 7.088 0.424 -1.287 2.658 4.862 

Percentile 75 30.061 -0.733 3.347 12.887 0.900 -0.619 3.551 7.531 

Percentile 5 10.429 -3.122 -0.297 0.925 -0.766 -3.120 0.137 0.654 

Percentile 95 40.789 1.520 5.069 20.723 1.373 1.087 5.312 11.163 

Positive significant  30 1 21 23 0 0 20 20 

Negative significant  0 9 1 0 0 8 0 0 

Total significant  30 10 22 23 0 8 20 20 

Percentages 100 33.333 73.333 76.667 0 26.667 66.667 66.667 

 CRI 

Percentile 25 16.990 -2.364 1.778 2.886 0.694 -2.433 1.278 1.848 

Percentile 50 20.390 -1.554 2.791 5.371 0.993 -1.455 2.436 2.893 

Percentile 75 36.624 -1.015 3.241 7.720 1.843 -1.231 3.128 4.425 

Percentile 5 11.430 -2.890 -0.600 1.135 -0.385 -3.474 -0.447 0.703 

Percentile 95 73.699 1.375 4.422 12.170 2.580 0.313 4.042 7.460 

Positive significant  30 1 21 22 7 1 18 15 

Negative significant  0 14 1 0 0 12 0 0 

Total significant  30 15 22 22 7 13 18 15 

Percentages 100 50 73.333 73.333 23.333 43.333 60 50 
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 DEU 

Percentile 25 14.031 -3.387 1.273 1.076 -0.048 -2.968 1.281 0.842 

Percentile 50 17.749 -1.722 2.015 2.523 0.485 -1.969 2.231 2.952 

Percentile 75 23.109 -0.555 3.766 7.162 1.661 -0.539 3.817 5.339 

Percentile 5 9.577 -5.580 -0.498 0.375 -0.375 -5.081 -0.257 0.383 

Percentile 95 33.929 0.741 6.776 24.347 3.488 0.308 8.207 24.112 

Positive significant  30 0 15 13 6 0 16 15 

Negative significant  0 14 0 0 0 14 0 0 

Total significant  30 14 15 13 6 14 16 15 

Percentages 100 46.667 50 43.333 20 46.667 53.333 50 

 DMA 

Percentile 25 14.959 -0.602 0.222 1.466 -0.687 -0.558 -0.016 1.098 

Percentile 50 18.880 -0.033 1.040 3.108 -0.011 -0.222 1.059 1.917 

Percentile 75 24.497 0.300 1.657 3.988 0.561 0.275 1.640 2.514 

Percentile 5 9.883 -1.933 -0.568 0.151 -1.264 -0.794 -0.704 0.441 

Percentile 95 29.761 1.434 2.618 6.270 1.136 1.067 2.016 4.009 

Positive significant  30 1 4 13 0 0 3 5 

Negative significant  0 2 0 0 0 0 0 0 

Total significant  30 3 4 13 0 0 3 5 

Percentages 100 10 13.333 43.333 0 0 10 16.667 

 DNK 

Percentile 25 13.098 -3.912 0.633 1.271 -0.045 -3.031 0.886 0.873 

Percentile 50 16.929 -2.903 2.505 4.574 0.391 -2.024 2.514 3.199 

Percentile 75 23.994 -0.964 3.957 8.809 1.509 -0.546 3.711 5.541 

Percentile 5 8.479 -5.623 -0.359 0.303 -0.458 -5.847 -0.181 0.121 

Percentile 95 32.845 0.599 5.541 16.909 3.572 0.288 6.145 17.071 

Positive significant  30 0 18 18 5 0 19 16 

Negative significant  0 17 0 0 0 14 0 0 

Total significant  30 17 18 18 5 14 19 16 

Percentages 100 56.667 60 60 16.667 46.667 63.333 53.333 

 FIN 

Percentile 25 15.573 -3.675 1.694 2.117 0.013 -3.319 1.685 2.330 

Percentile 50 18.707 -2.722 3.216 5.646 0.979 -2.357 3.818 5.080 

Percentile 75 28.095 -1.329 4.592 15.914 1.639 -0.828 4.744 10.669 

Percentile 5 9.454 -6.067 -0.377 0.125 -0.535 -6.787 0.139 0.229 

Percentile 95 32.912 0.581 7.025 27.008 3.796 0.136 7.787 26.272 

Positive significant  30 0 22 20 6 0 20 20 

Negative significant  0 16 0 0 0 16 0 0 

Total significant  30 16 22 20 6 16 20 20 

Percentages 100 53.333 73.333 66.667 20 53.333 66.667 66.667 

 FJI 

Percentile 25 14.931 -0.447 0.462 1.075 0.208 -1.312 0.581 0.683 

Percentile 50 19.209 -0.013 0.759 1.670 1.007 -0.767 0.939 1.590 

Percentile 75 22.579 0.434 1.200 3.644 1.454 -0.448 1.481 3.229 

Percentile 5 9.724 -1.430 -0.145 0.317 -0.387 -2.126 -0.092 0.176 

Percentile 95 29.765 0.873 2.048 4.706 2.589 0.620 2.463 5.204 
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Positive significant  30 0 3 8 4 0 5 9 

Negative significant  0 0 0 0 0 4 0 0 

Total significant  30 0 3 8 4 4 5 9 

Percentages 100 0 10 26.667 13.333 13.333 16.667 30 

 FRA 

Percentile 25 17.139 -3.665 0.893 1.544 -0.052 -2.722 1.358 1.003 

Percentile 50 23.643 -2.475 2.663 4.392 0.689 -1.983 2.564 2.879 

Percentile 75 29.082 -0.720 3.948 10.197 1.306 -0.722 4.145 7.243 

Percentile 5 9.994 -7.303 -0.823 0.293 -0.424 -5.766 -0.355 0.252 

Percentile 95 42.656 0.549 8.870 44.177 3.237 0.020 8.769 30.125 

Positive significant  30 0 19 17 5 0 19 13 

Negative significant  0 17 0 0 0 14 0 0 

Total significant  30 17 19 17 5 14 19 13 

Percentages 100 56.667 63.333 56.667 16.667 46.667 63.333 43.333 

 GAB 

Percentile 25 10.046 -0.199 -0.150 0.563 0.314 -1.251 0.138 1.008 

Percentile 50 12.305 0.131 0.162 1.171 1.023 -0.946 0.569 1.762 

Percentile 75 14.034 0.548 0.512 2.396 1.514 -0.121 0.873 2.267 

Percentile 5 8.067 -0.754 -0.479 0.046 -0.888 -1.682 -0.561 0.760 

Percentile 95 15.853 1.247 1.472 3.551 2.496 1.447 1.375 3.042 

Positive significant  30 0 0 2 3 0 0 2 

Negative significant  0 0 0 0 0 0 0 0 

Total significant  30 0 0 2 3 0 0 2 

Percentages 100 0 0 6.667 10 0 0 6.667 

 GNB 

Percentile 25 7.791 -0.136 -0.487 1.458 -0.125 -0.450 -0.375 1.140 

Percentile 50 9.236 0.506 -0.218 2.036 0.269 -0.068 0.068 1.503 

Percentile 75 10.535 0.972 0.633 3.020 0.736 0.333 0.898 2.194 

Percentile 5 6.943 -1.758 -0.873 1.003 -1.448 -1.430 -0.819 0.751 

Percentile 95 12.457 1.262 2.183 4.994 1.304 1.035 2.076 4.248 

Positive significant  30 0 2 4 0 1 2 3 

Negative significant  0 2 0 0 1 0 0 0 

Total significant  30 2 2 4 1 1 2 3 

Percentages 100 6.667 6.667 13.333 3.333 3.333 6.667 10 

 GRD 

Percentile 25 14.856 -1.721 0.684 0.969 -1.011 -0.707 0.504 0.907 

Percentile 50 20.103 -0.989 1.712 2.709 -0.581 -0.363 1.776 2.013 

Percentile 75 25.729 0.195 2.549 4.788 0.208 0.108 2.146 3.534 

Percentile 5 8.826 -2.752 -1.026 0.197 -1.678 -1.160 -0.677 0.260 

Percentile 95 34.477 1.239 3.389 8.781 0.818 1.434 2.797 6.288 

Positive significant  30 0 12 10 0 0 12 10 

Negative significant  0 6 0 0 0 0 0 0 

Total significant  30 6 12 10 0 0 12 10 

Percentages 100 20 40 33.333 0 0 40 33.333 
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 GUY 

Percentile 25 9.656 -0.208 -0.184 4.350 0.170 -0.554 -0.036 3.654 

Percentile 50 12.371 0.263 0.636 6.640 0.847 -0.137 0.830 5.582 

Percentile 75 15.055 0.909 1.142 8.441 1.404 0.143 1.301 7.340 

Percentile 5 7.707 -0.655 -1.230 1.010 -0.929 -1.264 -1.152 1.300 

Percentile 95 17.222 1.949 1.886 12.131 1.924 1.227 1.910 10.745 

Positive significant  30 2 2 24 2 1 2 24 

Negative significant  0 0 1 0 0 1 1 0 

Total significant  30 2 3 24 2 2 3 24 

Percentages 100 6.667 10 80 6.667 6.667 10 80 

 HKG 

Percentile 25 15.329 -2.459 1.112 1.282 0.403 -3.183 1.125 1.231 

Percentile 50 21.496 -1.703 2.326 3.020 1.252 -2.721 2.933 3.849 

Percentile 75 31.931 -0.434 2.973 5.437 2.381 -1.020 3.626 5.307 

Percentile 5 11.977 -3.511 -0.162 0.517 -0.669 -3.972 -0.204 0.454 

Percentile 95 42.996 0.477 4.341 9.649 3.340 0.347 4.330 8.288 

Positive significant  30 0 17 12 11 0 19 18 

Negative significant  0 10 0 0 0 16 0 0 

Total significant  30 10 17 12 11 16 19 18 

Percentages 100 33.333 56.667 40 36.667 53.333 63.333 60 

 HND 

Percentile 25 15.886 -2.291 1.078 1.991 -0.060 -1.944 0.994 1.927 

Percentile 50 19.554 -1.696 2.493 4.644 0.432 -1.354 2.481 3.522 

Percentile 75 37.537 -0.510 3.309 6.270 1.088 -0.732 3.451 4.666 

Percentile 5 11.692 -2.908 -0.146 0.170 -1.478 -2.629 0.109 0.333 

Percentile 95 67.890 0.396 4.714 11.906 1.644 0.833 4.389 9.119 

Positive significant  30 0 17 19 1 0 16 18 

Negative significant  0 11 0 0 1 6 0 0 

Total significant  30 11 17 19 2 6 16 18 

Percentages 100 36.667 56.667 63.333 6.667 20 53.333 60 

 IRL 

Percentile 25 16.916 -3.236 0.545 1.758 0.332 -3.381 1.176 1.991 

Percentile 50 21.414 -2.008 2.691 5.040 1.459 -2.626 2.497 3.968 

Percentile 75 27.687 -0.316 3.879 11.236 2.223 -0.757 3.674 8.828 

Percentile 5 10.558 -4.318 -0.168 0.148 -0.371 -4.440 0.146 0.485 

Percentile 95 34.194 0.987 5.662 20.874 3.161 0.150 4.877 10.333 

Positive significant  30 0 19 18 10 0 18 17 

Negative significant  0 15 0 0 0 16 0 0 

Total significant  30 15 19 18 10 16 18 17 

Percentages 100 50 63.333 60 33.333 53.333 60 56.667 

 IRQ 

Percentile 25 10.596 -0.454 0.014 3.000 -0.055 -0.622 0.004 1.706 

Percentile 50 12.504 0.275 0.439 3.649 0.284 -0.153 0.542 2.093 

Percentile 75 15.807 0.642 1.168 6.010 0.620 0.522 1.217 3.062 

Percentile 5 7.864 -1.288 -0.566 1.955 -0.532 -1.245 -0.536 0.997 

Percentile 95 17.337 1.477 1.928 7.496 1.130 0.921 2.052 4.241 
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Positive significant  30 0 2 17 0 0 2 8 

Negative significant  0 0 0 0 0 0 0 0 

Total significant  30 0 2 17 0 0 2 8 

Percentages 100 0 6.667 56.667 0 0 6.667 26.667 

 ISL 

Percentile 25 15.218 -2.033 1.439 2.393 -0.608 -1.118 1.576 2.450 

Percentile 50 22.446 -1.383 2.056 4.611 -0.174 -0.726 2.268 4.247 

Percentile 75 26.878 -0.579 2.800 6.498 0.045 0.010 2.732 5.797 

Percentile 5 10.372 -2.721 -0.606 0.749 -1.924 -1.733 -0.100 0.632 

Percentile 95 32.525 1.360 4.256 14.273 0.764 1.343 3.800 8.005 

Positive significant  30 0 15 17 0 0 18 17 

Negative significant  0 8 1 0 2 1 0 0 

Total significant  30 8 16 17 2 1 18 17 

Percentages 100 26.667 53.333 56.667 6.667 3.333 60 56.667 

 ISR 

Percentile 25 16.627 -2.038 0.751 1.359 0.117 -2.900 0.904 1.246 

Percentile 50 23.356 -1.563 1.945 2.330 0.927 -1.583 2.207 2.703 

Percentile 75 36.942 -0.083 2.628 3.774 1.853 -0.376 2.935 3.663 

Percentile 5 11.188 -2.848 -0.444 0.309 -1.039 -3.424 -0.059 0.359 

Percentile 95 54.479 0.531 3.698 7.627 2.503 0.430 4.105 6.452 

Positive significant  30 0 15 11 7 0 18 11 

Negative significant  0 8 0 0 0 12 0 0 

Total significant  30 8 15 11 7 12 18 11 

Percentages 100 26.667 50 36.667 23.333 40 60 36.667 

 ITA 

Percentile 25 8.800 -4.508 0.540 3.082 -0.242 -3.214 0.898 1.186 

Percentile 50 11.029 -3.003 2.587 7.349 0.460 -2.153 2.431 3.528 

Percentile 75 14.458 -1.015 3.859 13.297 1.391 -0.747 3.873 7.678 

Percentile 5 6.016 -8.592 -0.437 1.206 -1.060 -5.878 -0.167 0.522 

Percentile 95 19.717 -0.277 7.323 37.304 2.315 -0.121 8.879 30.980 

Positive significant  30 0 18 21 3 0 18 17 

Negative significant  0 18 0 0 0 15 0 0 

Total significant  30 18 18 21 3 15 18 17 

Percentages 100 60 60 70 10 50 60 56.667 

 SLV 

Percentile 25 15.863 -2.128 1.455 3.662 0.527 -2.936 0.995 1.016 

Percentile 50 21.691 -1.308 2.396 6.120 1.274 -1.818 2.250 2.884 

Percentile 75 25.586 -0.841 3.085 9.890 1.827 -0.769 3.234 4.895 

Percentile 5 9.642 -3.500 -0.852 1.282 -0.509 -4.322 -0.468 0.396 

Percentile 95 34.104 2.290 4.497 23.788 3.106 0.760 4.529 8.620 

Positive significant  30 3 17 24 6 0 17 14 

Negative significant  0 8 1 0 0 12 0 0 

Total significant  30 11 18 24 6 12 17 14 

Percentages 100 36.667 60 80 20 40 56.667 46.667 

 


