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ABSTRACT 

Causality is the most important concept which is tested frequently in social sciences. 

Unfortunately, it is not easily detected from observational studies. It is difficult for a 

researcher to differentiate between cause and effect, which is even more challenging 

in economics. Researchers have been applied various approaches to test causality, i.e., 

Regression discontinuity design (1960), Cross correlation-based methodology (1994), 

Difference in differences approach (2005), Granger causality test (1969), Error 

correction mechanism (1986), Toda and Yamamoto method (1995) for cross-sectional 

and time-series data. These usual regression methodologies rely on normality and 

linearity assumptions not supported by the data used in the analysis and may lead to 

unreliable results. Therefore, the policies built on poor tests for causality remain 

unreliable. Some causality techniques are sensitive to distributional assumptions and 

specification issues. In the literature, no study compares causality methods and tests 

for all types of data and panel data that can help choose an appropriate testing 

methodology. The current study evaluates the size and power based on Monte Carlo 

Simulations of various causality methods for panel data under whole alternative 

hypotheses for all possible causal combinations. This study also modifies the Sims 

test (1972) and Final Prediction Error (FPE) test (1981) for the Panel dataset. 

Comparison of Panel Causality Tests (PCT) has been used with different model 

specifications (stationary series with drift only, with drift and trend) for different 

sample sizes (small, medium, and large) under this study. Monte Carlo results reveal 

that the Granger Non-Causality (GC) test by Dumitrescu and Hurlin (2012) has the 

least size distortion from nominal compared to size distortion of the Sims test and 

FPE test for all sample sizes of cross-section units. However, the GC test's power 

attainment is much better than the other two tests at all alternatives and all sample 

sizes. Among the Sims test and FPE tests, the former gains lower power at all 

alternatives than the latter one corresponding to small, medium, and large cross-

section units and thus identified as the worst performer. A similar pattern has been 

observed for almost all tests at different sample sizes; medium sample size (i.e., 

T=50) and large sample size (i.e., T=200). Based on the comparison of size and power 

analysis of the PCT, this study concludes that the GC test is a point optimal and 

performs better at all causal combinations and panel dimensions, whether drift only or 

both drift and trend have been taken into account. On the other hand, the Sims test 

with its lowest power gain at all causal combinations and panel dimensions is the 

worst performer test. However, the FPE test having a power curve between the better 

and worst performer is graded as the average performer test. We investigate the 

government and household spending nexus on education in Pakistan for the applied 

application of our proposed PCT testing procedure. The result is fascinating and 

useful for policymakers. It indicates that the causality clearly runs from the intensity 

of government spending on education to the corresponding household intensity, but 

the effect is only direct. 

 

Keywords; Econometrics, Causality, Panel data, Monte Carlo Simulations, Granger 

Non-Causality test 
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CHAPTER 1 

INTRODUCTION 

1.1. Background of the Study 

Causality is the most important concept which is tested frequently in social 

sciences. Unfortunately, it is not easily detected from observational studies1. In the 

natural sciences, causality can be determined through controlled experiments, whereas 

controlled experiments are difficult to be carried out in social sciences. Experimental 

and observational studies have different statistical tools, which can be explained with 

various descriptive analyses. Therefore, one has to investigate the causal analysis for 

observational data. However, causal inferences are among the most challenging in 

observational data and have several issues. The first and the most critical point is that 

causality is not directly observable in the non-experimental data. Second, one cannot 

control fundamental confounding factors in observational data. Third, statistical 

relationship measures are symmetric and do not directly form causality. Hence, it is 

difficult for the researcher to differentiate between cause and effect.  

It is well-known that different causality methods and techniques are applicable 

in different scenarios. Therefore, it is necessary to determine which statistical 

technique/test gives us better statistical properties in a particular data set. Researchers 

have been applied various approaches to test causality, i.e., Regression discontinuity 

design (1960), Cross correlation-based methodology (1994), Difference in difference 

approach (2005), Granger causality test (1969), Error correction mechanism (1986), 

Toda and Yamamoto method (1995) for cross-sectional and time-series data. 

However,  Econometric analysis based on the regression as mentioned above 

methodologies rely on normality and linearity assumptions that are not supported by 

the data used in the research and may lead to unreliable results. Therefore, it becomes 

impossible to formulate policies based on the findings of the studies that follow 

conventional methods. 

                                                           
1 Observational study draws inferences from a sample to a population where the independent 

variable is not under the control of the researcher because of ethical concerns or logistical constraints. 
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Researchers working on causality have faced these difficulties and proposed 

different solutions to determine causality. The most commonly used technique to 

determine causation is a correlation. However, Correlation is very sensitive to data.  

Pierce and Haugh (1977) identify that causality cannot be conceptualized as an 

appropriate correlation measure; rather, it indicates empirical correlation. Later on, 

economists tried to differentiate causal relation from observed correlation with the 

evolution of econometrics. Furthermore, the researcher developed several methods to 

test causality according to the data type. 

One another exciting debate is made by Hume (1752) on causality, where he 

has explored the relation between prices and money. Another fascinating insight has 

been provided by Adam Smith, in which it has been demonstrated that the concept of 

causality occupies a central position in economics.  Moreover, economists like John 

Stuart Mill and Ricardo have discussed causality issues in literature. 

The primary objective of empirical research is the understanding of causal 

relations which present among a set of variables. It is generally considered that high 

correlation among variables does not create any causation; however, variables can be 

related to each other functionally. They may be correlated, but we cannot say they are 

causally related. Pierce and Haugh (1977) put the concept in this manner: “The 

former impact emerges because correlation is just a measure of linear relationship; 

the latter comes as a result of each's shared relationship with other components.” 

Wold (1954) explained that the necessity of causality as a concept is 

significant for all science subjects. Wold (1954) defined the concept of causality in 

terms of controlled experiments. He also described that the definition of causality 

appears to be very simple in experimental studies compared to observational studies. 

In contrast, it is difficult to conduct it in economics as economics is based on 

observational studies. Hence, he concluded that statistical methods might be valid in 

observational studies if subject matter theory is considered. 

Granger (1969) used a predictability test to approximate the concept of 

causality called Granger Causality (GC). Thus according to Granger’s definition of 

causality, “X Granger cause Y” when 𝑋𝑡−1 can predict 𝑌𝑡 . Zellner (1979) criticized 

the GC on many grounds, and the most important criticism was that this approach was 

atheoretical. The practical implementation of the Granger approach requires the 
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imposition of a lot of assumptions. He also claimed that if the assumptions imposed 

by the researcher are not valid theoretically, this approach will be discovered only 

accidental regularities.  

Economic theory is mainly concerned with causal relationships among social 

and other economic variables such as endowments, production of goods, how goods 

are consumed, how different entities accumulate over time, etc.  

The early 20th century reflected the improvement and the link between Causal 

inference and statistical tools, i.e., correlation and regression, have been observed. It 

was believed by the researchers that regression has a natural direction, unlike 

correlation. Likewise, the coefficient estimates from the regressions and the inverse 

regressions may not be the same. Therefore, it can be said the direction of regression 

must be according to the principle of causation. (Hoover, 2001) 

The data does not reveal the correctness of direction as each direction is 

similar observationally, even though a regression has a natural approach. The 

researchers mainly considered issues of simultaneity and problem of identification 

later on. Cowles Commission identified the solution to these problems2 , and the issue 

of causality was set to the side. Later, in the second part of the twentieth century, two 

major approaches3 to causality were developed. (Asghar, 2008) 

There are four major approaches to addressing the issues of causality in 

economics. First, Suppes (1970) developed the probabilistic approach to causality. 

The second approach was developed by Granger (1969), who gave one of the most 

profound definitions of causality, which depends on statistical grounds in a time-

series format. And the third approach here is called Structural Causality, proposed by 

Hendry and Mizon (1998), which reveals causality cannot be detected from observed 

data without structural change. Lastly, Pearl (2000) considered the work of Simon and 

Shemin's (1953) Structural Equation Model (SEM) as a significant contribution to the 

field of econometrics. However, causality in SEM is also considered to be 

controversial. SEM is based on correlation, and it shows an association, not causation. 

Therefore, empirical researchers in this field might be confused about the direction of 

causation among the variables under consideration. Theorists like Spirtes et al. (2000), 

                                                           
2 Simon (1953) 
3 One approach by Herman Wold and the other by Herbert Simon 
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and Pearl (2000)offered solutions for the problems of SEM that enhanced 

development in this area through the graphical models. 

The concept of Causality is fundamental but, unfortunately, cannot be detected 

easily. Therefore, the exploration of data intensively is essential for detecting 

causality. 

According to the approaches mentioned above, the association between two 

variables exists due to the other confounding variables in some cases. Therefore, 

researchers were not able to identify which method should be preferred for testing 

causality in the presence of confounding variables. Such causality tests could not 

detect a causal relationship without taking all the confounders under control. 

However, these can be only controlled in experimental, unlike observational studies. 

The causation must be supported by theory as compared to statistical techniques.  

Freedman et al. (1995) found that to develop causal inference, one needs to 

engage critically and develop different skills. Natural variations must be recognized in 

this manner, and data must be gathered. In addition, cofounders must be considered, 

and other hypotheses must be investigated before concluding. Finally, to find 

supporting evidence, theory must be consulted to identify true causes rather than 

focusing only on statistical analysis. 

We have various data sets like cross-sectional data covering causality 

methods, i.e., Regression discontinuity design (RDD), Difference in difference 

approach (DID), and Cross correlation-based methodology. The second type of data 

set is the time series which applied methodologies like GC test, Sims test, Final 

prediction error method, Error correction mechanism, Toda and Yamamoto method, 

and Structural Causality test to examine this issue. Cross-sectional and time-series 

both are restricted cases of Panel data. Both techniques can be applied for this, and 

many methods are designed to handle cross-sectional and time-series simultaneously. 

However, there is a lack of literature regarding comparative analysis for each kind of 

data that can help choose the appropriate testing methodology. The specific purpose 

of this current study is to compare causality tests for each kind of data set using 

Monte Carlo simulation.  

The Mediation models are particularly efficient at demonstrating how one 

variable (usually, X) influences another variable (Y) through its impact on an 
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intermediate variable (M). Therefore, researchers that seek to investigate the causal 

links between variables might use such models. However, statistical findings for any 

causal model are insufficient to establish causation after applying the mediation 

model. Furthermore, in addition to the statistical findings, Selig and Preacher (2009) 

conceptual model require theory and evidence. 

Some causality techniques are sensitive to distributional assumptions and 

specification issues. Therefore, this study also aims to test the robustness of causality 

tests to specification and distributional issues. 

Noticeably over the last few decades, massive developments in computational 

power have allowed feasible and flexible computational approach that was not 

imagined originally. Therefore, it allowed researchers to apply concepts extensively, 

even more than Lehmann believed. Interestingly, Zaman (1996) used this 

methodology to reflect that the famous Durbin-Watson test conducted for 

autoregressive errors in the regression model was poorly compared to specific 

alternatives. Similarly, Khan et al. (2016) have utilized the approach to compare 

normality tests to come up with definitive recommendations. This concept reflected 

what to focus on while running any tests as contrasted to Lehmann’s ideology that 

tells us that problem is not fully identifiable and solution-oriented; there are always 

some issues left unresolved. However, it is significant to highlight that Stringency 

provides the formulation of the problem and tells us what to expect and look for in a 

good test. Although sometimes, an accurate assessment of stringencies is not possible, 

many strategies can be used to provide an approximation to this particular number 

that will help us calculate a single performance measure for all tests. (Rehman et al., 

2017) 

1.2. Problem Statement 

As a matter of fact, different causality methods and techniques are applicable 

in different econometric scenarios. That is why the choice of the causality method is 

of prime importance to get reliable econometric estimates. Researchers have been 

applying various approaches to test causality, i.e., Regression discontinuity design 

(1960), Cross correlation-based methodology (1994), Difference in difference 

approach (2005), Granger causality test (1969), Error correction mechanism (1986), 

Toda and Yamamoto method (1995) for cross-sectional and time-series data. 
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However, Econometric analysis based on the regression as mentioned above 

methodologies rely on normality and linearity assumptions that are not supported by 

the data used in the research and may lead to unreliable results.  

Therefore, it becomes impossible to formulate policies based on the findings 

of the studies that follow conventional methods. In the literature, no study provides a 

detailed comparison of causality methods and tests for panel data that can help choose 

an appropriate testing methodology. Hence, exploring which conventional causality 

method is more appropriate to find out the true causal relationship. This necessitates a 

comparison of available causality methods to identify the robustness of various 

techniques under varying econometric scenarios. 

1.3. Objectives of the Study 

The key objective of the current study is to analyze the effective functional 

comparison of all the causality methods regarding the type of data, i.e., time-series 

data, cross-section data, and panel data. Furthermore, this study will show which 

methodology detects true causal relation by employing the appropriate method for 

specific data types. 

Based on the motivation laid down in the previous section, the following are 

the objectives of the present research: 

1. To theoretically review all the conventional causality methods and tests. It 

provides a comprehensive literature survey of all traditional causality methods 

and tests for all forms of data, including time series, cross-sectional, and panel 

data. In addition, there is a brief explanation of the notions and terminologies 

of all causality tests, which can be utilized in testing and simulations. 

2. To modify the time series causality tests such as Sims (1972) and Hsiao's Final 

prediction error method for the panel data set.  

3. To evaluate the performance of panel causality methods and tests based on 

size and power analysis for different model specifications using Monte Carlo 

Simulations. 

4. To test the robustness of causality tests to specification and distributional 

issues. 
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5. To examine the appropriate causal methods and tests by using real panel data 

application. “Analysis of the Causality between Intensity of Government 

spending and the Intensity of Household spending on Education with the Role 

of Credit Constraints: Panel Data”. 

1.4. Significance of the Study 

For causal inference, it is significant to know that Panel data allows both 

opportunities and challenges for the researchers. Panel data has the most significant 

substantial benefit over cross-sectional data in evaluating unobserved time-invariant 

factors. Whereas, the main issue with panel data is the likely serial correlations that 

might come in the form of errors for every individual. On the other hand, the present 

study attempts to provide models and methods for analyzing panel data, focusing on 

examining how different models and methods handle causality issues. First, by 

combining cross-section and time-series data, many observations may be represented 

while maintaining a high degree of freedom and the decreasing possibility of 

significant linear association between explanatory factors.  

Secondly, Panel data can evaluate effects that are difficult to notice in time 

series data and cross-sections. Thirdly, establishing and examining highly complex 

behavioural models is preferred (Baltagi, 2008). These reasons open space for the 

research needed in this domain, allowing us to explore and evaluate comparative 

studies on different causality methods. 

We have found no comprehensive comparison of different causality methods 

in the literature.  As it is known that different causality techniques are applicable in 

different scenarios. Therefore, it is necessary to determine which statistical 

technique/test gives us better statistical properties in a particular scenario. 

Econometric analyses like the error-correction model by Phillips (1986), 

cointegration, and SIM test, GC tests are applied to examine this issue. However, 

these existing regression methodologies rely on normality and linearity assumptions 

not supported by the data used in the analysis and may lead to unreliable results. 

Therefore, these techniques sometimes may not be able to provide proper/true results. 

Consequently, it becomes impossible to formulate policies based on the findings of 

the studies that follow conventional methods. Hence, exploring which traditional 
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causality method is more appropriate to find out the true causal relationship is 

required.  

In the current research, longitudinal data are chosen for evaluating mediation 

hypotheses for two significant reasons. Firstly, the high quality of the findings 

obtained after employing a mediation model with cross-sectional data enables 

evaluating mediation in any field. However, there are several fundamental issues with 

using conventional mediation models on cross-sectional data. For instance, outline 

three such cases. (Gollob & Reichardt, 1987) 

The central problem is the duration of time that requires understanding the 

causal relationships while using mediation models. We do receive instantaneous 

effects through cross-sectional use, but logically, it is a problematic assumption. The 

second main issue is that when we remove predictors from the conclusion, it can be 

resulted in promoting errors as variables measured at different instances are not 

controlled. This further results in either making paths over or underestimated 

compared to their original values. Thirdly, because effects only emerge with time, the 

amount of a causal impact should not be expected to be constant across all possible 

intervals. (Cheong et al., 2003) 

Furthermore, the impact size is unaffected by the time interval between the 

observations. In contrast, Cole and Maxwell (2003) argued that utilizing cross-

sectional data for model mediation might be an evident source of systematic bias.  

This research proposes that the use of “stringency” can be used as a Gold 

Standard for evaluating and examining the relative performance of tests. In the case of 

the one-dimensional parameter, it is easy to assess hypotheses for testing diverse 

problems. Moreover, it implies that we do not need an alternative hypothesis before 

conducting a test.  The reason is that we do not have any set standard method of 

devising comparisons between different hypotheses. 

1.5. Contribution of the Study 

We have found no study in the existing literature that provides a detailed 

literature review comparing all causality methods for cross-section, time-series data, 

and panel data. A causal relationship can be checked for different kinds of data. It is 

considered that a comparison of conventional methods of testing causal relationships 
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used to detect causality will provide whether these methods detect the true causal 

relationship.  

Cross-sectional and time-series both are restricted cases of Panel data. Both 

techniques can be applied for this, and some methods are designed to handle cross-

sectional and time-series simultaneously. 

In order to make a comprehensive comparison among panel causality methods 

and tests, available causality tests are required to make a proper justification for 

identifying the best and worst performer tests. In view of existing literature for panel 

data, almost all panel data tests were first developed for a single cross-section with a 

time series structure and then expended for more than one cross-section. An average 

of all cross-sections is taken to create a panel data test. Keeping in view the same 

practice, this study has modified the Sim’s time series causality test and the final 

prediction error method of casualty for time series to panel counterparts to compare 

with the Granger non-causality test. The comparison between a limited number of 

tests indicates that researchers explore panel causality literature less after developing 

the Granger non-causality test. 

 Some causality techniques are sensitive to distributional assumptions and 

specification issues. This study also aims to test the robustness of causality tests to 

specification and distributional issues. It is significant to highlight the stringency of a 

test is the most defined shortcoming of a test; however, we only found rare 

applications in the present literature. A considerable gap in the literature tells us that 

the stringency concept is not researched in-depth, suggesting that most researchers do 

not understand the use of stringency as a source of finite sample performance. Hence, 

this particular research study is designed to explain the status of stringency in depth. 

1.6. Organization of the Study 

Chapter 2 is a quick overview of the theoretical and empirical econometrics 

literature that has been utilized to assess causality. It also provides a theoretical 

framework for determining the real causal relationship in econometrics literature. 

Chapter 3 presents a comprehensive literature survey of all traditional causality 

methods and tests for all forms of data, including time series, cross-sectional, and 

panel data. Chapter 4 discusses the research methodologies utilized for the empirical 

analysis of this study. The chapter is divided into the data generation process and 
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Monte Carlo simulations. It also defines concepts, terminologies, and several tests for 

causality to establish the causal pattern. 

In Chapter 5, the simulation results achieved by employing panel causality 

tests with heterogeneous panel DGP under various model specifications are briefly 

discussed. Based on Monte Carlo simulation findings, a size and power comparison is 

performed between the Granger non-causality test, Modified Sims test, and Modified 

Hsiao's Final prediction error technique. Chapter 6 is about the real data analysis 

using the appropriate causality tests and methods: "Analysis of the Causality between 

Intensity of Government spending and the Intensity of Household spending on 

Education and the Role of Credit Constraints: Panel Data”. Chapter 7 summarizes the 

conclusion from the simulation findings in Chapter 5. It also discusses the study's 

limitations and future research directions. 

  



11 
 

CHAPTER 2 

REVIEW OF LITERATURE ON CAUSALITY 

This chapter aims to review relevant literature associated with causality in the 

context of various economic problems. This chapter is divided into two sub-sections. 

Sub-section 2.1 discusses theoretical literature and sub-section 2.2 presents the 

empirical literature in the case of International and Pakistan studies. It also provides a 

theoretical framework for determining the real causal relationship in econometrics 

literature.  

2.1.  Review of Theoretical Literature 

Economists and econometricians have long studied the question of causal laws 

and causality. The critical issue is establishing a causal relationship between a result 

and circumstances that may have influenced it. For example, GC test and Sims test 

(SIM test) (1969; 1972) causality in time series is based on the idea that cause must 

follow effect and that factor cannot cause another factor if it does not add to the 

expectation or conditional distribution of the element provided in the past. This is one 

of the most popular macro-econometric modeling and time-series concepts. It also 

plays an essential role in the concepts of exogeneity developed by Engle et al. (1983). 

For multiple time series, linear dependency and feedback measures have been 

established by Geweke (1982). The measure of linear dependence is the sum of the 

portion of linear feedback from the first series to the second, linear feedback from the 

second to the first and instantaneous linear feedback. The measures are nonnegative 

and reach zero only when the relevant type of feedback (causality) is absent. The 

frequency can be used to decompose the measures of linear feedback from one series 

to another. A simple theory of inference is provided for all of these measures and their 

decompositions; the calculations required are modest. 

  The current literature describes causal impacts by comparing possible 

outcomes on the same unit and evaluating simultaneously but exposed to various 

treatments. Later, one of these two possible outcomes may be observed, and the 

causal impact is effectively treated as an inference issue with incomplete data. That is 

why; causality is a central question but cannot be detected easily.  
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Hoover (2001) stated that the need of identifying causal relationships among 

economic variables is the relevant justification for policymaking. The famous theorist 

Hume (1752) discussed the concept of causality as a philosophical phenomenon. He 

defines a cause as one item that is followed by another, and all subsequent items 

identical to the first are followed by objects similar to the second. In other words, if 

the first thing did not exist, the second would not have been. Moreover, Hume 

suggested that causal events might be reduced to non-causal occurrences 

ontologically. Direct causal relationships, on the other hand, are not visible. 

(Demiralp & Hoover, 2003) 

  However, they can be traced down through constant conjunctions and the 

structure of general laws. There is no doubt that inquiries of causality are a central 

part of understanding economic theory. The problem lies in evaluating the economic 

measurement of the issues. Haavelmo (1944) developed the structural equation 

models and other Cowles Commission, econometricians. They focused on how to 

hypothesize causal relationships. However, the explicit causal interpretations are not 

considered anymore. These models are often interpreted as reduced representations of 

joint probability distribution (Pearl, 2000). The empirical malfunction and 

incapability of such structural models promoted space for multivariate time series 

methods which do not rely on clear causal interpretation (Heckman, 2000). 

In order to identify and evaluate significant counterfactual questions, there is 

ultimate demand to understand the concept of causal relations so that we can 

manipulate the effect of one variable on another to prove our stance (Cartwright, 

2003). 

One of the massive and complex problems faced most of the time by the 

Econometricians’ is their reluctant tendency to exposit clear and robust conclusions 

only because of the limitation of using observational data. Mill (1884) believed that 

one could not derive results about causal relationships by using observational data. 

The problem is heightened because researchers are oriented to focus on the Auxiliary 

hypotheses most of the time. In contrast, the original problem lies in assessing and 

questioning the limitations of the theoretical underpinnings, which are blindly 

followed (Blaug & Mark, 1992). In other words, it can be said that either we verify 
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the existing theories or confirm some already found conclusions of the theorists in the 

past. 

 Reichenbach (1956) found that in the case of using random variables, there 

are explicit causal inferences that can be traced down through statistical data. 

Moreover, Hausman (1983) elaborated that causal inference in such scenarios 

becomes feasible. However, there has been another method suggested in the literature 

about using some algorithms for conducting such inferences. (Glymour and Cooper 

(1999); Spirtes et al. (2000); and Pearl (2000). It is worth highlighting here that we 

often see literature related to causality primarily focused on a causal relationship. The 

manipulation concept is present between two variables, ‘A’ and ‘B’, and there is no 

focus on statistical analysis or prediction (Pearl, 2000); page 85 and Woodward 

(2003), chapter 2. 

Various theorists study the use of causal inference methods. Swanson and 

Granger (1997), Hoover-Dempsey et al. (2005), and Demiralp and Hoover (2003), 

proposed that to deduce contemporaneous causal relations among variables during 

vector autoregressions, we need to use causal inference algorithms. Kirmizi-Alsan et 

al. (2006) formulated a bootstrap method to evaluate the confidence employed in such 

results.  

In the present scenario, one of the most controversial topics is determining 

how to characterize the nature of the link between various factors, such as export and 

economic growth, money and economic growth, and so on. The focus of research is to 

identify whether these variables or vice versa determine economic performance.  

Algorithms of causal inference are designed to be readily adopted in data 

mining and machine learning setup. First, these algorithms use the values of several 

variables that can have an association in some aspect and then make inferences about 

their supposed relationship. This is a sequential procedure and is frequently followed 

to test the conditional dependence of variables. Since this methodology is a multi-

layered process, it is criticized for its high probability of errors that may not be 

quantified in advance. Evidence for a high unknown probability of error in this 

approach is observed in several empirical investigations. These experiments have 

used different data sets and different variables but have observed the same fragility 

and inverse causal relationships. Monte Carlo simulation studies (Demiralp and 
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Hoover, 2003) suggest that the probability of having errors is unknown because it 

varies with types of data sets and choice of parameters. (Bryant et al., 2009) 

2.2. Review of Empirical Studies  

Bayramoğlu and Öztürk (2018) employed the panel causality approach to 

investigate the twin and triple deficit hypotheses for the economies of 15 developing 

countries, discovering a relationship between domestic saving, budget deficit/surplus, 

current account deficit, and fixed investments. The technique Dumitrescu and Hurlin 

(2012) panel causality approach was employed between 2000 and 2015. The results 

revealed that, from the public budget balance to the current account balance, there is a 

one-way causation connection. And, for the national group studied, the notion of twin 

deficits is correct. 

An and Winship (2017) examined causal inference in panel data to assess 

Race of Interviewer Effects (ROIE) in a general social survey. This study examined 

advanced parametric methods and non-parametric matching models from 2006 to 

2010 of the General Social Survey. In order to estimate the causal impacts in panel 

data, presented seven methods which could be divided into two sections. The first 

section is included six parametric models, the fixed-effect model, the first difference 

model, AR model, MA model, the Random effect model, and the Random Trend and 

Slope (RTS) model. The other section is contained a nonparametric approach, i.e., 

Difference-in-Difference estimator for causal inference in panel data. These methods 

have offered different advantages for estimating causal inference and also suggested 

both models cross-validate the evidence. The researchers found a statistically 

insignificant result that ROIE fluctuates by using different interview methods. 

Further, this study concluded matching method offered a good covariate provision and 

an additional concentrated causal implication through DID as a remedy to eliminate 

the impact of unnoticed time-invariant issues.  

Attiaoui et al. (2017) researched the causality connections among economic 

growth (GDP), renewable energy consumption (REC), non-renewable energy 

consumption (NREC), and CO2 emissions (CE)  in Africa. The sample panel data was 

used between 1990 and 2011 for 22 African countries. The methodology employed 

the Autoregressive distributed lag model established on the pooled mean group 

estimation (ARDL-PMG) and GC tests (1969). The findings of this research revealed 
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one-way causality from CO2 emissions to economic growth in the short run, and in 

the short run, the causal path between CE and REC is not determined. Further, they 

found one-way short-term causality from renewable energy consumption to economic 

growth. While evaluating per pair of variables, bidirectional causalities between REC, 

GDP, and CE were found in the short run and bidirectional long-term causalities, 

favouring the feedback hypothesis.  In this panel, research causality is not strong from 

GDP to REC. 

Chang et al. (2017) conducted a study from 1870 to 2013 on the relationship 

between quality of living growth and population growth in 21 nations. The 

methodology employed was the bootstrap causality test for the panel offered by 

Kónya (2006), which deals with both dependence and heterogeneity crosswise 

countries. This test determines the causative factors that influence population and 

living standard growth. 

Bayraktar-Sağlam (2016), analyzed economic growth and the phases of human 

capital. The causal direction matter for poor and rich using panel data was identified 

from 1970 to 2010 for the 90 countries. For this objective, the panel vector VAR 

approach under the system GMM method has been employed. For further analysis, 

the physical capital accumulation has been included to remove the problem of omitted 

variable bias. This paper revealed that tertiary and secondary education had 

determined power for economic growth, but economic growth didn’t determine 

human capital accumulation in developing countries. However, in the OECD 

countries, results showed tertiary education i.e., mean of technological progress, 

stimulated economic growth.  

Bedir and Yilmaz (2016) investigated the causal link between the human 

development index and CO2 emissions in Organization for Economic Cooperation 

and Development (OECD) nations from 1992 to 2011.  A new technique of panel data 

established by Kónya (2006), which is founded on a seemingly unrelated regression 

(SUR) model projected by Zellner (1979) and The Wald test, was used, using 

country-specific bootstrap critical values. Moreover, three approaches have been 

employed to find the causal direction for longitudinal data: the GMM (generalized 

method of moments) approach. Hurlin and Dumitrescu (2008) proposed an additional 

method that reduced heterogeneity but not cross-sectional dependence. Kónya (2006) 
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developed a method to cope with cross-sectional dependence and panel data 

heterogeneity (Kar et al., 2011). The findings of this paper implied that protection 

policies regarding oil consumption, coal gas, and electricity could decrease CO2 

emissions and hinder human living standards and economic growth. 

The research was carried out to examine the causal link between smoking and 

happiness for the five developed nations (i.e. Germany, Japan, France, the US, and the 

UK) from 1961 to 2003. For this analysis, the methodology used was the recently 

established panel causality bootstrap test suggested by Konya in 2006. This bootstrap 

panel causality method is more vigorous than other methods because of the country-

specific cohort of critical values. The main findings of this study indicated a 

bidirectional relation for both France and Japan; independence for the other three 

nations. Further concluded that people were happier while they smoked. (Chang et al., 

2016) 

Zhang et al. (2011), investigated three industries in Beijing from 1980 to 2008, 

and the causal link between energy use and economic development was studied. They 

used the most recently created panel unit root, heterogeneous panel cointegration, and 

Panel based error correction model to accomplish this. This study concluded that in 

the short run, two-way Granger causation exists, but in the long run, one-way GC 

exists, with energy consumption leading to economic growth. 

2.3 The Gap in the Literature 

In the literature, no study provides a detailed comparison of causality methods 

and tests for panel data that can help choose an appropriate testing methodology. A 

causal relationship can be checked for different kinds of data. It is considered that a 

comparison of conventional methods of testing causal relationships used to detect 

causality will provide whether these methods detect the true causal relationship. 

Therefore, this is the literature gap to evaluate the performance of the causality testing 

methods for panel data based on Monte Carlo Simulation Design. 
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CHAPTER 3 

LITERATURE SURVEY ON TESTING CAUSALITY METHODS  

Researches validate that economist tried to determine the causal relationship 

among economic variables by measuring its correlation. Initially, Pierce and Haugh 

(1977) identify that correlation cannot be regarded as an appropriate measure of 

causality; rather, it indicates empirical correlation. Later on, researchers started trying 

to differentiate causal relation from empirical correlation. However, it is well-known 

fact that finding a high correlation among variables does not indicate causality. 

Moreover, researchers developed several methods to test causality according to the 

kind of data in recent literature. 

3.1. Causality Methods in Time Series 

One of the major contributions of Granger (1969) was the formulation of GC 

test which wholly transformed the process of evaluating relationships among 

variables. Through advanced research using this test over time different dimensions of 

variables were explored and new techniques were devised. In the following 

paragraphs, different methodologies have been discussed that were formed out of 

Granger's Causality test. (Asghar and Abid 2007)  

3.1.1. Granger Causality test (1969) 

The Granger Causality (GC) test is done, in the existence of lagged values 

of   𝑌𝑡, regress the present value of the time series 𝑌𝑡  against the previous values of 

the time series 𝑋𝑡 (Granger, 1969). Let us now assume a specific autoregressive with 

lag length k and estimate the following unconstrained equation using ordinary least 

squares (OLS); 

𝑌𝑡 = 𝛼0 + ∑ 𝛼𝑖𝑌𝑡−𝑖
𝑘
𝑖=1 + ∑ 𝛽𝑖𝑋𝑡−𝑗

𝑗
𝑗=1 + 𝜇𝑡    (3.1) 

𝐻0𝑎: 𝛽1 = 𝛽2 = .   .  . =  𝛽𝑘 = 0                        (3.2) 

Conduct an F-test to examine the null hypothesis and determine if the coefficients 

related with the X’s are jointly statistically significant. Run the following equation 

now: 
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𝐹 =
(𝑆𝑆𝑅𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑−𝑆𝑆𝑅𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑)∕𝑘

𝑆𝑆𝑅𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑∕(𝑇−2𝑘−1)
 ∼ 𝐹𝑘,   𝑇−2𝑘−1(3.3) 

If the F- statistic is larger than the critical value, reject  𝐻0  that X does not 

Granger-cause Y, and instead accept the alternative hypothesis that X does Granger-

cause Y. Likewise, after regressing X on its past values and past values of Y, i.e. 

𝑋𝑡 = 𝛼0 + ∑ 𝛼𝑖
𝑘
𝑖=1 𝑌𝑡−𝑖 + ∑ 𝛽𝑗

𝑘
𝑗=1 𝑋𝑡−𝑗 + 휀𝑡  (3.4) 

𝐻0𝑏: 𝛼1 = 𝛼2 = . . . =  𝛼𝑘 = 0 

Conduct an F-test to examine the null hypothesis and determine if the 

coefficients related with the Y’s are jointly statistically significant. Run the following 

restricted equation using OLS; 

𝑋𝑡 = 𝛼0 + ∑ 𝛼𝑖
𝑘
𝑖=1 𝑋𝑡−𝑖 + 𝜇𝑡                         (3.5) 

 

Now, applying the F-statistic of Eq. (3.3), compared their respective sum of 

squared of residuals from Eq. (3.4) and Eq. (3.5), and get the following four potential 

cases: (i) there is a one-way causation from ‘Y’ to ‘X’ if 𝐻0𝑎 is accepted and 𝐻0𝑏is 

denied. (ii) There is a one-way causation from ‘X’ to ‘Y’ if  𝐻0𝑎 is rejected and 𝐻0𝑏 is 

accepted. (iii) If both 𝐻0𝑎 and 𝐻0𝑏are denied then there occurs feedback causality 

among ‘X’ and ‘Y’. (iv) If both 𝐻0𝑎 and 𝐻0𝑏are accepted then it means there is no 

causation among ‘X’ and ‘Y’.  

This is necessary to highlight here that GC test (1969) assumed that the 

variables are stationary ‘X’ and ‘Y’ and 𝜇𝑡, 휀𝑡 are uncorrelated. So as a matter of fact, 

in the above-mentioned equations, assumed that the variables are integrated of order 

zero at level and  𝜇𝑡, 휀𝑡 are uncorrelated. The lag length in the above-mentioned 

equations can be choose while residuals are white noise. However, if the variables are 

stationary at first difference, and then first to do differencing of the variables. Use the 

first differences of variables in the multivariate scenario, and if they are stationary at 

first difference, then apply the following equations to verify causality among three 

variables. 

∆𝑌𝑡 = 𝛼 + 𝑙𝑎𝑔𝑔𝑒𝑑 (∆𝑌𝑡, ∆𝑋𝑡, ∆𝑍𝑡) + 휀𝑡             (3.6) 

∆𝑋𝑡 = 𝛼 + 𝑙𝑎𝑔𝑔𝑒𝑑 (∆𝑌𝑡, ∆𝑋𝑡, ∆𝑍𝑡) + 휀𝑡             (3.7) 

∆𝑍𝑡 = 𝛼 + 𝑙𝑎𝑔𝑔𝑒𝑑 (∆𝑌𝑡, ∆𝑋𝑡, ∆𝑍𝑡) + 휀𝑡              (3.8) 
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In the above equations, ‘Δ’ known as the first difference operator expressed 

as ∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1. Now, in the above three equations, we must test the related null 

hypothesis by assuming that “휀𝑡” is a white noise procedure. Moreover, it is claimed 

that real causative processes are removed by using the first difference of variables. So, 

the GC test (1969) stated that the aforementioned conclusions are not effective in such 

circumstances. That means that it is recommended to use the Error Correction 

Mechanism (Phillips 1986) or Toda and Yamamoto (1995) under such situations.  

GC test (1969) assumed that all variables are stationary at the level and one 

variable is regressed on its lags, plus lags of another explanatory variable, then the 

error term to be white noise. Contrary to this, if the variable is non-stationary at level, 

then we will have to take appropriate differencing to make it stationary. Thus, the 

transformation will decrease GC's importance and create the following issues. Firstly, 

by transforming the variable the functional form of the variable will get change. 

Secondly, F-statistic is used to test the GC among variables in order to confirm 

whether the variable is stationary or non-stationary. However, Ender (1995) believed 

that F-statistics results do not reflect consistency across the stationary and non-

stationary processes. Finally, we have witnessed that the results of GC are seen to be 

sensitive to minor changes in the specifications. For instance, they are sensitive to 

sample size, base year, lag length variable transformation, and tests used for model 

selection criteria. (Asghar and Abid 2007) Hence, through discussion, we have 

witnessed that the GC test (1969) is not appropriate to test the causality of time series. 

Therefore, we need to find other avenues. 

3.1.2. Sims Test (1972) 

In GC test (1969), explored that often one variable is regressed on its lags and 

the lags of another explanatory variable. But it is important to note that it does not 

include lead values of the explanatory variable during the process. The problem is 

confronted by Sims (1972) in which he argued that if one variable is regressed on its 

lags then the leading values of the explanatory variable will result in causality run 

from explanatory to regressed variable and also all the leading values of regressor in 

the regression will not become statistically significant and different from zero as a 

group.  Henceforth, Sims demonstrated that “future cannot cause current or past” 

(Sims 1972).  
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Moreover, it assumes that the error term white-noise and variables must be 

integrated of order zero at level. However, one variable is non-stationary at level but 

become stationary at first difference, then in that case variable at first difference 

should be used preferably (Sims 1972). 

In such scenarios, we see causality as capable of formulating a relationship between 

lagged and lead among various kinds of economic variables. But according to the 

Sims (1972), when we regressed Y variable on the lags and the lead values of X 

variable. Then If X Causes Y, we argue that the coefficients of X's lead values are 

thus equal to zero. 

Thus, the application of the Sims (1972) will demand an equation for testing 

regression X to Y; 

𝑌𝑡 = 𝛼0 + ∑ 𝛼1𝑖
𝑚
𝑖=1 𝑋𝑡−𝑖 + ∑ 𝑏𝑗

𝑛
𝑗=1 𝑋𝑡+𝑗 + 𝜈1𝑡        (3.9) 

Here tested the following null hypothesis by using the F-test (eq.3.3): 

𝐻0: 𝑏11 = 𝑏12 = .   .  . =  𝑏1𝑛 = 0 

Now, If 𝐻0is accepted then we will say X cause Y; otherwise, we will say that X does 

not Granger cause Y. Likewise, to assess causality from Y to X, we have to apply the 

following equation: 

𝑋𝑡 = 𝛼1 + ∑ 𝛼2𝑖
𝑚
𝑖=1 𝑌𝑡−𝑖 + ∑ 𝑏2𝑗

𝑛
𝑗=1 𝑌𝑡+𝑗 + 𝜈2𝑡        (3.10) 

And for the process of conducting a test for the null hypothesis; we will use the 

following equation: 

𝐻0: 𝑏21 = 𝑏22 = .   .  . =  𝑏2𝑛 = 0                              (3.11) 

What is quite significant here is to highlight the limitations of the Sims test 

(1972). The critical problem is the occurrence of autocorrelation among residuals 

which, according to Sims, can be handled if we use the filter (1 − 0.75𝐿)2 where ‘L’ 

is called a lag operator. But then another serious issue arises: What would be the 

impact on all series if it became stationary after using this filter? 

For economists, one of the serious problems in using the Sims (1972) test and 

Granger Causality test (1969) is how to deal with non-stationary.  

3.1.3. Final Prediction Error (FPE) Method (Hsiao 1981)     

Hsiao introduced one of the relevant and intelligent compositions to handle the 

limitations of the Grangers Causality test. Hsiao (1981) merged GC test with Akaike 
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Final Prediction Error (FPE) criterion. The first step of the process involved the use of 

the regressed variable by way of a one-dimensional autoregressive procedure. After it 

regresses a variable only on its lagged then it is capable to calculate the FPE.  

In the second step of the process, regress a variable on its lag, plus lags of 

explanatory variable, and then calculate its FPE. Now, find out that the FPE of the 

second step is far less than the first step FPE then this will conclude that the causal 

relationship exists from the explanatory variable to the explained variable under such 

scenario.  

The procedure can repeat the same process to examine the GC (1969) among 

three variables. It is significant to highlight here that both assumptions and 

methodology will be similar to that of Sims test (1972). However, the results reflect 

that FPE will minimize the mean square prediction error, further decreasing the 

uncertainty at the significance level while using the optimality criterion. Furthermore, 

Hsiao believed that additional variables are substantially allowed in this method 

(Hsiao 1981). 

Now represent the Hsiao method in the form of the equations. As we can see 

that in the first step, we have to estimate the following autoregressive equation having 

this particular form: 

𝑌𝑡 = 𝛼0 +∑𝛼1𝑖

𝑚

𝑖=1

𝑌𝑡−𝑖 + 𝜈1𝑡     (3.12) 

Now here selected “m” to the greatest extent possible. The FPE was then calculated in 

the following manner for each regression; 

𝐹𝑃𝐸(𝑚) =
𝑇 +𝑚 + 1

𝑇 −𝑚 − 1
𝑄(𝑚) 𝑇⁄      (3.13) 

In the above equation, we have ‘T’, the number of observations utilized, m' is 

the lag order ranging from 1 to m, and Q (m) is the related sum of squared residuals. 

Assume that the precise value of m, say 𝑚∗,  is the optimal lag length which results in 

the lowest FPE. 

Now in the second stage, treat ‘Y’ as the regressed variable with the optimal 

lag order set at 𝑚∗ and ‘X’ is regarded here as an regressor variable with the order of 

lags ranging from 1 to n. After it, have to run the regression of the following: 
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𝑌𝑡 = 𝛼1 +∑𝛼1𝑖

𝑚∗

𝑖=1

𝑌𝑡−𝑖 +∑𝑏1𝑗

𝑛

𝑗=1

𝑋𝑡−𝑗+ 𝜈2𝑡     (3.14) 

As we can see that the corresponding two-dimensional FPE will come out to be:  

𝐹𝑃𝐸(𝑚,𝑛) =
𝑇 +𝑚∗ + 𝑛 + 1

𝑇 −𝑚∗ − 𝑛 − 1
𝑄(𝑚, 𝑛) 𝑇⁄          (3.15) 

 

In the above equation, ‘n’ is the lag order of ‘X’.  We have witnessed here that 

once again, the optimal lag order of ‘n’ say "𝑛∗" is picked to reduce FPE (m, n).  

Hence, this procedure concludes here that X has Granger causality to Y only if FPE 

(𝑚∗, 𝑛∗)<FPE (𝑚∗). 

Furthermore, repeat the same process for the following regression lines if you 

want to run the GC test (1969) between three variables. 

 

Restricted equation                                            Unrestricted equation 

𝑌𝑡 = 𝛼1 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑌𝑡) + 𝜈2𝑡                            𝑌𝑡 = 𝛼1 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑍𝑡,𝑌𝑡) + 𝜈2𝑡     

(3.16) 

𝑌𝑡 = 𝛼1 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑌𝑡) + 𝜈2𝑡                            𝑌𝑡 = 𝛼1 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑋𝑡,𝑌𝑡) + 𝜈2𝑡     

(3.17) 

𝑍𝑡 = 𝛼2 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑍𝑡) + 𝜈3𝑡                           𝑍𝑡 = 𝛼2 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑍𝑡,𝑌𝑡) + 𝜈3𝑡     

(3.18) 

𝑍𝑡 = 𝛼3 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑍𝑡) + 𝜈4𝑡                           𝑍𝑡 = 𝛼3 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑍𝑡,, 𝑋𝑡) + 𝜈4𝑡   

(3.19) 

𝑋𝑡 = 𝛼4 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑋𝑡) + 𝜈5𝑡                           𝑋𝑡 = 𝛼4 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑍𝑡,, 𝑋𝑡) + 𝜈5𝑡   

(3.20) 

𝑋𝑡 = 𝛼5 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑋𝑡) + 𝜈6𝑡                           𝑋𝑡 = 𝛼5 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑌𝑡,, 𝑋𝑡) + 𝜈6𝑡    

(3.21) 

 

As we have written above estimated unrestricted and restricted equations, we 

found out that the associating minimum FPE for precise values of m and n are present, 

hence we can appeal conclusions. We have witnessed that in all of the above-

mentioned regressions, errors are white noise and all variables have been used 

stationary at their levels. 
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3.1.4. VAR Approach to Causality (1980) 

Sims (1980) was able to develop the VAR model out of reactionary attitude 

against the methodology of the Cowles Commission. There is no doubt in it that VAR 

is closely related to Granger analysis from the perspective of causal relations.  The 

technicality of using VAR is not much but the problem lies in applying it to the policy 

analysis scenarios. 

Let us begin using the SVAR model for the following form:  

Γ𝑌𝑡 = 𝐵(𝐿)𝑌𝑡−1 + 𝑒𝑡       (3.22) 

In the above equation,  𝑌𝑡−1 is 𝑛1
∗ is called the vector of contemporaneous 

variables, Γ and (𝐿) represent 𝑛∗𝑛 matrix and polynomial in the lag operator 

respectively. Also, note that 𝑒𝑡is 𝑛∗1 vector of uncorrelated disturbance as the 

covariance matrix Σ is diagonal which means that it contains zero elements. 

Furthermore, the matrix Γ defines the causal interrelationship among the 

contemporaneous variables. Therefore, the equation reflects that the system is 

identified provided that there are (𝑛−1)/2 zero restrictions on Γ.   

Now, by Multiplying Γ−1 on both sides of equation (3.22) yield reduce-form and 

VAR will come out to be:  

𝑌𝑡 = Γ
−1𝐵(𝐿)𝑌𝑡−1 + Γ

−1𝑒𝑡  

𝑌𝑡 = 𝛽
∗(𝐿)𝑌𝑡−1 + 𝜇𝑡              (3.23) 

Where 𝛽∗ (L) =Γ−1𝐵(𝐿), and 𝜇𝑡 = Γ−1𝑒𝑡 

From the above equation, we identified that the problem with VAR (equation 

3.23) is that covariance matrix Σ is not diagonal which means that it does not contain 

any zero elements; which automatically means that the error terms are correlated with 

each other. This also establishes the fact that the shock in one will become shocked 

for both. For this purpose, Sims (1980) came up with a solution that he called 

Cholesky decomposition. The basic purpose of Cholesky decomposition was to 

orthogonalize the shocks by providing the choice of recursive order (Bhattacharjee, 

Schwer et al. 2003). 

The exposition of this solution initiated a new debate. Some of the famous 

theorists including Leamer (1985), Cooley, and LeRoy (1985) condemned by saying 

that if we have to use recursive then only results will decide their functional usage in 

any scenario and that they called as Impulsive Response Function.  They provided 
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evidence for their stance by saying that any kind of meaningful economic 

interpretation will first definitely require the identification of Γ(1986).  

Sims accepted criticism (1982, 1986) and then he introduced SVAR that was 

identified only through the usage of the contemporaneous causal order. In this 

method, we can interpret the results of SVAR only after using the impulse response 

function. It is analyzed as if the impulse response function of one variable say “𝑥” to 

another variable “𝑦” comes out to be significant, then this implies that 𝑥 cause 𝑦. 

(Hoover, Demiralp et al. 2006) 

3.1.4.1. Identification Problem  

Now when we knew Γ matrix, then in this case we say that the identification 

problem is reduced and SVAR in equation (3.22) can be easily recovered from VAR 

but at the same time we can say that the covariance matrix is no more diagonal. In 

case, we don’t know the matrix, then we can impose restrictions on it so that we get 

identification. 

Now, let see if we have to achieve identification, first, we have to make the 

covariance matrixΩ = 𝐸(𝑃𝑖−1𝑈(𝑃𝑖−1)
′) of (equation (3.22)) diagonal through 

orthogonalizing the transformation. For instance, let us say that P = {Pi} is a set of 

orthogonalizing transformations. (Hoover, Demiralp et al. 2006) 

What is significant to highlight here is that the identification issue in SVAR is 

that if we do not have any information about matrix Γ, then selecting one 𝑃 from a set 

of 𝑛 that correspond to true data generating process: (Pi = Γ) will become quite 

complex. Therefore, to avoid this problem, we have to impose (𝑛−1)/2 restrictions on 

Pi.  

There are various ways of imposing restrictions in this particular scenario. One 

way is to only identify the problem by using Cholesky decomposition. Other ways 

include the Blanchard method and Single Cholesky Ordering. (Hoover, Demiralp et 

al. 2006) 

Furthermore, Hoover-Dempsey, Walker et al. (2005) justified his argument by 

saying that in the formal economic theory the identification of the causal order is 

obvious and that is why most of the researchers select the order arbitrarily just to get 

identified SVAR. But this approach can result in over-identified causal orderings for 
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which we have identification of Pi and that is more than 𝑛(𝑛−1)/2, which will further 

imply that there are zero restrictions that we can impose on Pi. This scenario will 

make it impossible to apply Cholesky decomposition.  

Hence, the solution to this problem was demanded which eventually leads to 

the development of the new method for selecting Pi Pearl (2000), Spirtes, Glymour et 

al. (2000) and Spirtes, Glymour et al. (1993), and this method is called an Error 

Correction Mechanism (Phillips 1986). 

3.1.5.  Error Correction Mechanism (1986) 

It is critical to realize that both the GC test (1969) and Sims (1972) do not 

include any error correction term in their methodology because it can lead to 

misleading results. Originally, Phillips introduced the error correction model (Phillips 

1986). The first step of this model identifies if the underlying variables are stationary 

or not. When we know that the variables are stationary, we can apply the GC test 

(1969). However, if they have a unit root problem, then to sort this problem out, we 

can apply Augmented Dickey-Fuller (ADF) test to make our variables stationary. This 

test helps in determining the order of integration of non-stationary variables and if we 

came to know that variables are stationary at the same order, only then we continue to 

carry out this test for cointegration (Phillips 1986).  

In order to carry out Co-integration analysis, it is preferred to use the Johansen 

method and Granger method. The reason is that when we see that the variables are 

found to be cointegrated with each other, then this means that the variables have a 

long-run association. And it called error correction mechanism (ECM).  

In ECM, the coefficient of the error term’s lagged value will define the 

significance of the long run relationship and the coefficients of the lagged 

independent variable that is capable of examining the short-run dynamics among the 

variables. 

For instance, if two variables have a long-run equilibrium relationship, we say 

that ECM is appropriate for them rather than using the simple Vector Autoregressive 

Model. (Imbens and Wooldridge 2009) 

The mechanism is followed in this way. The first step involves the 

identification of the state of variables. We can proceed only if the variables are 
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stationary. The second step involves the application of the Granger causality test. 

However, we must know that if the variables come out to be non-stationary, then we 

have to use Augmented-Dickey Fuller (ADF) test to decide the order of integration. 

Furthermore, if found out that variables are integrated at the similar order; then there 

continue to carry out the check of cointegration. Johansen method and the Granger 

method known as the most famous techniques for analysis of cointegration. 

(Bhattacharjee, Schwer et al. 2003) 

According to the researchers, it is believed that an additional channel of 

causality is exposed. Hence, we found that the significance of long run relationship is 

determined by the Coefficients of the lagged value of the error term and it is also 

found that the coefficients of the lagged independent variables measure only short run 

dynamics (Imbens and Wooldridge 2009). 

In the Granger theorem, if variables X and Y have a long-run relationship, we 

can say that the relationship among the two variables can be stated as ECM. Let's 

assume the two variables are exposed to be cointegrated; ECM should be used 

(Imbens and Wooldridge 2009). Let us consider an ECM model in three variables 

case:  

 

Δ𝑌𝑡 = 𝛼0 + 𝑏0𝜇𝑡−1 + ∑ 𝛿1𝑖Δ𝑌𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝜃1𝑗Δ𝑋𝑡−𝑗

𝑝
𝑗=1 +∑ 𝜆1𝑘Δ𝑍𝑡−𝑘 +𝑤1𝑡

𝑝
𝑘=1    (3.24) 

Δ𝑋𝑡 = 𝛼1 + 𝑏1𝜇𝑡−1 + ∑ 𝛿2𝑖Δ𝑌𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝜃2𝑗Δ𝑋𝑡−𝑗

𝑝
𝑗=1 +∑ 𝜆2𝑘Δ𝑍𝑡−𝑘 + 𝑤2𝑡

𝑝
𝑘=1    

(3.25) 

Δ𝑍𝑡 = 𝛼2 + 𝑏2𝜇𝑡−1 + ∑ 𝛿3𝑖Δ𝑌𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝜃3𝑗Δ𝑋𝑡−𝑗

𝑝
𝑗=1 +∑ 𝜆3𝑘Δ𝑍𝑡−𝑘 + 𝑤3𝑡

𝑝
𝑘=1     

(3.26) 

 

In the above equations, the first difference operator is “Δ”, expressed as Δ𝑌𝑡 =

𝑌𝑡 − 𝑌𝑡−1. And 𝜇𝑡 is expressed as ‘𝜇𝑡 = 𝑦𝑡 − 𝛼1𝑥𝑡 − 𝛽1𝑧𝑡 and it is presumed that the 

error-terms 𝑤1𝑡, 𝑤2𝑡, 𝑎𝑛𝑑 𝑤3𝑡 are white-noise. Now we can witness that two probable 

sources of causality may be found in the ECM above. 

Variations in 𝑋𝑡 are partly driven by 𝜇𝑡−1 and also lagged values of the two 

variables 𝑌𝑡 and 𝑍𝑡. For instance, in the equation (3.24) it leads to ‘X’ Granger 

causation ‘Y’ if b ≠ 0 or  𝜃11 = 𝜃12 = 𝜃1𝑝 ≠ 0.  



27 
 

Thus, we can also argue that using an F-test to examine the    𝐻0𝑎 that ‘X’ does 

not Granger causes ‘Y’ by equation (3.24)  is equal to using an F-test to check the 

hypothesis in the following manner;  

    𝐻0𝑎: 𝜃11 = 𝜃12 = 𝜃1𝑝 = 0 

After applying a t-test to examine the hypothesis:   𝐻0𝑏: 𝑏0 =  0 

Now, we see that If either of the null hypothesis 𝐻0𝑎or 𝐻0𝑏is denied, leads to 

‘X’ Granger causation ‘Y’. If both hypotheses are true in another scenario, we may 

conclude that ‘X’ does not cause ‘Y’. Noticeably, ECT ‘ 𝜇𝑡−1’ depicts the long-run 

effect of one variable on the other. In contrast, the short-run influence of one variable 

on another variable is quantified by utilizing the variable's lagged values. As a result, 

when variables have cointegration relationship, researchers show that we must prefer 

to apply ECM instead of just simple VAR model with first difference in order to 

evade deceptive results. (Imbens and Wooldridge 2009) 

3.1.6. Toda and Yamamoto method (1995) 

This method was proposed to estimate the VAR model expressed at levels and 

check some common conditions on the use of matrices’ parameter irrespective of fact 

that if the process is cointegrated or integrated of arbitrary order. (Toda and 

Yamamoto 1995) 

It must be understood that ECM and Granger methods are chosen based on 

prior information about the cointegration properties and about the integration of a 

series. Sometimes, there is no prior information about the variables have long-run 

relationship, (trend) stationary, or integrated, in most applications. Before estimating 

the VAR model generally required a pre-test for non-stationarity and cointegration in 

various economic time series, in which statistical inferences are formulated. 

What is interesting about Toda and Yamamoto (1995) method is that they 

employed extended Wald test for the need of constraints for the coefficients of the 

VAR (k) model wherein “k” is the lag order depicting of this particular method. Toda 

and Yamamoto (1995) validated that test is followed by an asymptotically chi-square 

distribution only if a VAR (k+dmax) model is assessed wherein dmax  the maximum 

order of integration is assumed to be part of this method.  
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In this scenario, the lag length is taken by applying AIC and SBC criterion. 

Moreover, we have to assume that error terms are white noise. Now, what is so 

different about this method is that the information of the integration properties is not a 

requisite here. The specialty of this test is that variables need not be stationary or 

having long-run equilibrium (Zapata and Rambaldi 1997). 

Let us reflect following the VAR (k+dmax) model for two variables 

circumstances: 

𝑌𝑡 = 𝛼0 +∑𝛿1𝑖𝑌𝑡−𝑖

𝑘

𝑖=1

+ ∑ 𝛼1𝑗𝑌𝑡−𝑗

𝑑𝑚𝑎𝑥

𝑗=𝑘+1

+∑𝜃1𝑗𝑋𝑡−𝑗

𝑘

𝑗=1

+ ∑ 𝛽1𝑗𝑋𝑡−𝑗

𝑑𝑚𝑎𝑥

𝑗=𝑘+1

+ 𝑤1𝑡  (3.27) 

𝑋𝑡 = 𝛼1 +∑𝛿2𝑖𝑌𝑡−𝑖

𝑘

𝑖=1

+ ∑ 𝛼2𝑗𝑌𝑡−𝑗

𝑑𝑚𝑎𝑥

𝑗=𝑘+1

+∑𝜃2𝑗𝑋𝑡−𝑗

𝑘

𝑗=1

+ ∑ 𝛽2𝑗𝑋𝑡−𝑗

𝑑𝑚𝑎𝑥

𝑗=𝑘+1

+ 𝑤2𝑡  (3.28) 

In above equation, the error terms 𝑤1𝑡  𝑎𝑛𝑑 𝑤2𝑡 are uncorrelated between 

equations and within equation, 𝑑𝑚𝑎𝑥 is the maximum order of integration. 

By applying AIC and SBC, the lag length in the above two equations can be 

determined. 

In the equation (3.27) ‘X’ granger causes ‘Y’, using modified Wald statistic, 

we can assess the following 𝐻0 in the equation (3.27 and 3.28): 

𝐻0 ∶  𝜃11 = 𝜃12 = ⋯ = 𝜃1𝑘 = 0  (𝑋 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝐺𝑟𝑎𝑛𝑔𝑒𝑟 𝑐𝑎𝑢𝑠𝑒 𝑌) 

𝐻0 ∶  𝛼11 = 𝛼12 = ⋯ = 𝛼1𝑘 = 0  (𝑌 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝐺𝑟𝑎𝑛𝑔𝑒𝑟 𝑐𝑎𝑢𝑠𝑒 𝑋) 

3.1.7. Structural Causality Test  

  The Structural Causality Test was introduced because the GC test (1969) 

could not represent one another aspect of Causality. This concept of causality is 

borrowed from Hendry and Mizon (1998), Simon and Shemin (1953), and Hoover 

(2001). The benefit of structural causality as compare to other methods, it includes all 

possible facts before getting of causal findings and not at all based on the Statistical 

methods. However, there is one obvious limitation: it cannot compute the magnitude 

of the impact of a casual variable on the dependent variable. And it cannot be allowed 

according to our limited understanding of the statistical methods. It further implies 

that correct causal relations can persist various kinds of structural variation.  
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Furthermore, this knowledge can be utilized to distinguish among models 

those are not in the period of structural change and those which are causally correct 

(Asghar and Abid 2007). This further means that in periods where we have no 

structural changes and stability, then in such situations models will perform well with 

incorrect causality (Simon 1953). 

Moreover, this method for investigating causality involves much more analysis in the 

fundamental economic mechanism not merely on the theoretical framework but it 

traces its roots in the historical perspective. (Asghar and Abid 2007) 

Now build on the foundation of the structural causality detection technique. 

Let (X, Y) be a sequence of observations with N (𝝁𝒕, Σ) as the i.i.d. distribution. There 

are three approaches to create a series of observations like this. 

The first method is elaborated as follows: 

Let (V, W) is i.i.d   𝑁 (0, 𝐼2). It is feasible to decompose as   Σ = UU, since Σ is 

a 2x2 positive definite matrix. The linear transformation may be used to create (X, Y) 

from (V, W): 

(
𝑋
𝑌
) = 𝜇 + 𝑈 (

𝑉
𝑊
) 

 

Then, according to the required distribution, X and Y will be jointly normal. It 

is observed that if this is the process of generating data worldwide, then we can say 

that hidden variables V and W jointly cause X and Y. Moreover, we may also say that 

neither variable causes the other.  

The second method is explained as follows: 

Generated X from its marginal distribution   𝑋~𝑁(𝜇𝑡, Σ11). Then, generated Y 

from its conditional     𝑌/𝑋~𝑁(𝜇2 + Σ21Σ22
−1(𝑋 − 𝜇1), Σ11 − Σ21Σ22

−1Σ21). It can be 

written in the regression model as follows: 

𝑌 = 𝛼 + 𝑏𝑌 + 휀      (3.29) 
 

In this case scenario, we may claim that X is the cause of Y in (X, Y), and that 

variations in X will induce changes in Y, but it is not the case the other way around as 

proved in the above equation. 

 

The third method can be described as follows: 
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Let's make Y and X from the marginal and conditional, respectively. In this case 

scenario, we say that Y is the cause of X.  

Henceforth, we witnessed that all three techniques provide data with the same 

distribution, observationally identical. This is the apparent reason for the complexity 

of evaluating causality from observational data. Let us suppose for some reasons like 

structural change that takes place, which further results in varying the marginal 

distribution of X's mean and variance. We can see that all three models will now act 

in distinct ways in such scenarios. 

For instance, the mean and variance of X have changed in the first model, the 

relationship between X and (V, W) must fluctuate. As a result, the equation 

X=U11V+ U12W affects the parameters U11 and U12. Similarly, the parameters of 

the X distribution will vary in the second model, but the regression model will remain 

unchanged, implying that the conditional distribution of Y is given X. 

Moreover, we must first assume that the structural change does not affect the marginal 

distribution of Y in the third model. 

𝑋 = 𝑐 + 𝑑𝑌 + 𝜛             (3.30) 

As a result, we can observe that a type relationship cannot remain constant 

since it must alter to match the change in X's distribution. 

Resultantly, the structural change in this association will be evident in the 

estimations. Even though the structural change has an effect on the distribution of Y, it 

is common for such shifts to cause instability in the conditional distribution of X given 

Y.  

From the perspective of policymaking, there is a need to search shifts in 

distributions due to exogenous causation that might also include extra statistical 

information for its applicability. For instance, we might also need historical 

information to take interventions in policy-making regimes. 

Hoover (2001) intervention has its roots in the historical perspectives and the 

statistical tests are carried out only to validate the necessity of intervention. Hoover 

(2001) and Freedman (1991) pointed out that to determine the causal direction, one 

must acquire detailed and extensive knowledge of the issue to be resolved.  
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The application of finding the intervention time is significant. Suppose if we 

know that one variable’s intervention time is being estimated, then we can also work 

on marginal and conditional distributions of the variable. Thus, finding casual 

direction involves applying some statistical test to identify intervention. Then after the 

confirmation of the chronological intervention, we can apply regression on two 

different data sets. Furthermore, we can identify stable conditional distribution in the 

casual relation provided that intervention existed for only one variable. (Asghar and 

Abid 2007) 

3.1.8. Graph-Theoretic Approach and Fast Causal Inference (FCI)  (Pearl 

(2000) and Spirtes, Glymour et al. (2000) 

Another renowned approach is the Graph Theoretic approach that allows 

converting the structural model into graphs with affinity to overcome many problems. 

There are two ways of it: Firstly, GC test (1969) applies to only a tiny set of pre-

specified and reduced-form equations for small relationships (Granger 1969). Second, 

as argued by Perez et al (2006) this particular approach can help in identifying true 

regressors. 

Furthermore, Spirtes, Glymour et al. (2000) supported this method by saying 

that incorrect independent variables can mislead casual inferences. Thirdly, through 

the graph-theoretic approach, we can evaluate causal orderings that are primarily 

determined on the basis of data properties and correlation. Finally, the method also 

involved various kinds of causal search algorithms. 

According to the Cowles Commission, econometric model is the combination 

of two parts: a) Probability distribution of variable, b) Causal structure as we can 

observe it in different researches as well. Moreover, Pearl (2000) and Spirtes, 

Glymour et al. (2000) represented that because their isomorphism present between 

graphs and probability distribution of variables; therefore, we can draw conclusions 

about probability distributions. Also, these conclusions are further proved by 

employing mathematical techniques as indicated in the theoretical paradigms of the 

graph theory. (Spirits et al. 2000) 

But it is noteworthy to reflect on how this technique was not utilized for the 

time series data. But, in 1997, Swanson and Granger’s used this Graph-theoretic 

approach to understand casual order of SVAR. They assumed that information about 
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the causal ordering of variables of SVAR is actually existed in the covariance matrix 

of VAR.  Hence, after estimating the VAR model, that model's error terms will be 

treated as the original time series variables, Demiralp and Hoover (2003), (Hoover-

Dempsey, Walker et al. 2005). Whereas VAR residuals could bring only current 

information about cross variable effect.   

Let us consider the following VAR model:  

 

𝑌𝑡 = 𝛼1 + 𝛽1𝑋𝑡−1 + 𝛽2𝑌𝑡−1 + 휀1𝑡    (3.31) 

𝑋𝑡 = 𝛼2 + 𝛽3𝑋𝑡−1 + 𝛽4𝑌𝑡−1 + 휀2𝑡    (3.32) 

 

After estimating this VAR model, we will extract residuals series of both equations 

(3.31) and (3.32). While keeping in mind that residual series extracted from equation 

(3.31) only effect of 𝑥𝑡 could be there, while effect of past values (𝑋𝑡−𝑖𝑤ℎ𝑒𝑟𝑒𝑖>1) are 

removed. Thus, it is proved that VAR residuals contain only information about the 

causal feedback from X to Y and vice versa as well.  

Contrary to this scenario, there also exist numbers of univariate methods 

which are capable of eliminating the non-stationarity even without purging out the 

effect of past values. However, the power of the residuals extracted from the 

univariate methods is utilized to determine the causal ordering with the help of PC 

algorithms of GTA. This research study is intended to modify the original PC 

algorithm by replacing VAR residuals with univariate models’ residuals. And this also 

transform the name of the algorithm to be Modified PC algorithm. (Haugh (1976); 

Leong, Rehman et al. (2014) 

The FCI approach is a variant of the PC algorithm. (Haugh (1976); Leong, 

Rehman et al. (2014). One method to causal inference from observational data uses 

directed acyclic graphs (DAGs) to describe causal linkages and makes assumptions 

about how the causal DAG structure relates to probability distributions. Finding the 

"best" DAG or collection of DAGs for a given sample becomes the challenge of 

establishing causal inferences (Spirtes, Glymour, and Scheines 1993, Heckerman, 

Meek, and Cooper 1999). 

Different causal structures imply different independence relationships at the 

heart of the constraint-based causal discovery process. The causal connection 
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A→B→C, for example, suggests that variable A is independent of variable C given B. 

When A→C←B, on the other hand, A and B are independent (unconditionally), but 

conditional on C, they become dependent. The "V" structure (also known as collider) 

is the latter structure, and it has a unique independence connection as compared to 

other causal interactions. In reality, constraint-based algorithms, such as FCI, seek for 

it as one of the "primitives." FCI distinguishes out including among constraint-based 

techniques for its ability to discover latent (unobserved) confounders. This is made 

feasible by another primitive, the "Y" structure. A "Y" structure is formed when four 

variables demonstrate the following causal connections: W1 X W2 and X Y. Within 

the "Y" structure, both W1 and W2 are conditional on X and independent of Y. This 

conditional independence eliminates the possibility of an unmeasured confusion 

between X and Y. To put it another way, if FCI finds a "Y" structure in the graph, the 

causal relationship from X to Y is certain to be un-confounded; otherwise, FCI 

suggests the presence of unknown confounders. (Spirtes, Glymour et al. 2000) 

The FCI algorithm is a fast causal inference technique. FCI creates a causal 

graph by removing connections that connect conditionally independent variables from 

a fully connected undirected graph. It orients edges in the second phase by 

recognizing "V" and "Y" structures and attempting to orient the remaining edges 

using a set of principles that have been detailed elsewhere. 

3.1.9.  Maximum Entropy Bootstrap Approach 

In order to address the problems of mixed results about casual direction in the 

small samples, a new technique was introduced called the modern maximal entropy 

bootstrap (meboot) method. It provided better and robust results for large sample sizes 

(Aqil, Aziz et al. 2014). There were different reasons for using this approach. For 

instance, in case of social problems null hypothesis is rejected as it can mislead 

researchers. Similarly, in order to transform the state of data, the researchers often de-

trend the original data which can lead to variations in time data. (Yalta (2011); Khan, 

Ahmed et al. (2019)) 

Few other drawbacks also include loss/reduction of efficiency, 

misspecification and inappropriateness with the structural changes and so on that can 

truly harm the actual condition of the data (Hamilton and Susmel 1994). Moreover, 
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these faults and errors can also lead us directly to the wrong basis of the knowledge 

(Vinod (2006); Ahmed, Riaz et al. (2015)).  

In order to cope with such scenarios, as an alternative, Vinod (2006) proposed 

the entropy bootstrap (meboot) method. 

However, this research study elaborated that the simulation-based meboot 

method can explain the causal relationship. The constructions of a population of time 

series that ensembles a high number of times, say _= 999, are among the features of 

the meboot algorithm, with the use of new computer-intensive techniques for which 

we see that each potential variable's data series is highly dependent, non-stationary, 

has spikes and gaps, and has discontinuities or regime shifts. (Ahmed, Riaz, et al. 

2015). Henceforth, we can state that each parameter coefficient estimate will have 999 

coefficients, from which (1 − α) 100 percent confidence intervals will be derived, and 

this will be referred to as a high-density zone. (Hyndman, Bashtannyk et al. 1996). 

3.2. Causality Methods in Cross Sectional  

3.2.1. Regression Discontinuity Design (1960) 

Regression Discontinuity Design (RDD) was introduced by Thistlethwaite and 

Campbell (1960) in a non-experimental setting to estimate the treatment effects. In a 

way the effectiveness of a treatment is determined by whether an observable 

“assignment” variable exceeds a predetermined cutoff threshold. 

RDD is a quasi-experimental evaluation method that uses a treatment 

assignment mechanism to calculate the impact of an intervention. It's based on a 

continuous eligibility index, which is a continuous distribution variable.  And when 

it's used, the results are consistent to those of a randomized trial in terms of causal 

direction. It is used for finding out a treatment be it effective or not. The estimates of 

RDD made by parametric models and also close to a parallel set of nonparametric 

estimates. For the choice of bandwidth over a wide range, these nonparametric 

estimates are most of the time come out to be insenstive. (Angrist and Pischke 2014) 

There are two styles of RDD one is sharp and the other is fuzzy. The former is 

basically a selection on-observables story while the latter is an instrumental variable 

setup. (Angrist and Pischke 2014) 
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Regression discontinuity (RD) research designs function by exploiting brief 

knowledge of the rules that can play role in   determining the treatment. RD 

identification primarily functions on the notion that some rules are arbitrary and such 

rules can be utilized in providing good experiments. The assumption made in this case 

scenario is that treatment is assigned on the observable variable or index criterion.  

Moreover, there is also present discontinuity in the probability which can lead to cut 

off of some variables and the treatment for such index is taken out to be arbitrary 

(Angrist and Pischke 2014). 

Sharp RD is employed when treatment is assigned based on a distinct cut-off 

point, with all eligible people getting it and all ineligible people not getting it. In order 

to calculate the effect of the treatment of Sharp RD, we have to simply take 

comparison of means. If we consider treatment status as a deterministic and 

discontinuous function of such a covariate, X i, the equation is: 

𝐷𝑖 = {
1        𝑖𝑓 𝑥𝑖 ≥ 𝑥0
0       𝑖𝑓  𝑥𝑖 < 𝑥0

 

 

In the above equation,  𝑥0 is called a threshold or cutoff.  

This mechanism is a deterministic function of a covariate, 𝑋𝑖 because we 

know Di once we know𝑥𝑖. It's a discontinuous function since treatment remains 

unaltered until 𝑥𝑖=𝑥0, regardless of how close  𝑋𝑖  comes to  𝑥0. However, in the case 

of Fuzzy RD some qualified assignments do not receive treatment, while others who 

are ineligible do.  

Because of two reasons for it: one is self-selection and the other could be 

administrative overrides. Practically this type of version is more appropriate. In order 

to find out the effect of the treatment, the formula for this purpose is:  

Treatment effect = outcome discontinuity / treatment discontinuity (Angrist and 

Pischke 2014). 
 

3.2.2.  Difference in Differences Approach (2005) 

Economists utilize one another famous methodology and it called as The 

Difference in Difference (DID) approach, which was initially developed by John 

Snowy in 1850’s. Later on, it was called controlled before and after study 
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methodology. A quasi-experimental design operates by using control and treatment 

groups from longitudinal panel data to get casual direction. The technique is 

specifically designed to find out estimation of the impact of a specific treatment or 

intervention. (Angrist and Pischke 2008) 

This technique is quite interesting as it works on the data from the pre and post 

treatment or intervention while ensuring that there will not be any biases left in the 

post interventions. DID is often used to estimate the treatment impact on the treated, 

but it may also be used to calculate the Average Treatment Effect if robust 

assumptions are applied.  To determine casual effect, three assumptions needed to be 

taken: the first assumption is positivity; the second assumption is exchangeability, and 

the last assumption is Stable Unit Treatment Value Assumption (Lechner 2011).  

After fulfilling these assumptions, it can be continued to identify causal direction 

through observational data. It is a useful technique for comparison groups may start at 

changed stages of the result. It is also used for individual and group level data. It is 

one of the limitations that cannot apply if treatment allocation defined by baseline 

outcome. If comparisons group contain different conclusion trend. When fluctuations 

are not stable between pre and post group, it is not applicable. (Abadie 2005). 

Figure 1: Difference in Differences Approach 

 

   Source: (Mastering Matrices, Joshua D.Angrist and Jorn Steffen Pischke, 2015) 
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DID is employed in observational studies where the treatment and control 

groups cannot be presumed to be identical. DID is based on a weaker exchangeability 

assumption, which states that the hidden differences between the control groups and 

treatment remain the same across time in the absence of treatment. (Bertrand, Duflo et 

al. 2004).  

Though there is no statistical test for this assumption, visual inspection is 

beneficial when several time points of observation. It's also been suggested that the 

shorter the time period under examination, the more probable the assumption will 

hold true. If the parallel trend assumption is violated, the causal effect will be 

misestimated. (Imbens and Wooldridge 2009).  

DID is normally implemented as source of interaction term among time and 

treatment group dummy variables in a regression line; let us consider the following 

equation: 

𝑌 = 𝛽0 + 𝛽1 ∗ [𝑇𝑖𝑚𝑒] + 𝛽2 ∗ [𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛] + 𝛽3[𝑇𝑖𝑚𝑒 ∗ 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛] +

𝛽4[𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠] + 휀              (3.33) 

Numerous things favor the technique: the first benefit is that interpretation is 

based on the institution, one can easily guess the idea. The second benefit is that if the 

assumptions are fulfilled, we can easily identify the causal effect from it. The third 

great thing is that we have choice to use either individual or group level data. The 

fourth great benefit is that we can chose comparison groups at various levels of the 

outcome. And the last strength of the method is that we can change factors because of 

intervention. (Abadie 2005) 

Contrary to this, there are different limitations of the method as well. The first 

limitation is that it demands baseline data and a non-intervention group form. 

Moreover, if the intervention is baseline outcome, then we cannot use this method. 

Thirdly, if the comparison groups are having different outcomes, we cannot 

preferably use this method and lastly if the comparison groups appear to be unstable 

(Abadie 2005). 
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3.2.3. Cross Correlation Based Methodology 

The purpose of correlation analysis is to determine the power of linear 

relationships among two variables. The method does follow some assumptions. The 

variables are supposedly random, and observations have to be independent. The same 

assumptions must be made when evaluating the null hypothesis that the association is 

zero but both variables should be normally distributed in order to evaluate the 

correlation coefficient's confidence intervals. However, in the actual world, a 

nonlinear connection might exist between variables that is inadequately captured by 

the correlation coefficient and may even go unnoticed. The limitation of the method is 

that one might get outliers or we can say extreme values in the data, which are not 

involved in the correlation analysis methodology (White and Peterson 1994). 

3.3. Causality Methods in Panel Data 

3.3.1. Bootstrap Panel Granger Causality Test by Konya (2006) 

Konya proposed Bootstrap Panel Granger Causality test because it contains 

slope heterogeneity and cross-sectional dependence. The procedure developed by 

Kónya (2006) enables the identification of particular countries where the Granger 

causal relationship exists. The method projected three vital advantages. The first and 

foremost significance is that it involves seemingly unrelated regression (SUR). The 

second advantage is that it is based on Wald tests and country-specific bootstrap 

values critical for the researchers. And the third big advantage is that it does not 

involve any pretesting for the purpose of co-integration (Kónya 2006).  

However, it is mandatory to remember this fact that the results of this method 

are only focused on short term causality. Before Kónya (2006) approach is briefly 

presented, we sketch the outline of tests for cross-sectional dependence. The 

assessment of cross-sectional dependence is of prime importance. The reasons for the 

presence of the cross-sectional dependence are that in case of Panel data models there 

are quiet many possibilities of shocks and unobserved data., general residual 

interdependence, spatial spillovers and so on so forth (Kónya 2006). One reason for 

this may be connected with the fact that during the previous few decades. Countries 

and financial institutions have become more integrated economically and financially, 

which induces strong interdependencies between cross-sectional units. Breitung and 
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Pesaran (2008) and Bai and Kao (2006) proposed that it has been observed in the case 

of the default assumption of independence that occur between cross-sections of the 

cointegration and causality analysis, there is apparent inadequacy.  

Cross-sectional dependency is likely to emerge if economic ties between 

nations are quite strong. As a result, erroneous causal conclusions may result from 

improper cross-sectional assumptions of independence. As a result, we first opt to test 

the hypothesis of cross-sectional dependency, considering regularly found cross-

sectional dependence in panel data for macroeconomic data.  In order to assess the 

presence of cross-sectional reliance in our data, we will need to use cross-sectional 

dependency tests established by Pesaran, Schuermann et al. (2004) in the presence of 

a null hypothesis claiming no cross-sectional dependence. Furthermore, we must 

express data based on two groups in Kónya (2006) panel causality method 

frameworks. For example, consider the following equations: 

 

𝑦1,𝑡 = 𝛼1,1 + ∑ 𝛽1,1𝑦1,𝑡−𝑙

𝑚𝑙𝑦1

𝑙=1

+ ∑ 𝛿1,1,𝑙𝑥1,𝑡−𝑙

𝑚𝑙𝑥1

𝑙=1

+ ∑ 𝛾1,1,𝑙𝑧1,𝑡−𝑙

𝑚𝑙𝑧1

𝑙=1

+ ∑ 𝜗1,1,𝑗𝜈1,𝑡−𝑙

𝑚𝑙𝜈1

𝑙=1

+ 휀1,1𝑡 , 

𝑦2,𝑡 = 𝛼1,2 + ∑ 𝛽1,2𝑦2,𝑡−𝑙

𝑚𝑙𝑦1

𝑙=1

+ ∑ 𝛿1,2,𝑙𝑥2,𝑡−𝑙

𝑚𝑙𝑥1

𝑙=1

+ ∑ 𝛾1,2,𝑙𝑧2,𝑡−𝑙

𝑚𝑙𝑧1

𝑙=1

+ ∑ 𝜗1,2,𝑗𝜈2,𝑡−𝑙

𝑚𝑙𝜈1

𝑙=1

+ 휀1,2𝑡    (3.34) 

𝑦𝑁,𝑡 = 𝛼1,𝑁 + ∑ 𝛽1,𝑁𝑦𝑁,𝑡−𝑙

𝑚𝑙𝑦1

𝑙=1

+ ∑ 𝛿1,𝑁,𝑙𝑥𝑁,𝑡−𝑙

𝑚𝑙𝑥1

𝑙=1

+ ∑ 𝛾1,𝑁,𝑙𝑧𝑁,𝑡−𝑙

𝑚𝑙𝑧1

𝑙=1

+ ∑ 𝜗1,𝑁,𝑗𝜈𝑁,𝑡−𝑙

𝑚𝑙𝜈1

𝑙=1

+ 휀1,𝑁𝑡,  

𝑥1,𝑡 = 𝛼2,1 + ∑ 𝛽2,1𝑦1,𝑡−𝑙

𝑚𝑙𝑦2

𝑙=1

+ ∑ 𝛿2,1,𝑙𝑥1,𝑡−𝑙

𝑚𝑙𝑥2

𝑙=1

+ ∑ 𝛾2,1,𝑙𝑧1,𝑡−𝑙

𝑚𝑙𝑧2

𝑙=1

+ ∑ 𝜗2,1,𝑗𝜈1,𝑡−𝑙

𝑚𝑙𝜈2

𝑙=1

+ 휀2,1𝑡 , 

𝑥2,𝑡 = 𝛼2,2 + ∑ 𝛽2,2𝑦2,𝑡−𝑙

𝑚𝑙𝑦2

𝑙=1

+ ∑ 𝛿2,2,𝑙𝑥2,𝑡−𝑙

𝑚𝑙𝑥2

𝑙=1

+ ∑ 𝛾2,2,𝑙𝑧2,𝑡−𝑙

𝑚𝑙𝑧2

𝑙=1

+ ∑ 𝜗2,2,𝑗𝜈2,𝑡−𝑙

𝑚𝑙𝜈2

𝑙=1

+ 휀2,2𝑡    (3.35) 
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…………. 

𝑥𝑁,𝑡 = 𝛼2,𝑁 + ∑ 𝛽2,𝑁𝑦𝑁,𝑡−𝑙

𝑚𝑙𝑦2

𝑙=1

+ ∑ 𝛿2,𝑁,𝑙𝑥𝑁,𝑡−𝑙

𝑚𝑙𝑥2

𝑙=1

+ ∑ 𝛾2,𝑁,𝑙𝑧𝑁,𝑡−𝑙

𝑚𝑙𝑧2

𝑙=1

+ ∑ 𝜗2,𝑁,𝑗𝜈𝑁,𝑡−𝑙

𝑚𝑙𝜈2

𝑙=1

+ 휀2,𝑁𝑡 , 

 

In the above equation, we have N that denoted the number of countries in the 

panel (i=1, 2…, N), t is time period (t=1, 2…, T), and l is the number of lags in 

equation 휀𝑖,𝑖,𝑡, 휀2,𝑖,𝑡 are anticipated correlated concurrently across equations because of 

the common random shocks. As we can see that this model follows the deterministic 

trend, unidirectional and bi-directional Granger causality for specifically each country 

one by one.  

The empirical distributions with the help of Wald test and the through this can 

also received bootstrap critical values. Moreover, we can get regressions from both 

statistics (Wanat, Papież et al. 2016). In Konya's method, defining the number of lags 

over all equations is critical. Using Konya's method, we can identify the number of 

lags in the following equations. We evaluate all equations and apply the Akaike 

Information Criterion (AIC) to choose the best solution, considering the number of 

lag is between 1 and 4. 

 Moreover, in order to get Akaike Information Criterion, use the following 

equation:  

𝐴𝐼𝐶𝑙 = 𝑙𝑛|𝑊| +
2𝑁2𝑞

𝑇
,              (3.36) 

In the above equation, W represents the estimate residual of the covariance matrix, N 

represents the number of equations, q represents the number of coefficients of each 

equation, and T represents the sample size. (Wanat, Papież, et al. 2016) 

3.3.2. Granger Non-Causality Test in Heterogeneous Panel Data by Hurlin 

(2012)  

Because in today’s world, we have increased demand of the macro level panel 

data, so there is a required new set of techniques that can help the econometricians 

grow and develop their skills. Hence, a famous approach was introduced by two 
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theorists Dumitrescu and Hurlin (2012) that is primarily used to test for Granger 

causality in macro panel datasets. 

Considering the fast evolution of the literature, practitioners may find it 

difficult to implement the latest econometric tests. Therefore, the test built by 

Dumitrescu and Hurlin (2012) summarized. This contribution aims to support the 

empirical literature using panel causality techniques. Granger non causality test 

utlizes the Akaike information criteria, Bayesian information criterion, or Hannan–

Quinn information criterion to identify the optimal lag length, that is, the length where 

the mentioned criteria give minimum test statistic value. Finally, to address the 

empirical problem of cross-sectional dependency, a bootstrap technique was used to 

obtain p-values and critical values. (Lopez and Weber 2017) 

Granger (1969) methodology is primarily established for investigating the 

causal relations between time series. Let us suppose 𝑥𝑡 and 𝑦𝑡 are two stationary 

series.  

𝑦𝑡 = 𝛼 +∑𝛾𝑘

𝐾

𝑘=1

𝑦𝑡−𝑘 +∑𝛽𝑘

𝐾

𝑘=1

𝑥𝑡−𝑘 + 휀𝑡      𝑤𝑖𝑡ℎ 𝑡 = 1, … , 𝑇                 (3.37) 

We can say that the model can be utilized to determine whether x causes y. In 

other words, if previous values of x are significantly predictive of the present value of 

y even though previous values of y would be included in the model, then x has a 

causal effect on y.  

While using (3.37), we can easily identify causality that is centered on an F 

test with the following  𝐻0:  

𝐻0: 𝛽1 = ⋯ = 𝛽𝑘 = 0           (3.38) 

 

If 𝐻0 is denied, one might infer that there is causation from x to y. 

Furthermore, the x and y variables may be swapped to test for causation in the 

opposite direction, and reversible causality can be seen. (Lopez and Weber 2017) 

However, the approach followed by Dumitrescu and Hurlin (2012) was an 

extension designed specifically for detecting the causality in panel data. 

We can say the following equation will represent: 
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𝑦𝑖.𝑡 = 𝛼𝑖 +∑𝛾𝑖𝑘

𝐾

𝑘=1

𝑦𝑖,𝑡−𝑘 +∑𝛽𝑖𝑘

𝐾

𝑘=1

𝑥𝑖,𝑡−𝑘 + 휀𝑖,𝑡      𝑤𝑖𝑡ℎ  𝑖 = 1, … , 𝑁 𝑎𝑛𝑑 𝑡

= 1,… , 𝑇      (3.39) 

In the above equation, we have 𝑥𝑖𝑡 and 𝑦𝑖𝑡  that represent the observations of 

two stationary variables for individual i in period t. Moreover, individual coefficients 

are permitted to differ, but they are supposed to be time invariant at the same time. It 

is important to mention here that the lag order K in this scenario is assumed to be 

equal for all individuals so that the panel should be balanced. 

Granger's method is used to establish causality and to assess the substantial 

impacts of past x values on the current value of y.  Hence, we can define then null 

hypothesis in the following manner:  

𝐻0: 𝛽𝑖1 = ⋯ = 𝛽𝑖𝑘 = 0          ∀ 𝑖 = 1,… ,𝑁         (3.40) 

 

Here we can observe for all members of the panel, there is no causation. The 

reason for this is that in the DH test, we can suppose that causality exists for some 

people, but not necessary for all. Therefore, in such scenarios, we can assume some 

alternative hypothesis. For instance, let us consider the following alternative 

hypothesis: 

𝐻1: 𝛽𝑖1 = ⋯ = 𝛽𝑖𝑘 = 0          ∀ 𝑖 = 1,… ,𝑁1      (3.41) 

                      𝛽𝑖1 ≠ 0 𝑜𝑟 …𝑜𝑟 𝛽𝑖𝑘 ≠ 0          ∀ 𝑖 = 𝑁1 + 1,… ,𝑁    (3.42) 

 

Now, we can see that in the above equation, we have  𝑁1  ∈ [0, N − 1] that is 

not known. If 𝑁1   = 0, all of the individuals in the panel have a causal relationship. 𝑁1   

must be firmly smaller than N; there is no causation for all individuals, and 𝐻1   

reduces to 𝐻0.For such scenarios, Dumitrescu and Hurlin (2012) proposed that we can 

run the N individual regressions implicitly enclosed in (3.39), perform F tests of the K 

linear hypotheses 𝛽𝑖1 = · · · = 𝛽𝑖𝑘 = 0 to retrieve the individual Wald statistic  𝑊𝑖, and 

finally compute the average Wald statistic  𝑊̅̅ ̅̅  , 

�̅� =
1

𝑁
∑ 𝑊𝑖
𝑁
𝑖=1                 (3.43) 

Thus, we can say that this test is primarily focused on detecting the causality 

at the panel level, and at the same instant, it is designed to reject  𝐻0 which will not 

exclude non-causality for some individuals. However, one can also use Monte Carlo 
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simulations while using �̅�  asymptotically in order to investigate panel causality 

(Lopez and Weber 2017). For instance, let us suppose that the assumption for Wald 

statistics Wi are independently and identically distributed among individuals, it may 

be expressed as the standardized statistic where first T → ∞ and then N → ∞ (often 

read as “T should be big relative to N”) following a standard normal distribution as 

shown below: 

�̅� = √
𝑁

2𝐾
× (�̅� − 𝐾)             𝑁(0,1)        (3.44)

𝑇,𝑁  →∞
→      

𝑑  

Also, for a fixed T dimension with T > 5+3K, the approximated standardized 

statistic �̃� follows a standard normal distribution: 

 

�̃�  = √
𝑁

2𝐾
×
𝑇 − 3𝐾 − 5

𝑇 − 2𝐾 − 3
  × (

𝑇 − 3𝐾 − 3

𝑇 − 3𝐾 − 1
× �̅� − 𝐾)           𝑁(0,1)      (3.45)

𝑁  →∞
→     

𝑑  

 

In this procedure, we can see that the null hypotheses (equation 3.40) is based 

on 𝑍 ̅and �̃�. However, if these are pretty larger than the expected standard critical 

values, then we should reject 𝐻0. Moreover, simply, we can conclude that Granger 

causality exists in this scenario. But it is important to mention here that for large N 

and T panel data sets, 𝑍 ̅ is a considerable option. �̃� should be preferred for datasets 

with large N but relatively small T. Dumitrescu and Hurlin (2012) used Monte Carlo 

Simulations to show that they exhibit good finite sample characteristics, even when N 

and T small. The selection lag order (K) is a practical problem that Dumitrescu and 

Hurlin (2012) do not address. One solution is to use the number of lags based on an 

information criterion (AIC/BIC/HQIC).  (Lopez and Weber 2017) 

3.3.3. DAG Theory (Spirtes et al. 2000) 

Spirtes, Glymour et al. (2000) developed this DAG theory which is impactful 

and favorable for causality analysis. Much research has been done on the financial 

markets while using this approach. (Awokuse and Bessler (2003); Bessler and Yang 

(2003); Yang, Chang et al. (2006); Yang and Bessler (2008)). However, we have 

witnessed the DAG approach application in energy economics in the recent past. One 

of the study conducted by Zhou, Li et al. (2014) was focused on the relationship 

between economic growth, energy consumption, and carbon emissions, and the 
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country focused was India. The successful use of DAG theory supported the 

researchers' passion who were able to derive the results while using this technique. 

Cui, Feng et al. (2015) used DAG theory to visualize the dynamics of integration of 

the international crude oil market. Similarly, both Ji and Fan (2016) conducted 

another study to see contemporaneous causality between China’s oil markets and 

other commodity markets while utilizing an ECM model along with DAG.  

Let us highlight some of the salient features of this approach in detail. First, it 

is a graph structure that is determined by observed correlations and partial 

correlations. It represents the causal flow among a set of variables. A directed edge 

X→Y in the DAG indicates X can cause Y in contemporaneous time. A PC algorithm 

that helped in computing TETRAD IV software to build DAG was composed of a 

complete undirected graph and the unconditional correlation matrix between the given 

variables (Wang and Ji 2017). 

Moreover, it is mandatory to emphasize first-order partial correlation that can 

support removing the edges that are non-static and different from zero. After 

surviving first order test, the algorithm needs to proceed unless all the edges are 

removed, or we can also say it like that when an N–2 order partial correlation test is 

finished for N variables. The conditional variable(s) on the removed edges is defined 

as a separate set of the pairwise variables whose edge has been removed. If one edge 

is removed by unconditional correlation, its separate set is empty. Based on the above 

two steps, all the remaining edges can be directed using the separate set (Bessler and 

Yang 2003). 

Now, let us suppose that triples of the variables are selected to be directed, 

considering a triple relation, X—Y—Z, such that X and Y are adjacent as well as Y 

and Z, but X and Z are not adjacent. Let us suppose that if Y is not in the separate set 

of X and Z, then X—Y—Z should be directed as X→Y←Z. 

Now, on the other hand, we can have only three kinds of results of the 

orientations here:  X→Y→Z, X←Y→Z, or X←Y ←Z. For the sake of determining 

the correct orientation, we need to have additional information derived from some 

other identified adjacent linked triples, such as Y→Z←L, and an exogenous 

restriction, such as X→Y. 
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These logical algorithms can remove all the remaining edges, which is why 

they can be directed by confirming DAG (Li, Woodard, et al., 2013).   Furthermore, 

Fisher’s z statistic was used to test whether conditional correlations were significantly 

different from zero: 

𝑧(𝜌(𝑖, 𝑗|𝑘), 𝑛) = [
1

2
 √𝑛 − |𝑘| − 3] 𝑙𝑛 {

1+𝜌(𝑖, 𝑗|𝑘)
1−𝜌(𝑖, 𝑗|𝑘)

}                 (3.44) 

 

In the above equation, n is the number of observations, 𝜌(𝑖, 𝑗|𝑘) is the 

population conditional correlation between series i and j conditional on series k, and 

 is the number of series in k. If series i, j and k are normally distributed and ׀k׀

𝜌1(𝑖, 𝑗|𝑘)is the sample conditional correlation of i and j given k, then the distribution 

of 𝑧(𝜌(𝑖, 𝑗|𝑘), 𝑛) – 𝑧(𝜌1(𝑖, 𝑗|𝑘), 𝑛) is standard normal (Bessler and Yang 2003); (Ji 

and Fan 2016). 

3.3.4. Markov Chain Method (MCM) 

A new methodology depends on the Markov Chain method, which is not 

based on normality and linearity assumptions to find the causal direction.  Its 

representation the state of a system with a random variable that changes over time. In 

this case, the Markov property proposes that the distribution of a variable based only 

on the distribution of earlier state. Discrete-Time Markov Chain (DTMC) is a random 

process which involves the transition from one state to another state-space 

independently. The working of probability distribution of the next state is dependent 

only on the current state and the rest of the consequences does not impact it.  It has 

significant applications for different kind of phenomena because of its serial 

dependence on the formulation of the chain like systems. Where what occurred in 

future depends only on the present state of system. (Jerrum 1998) 

However, certain assumptions need to be fulfilled if we want to use MCM. 

The first one is that the transition matrix must be stable with respect to space and time 

Secondly, it is almost impossible to predict the future with certainty. There are 

numerous other extensions, variations, and generalizations. A discrete-time random 

process contains a system in a definite state at each step and with the state changing 

randomly between the steps. The state of a Markov chain at a given point in future, it 

is generally impossible to predict with certainty because the system transitions 



46 
 

randomly. Though, system’s future can be predicted by its statistical properties. 

Normally, there are four possible scenarios in which we can use four different Markov 

models.  Firstly, the Markov Chain Method is considered if the system state is fully 

observable and autonomous. Secondly, the Hidden Markov model is taken in to 

account only if state is invisible and the output is observable. Thirdly, Markov's 

decision process is focused if the system is in control state form and in observable 

state. Lastly, the partially observable Markov decision process is considered only if 

the system is in a state of partial control and partial observation. (Harmon and 

Challenor 1997) 

It is significant to highlight here that the Markov chain process/Drunkard’s 

walk has a state space that is basically a transition matrix that represents the transition 

probabilities and allows for an initial state across the state space. The state system 

changes are known as Transitions while the probabilities associated with various state 

changes are said to be called Transition Probabilities. Moreover, there is a need to 

notice that transition probabilities will only depend on the current position not on its 

mannerism, to reach the state (Yang and Rannala 1997). 

3.3.5. Mediation Analysis in Latent Growth Curve Modeling under Structural 

Equation Framework  

In order to examine the intra-individual variations in longitudinal data for the 

sake of improving statistical inferences, Mediation models are considered to be one of 

the best choices for economists. Contrary to the three-variable mediation models for 

cross-sectional data in which only one indirect effect is examined, mediation models 

for longitudinal data often have multiple indirect effects and even different types of 

indirect effects. Therefore, it is essential to consider whether and how to summarize 

these multiple indirect effects. (Cheong, MacKinnon, et al. 2003). 

The figure below is an illustration of a single mediator causal model. As we 

can see that, the theory-based causal variables are basically potential mediating 

variables (M) that is making intervening relation between the independent variable 

(X) and the outcome variable (Y). It is observable here that the independent variable 

(X) is making influence on the outcome directly at one end and at the same instant; it 

is also indirectly making influence via mediator. Chen (1990) explicitly called it 

action theory because it is providing link between the treatment program and the 
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mediating variables. He also called it conceptual theory because at the same moment 

it is linking the mediating variables and the outcome variable (Chen 1990). 

 

Figure 2: A single Mediator Model 

 

 

 

 

 

 

Direct Effect = 𝛕 

Indirect Effect = αβ 

Total Effect = 𝛕 + 𝛂𝛃 

 

Interestingly, there is one another method that is called as Product of the 

coefficient method which is essentially used to find out the point estimates of the 

mediated effect Aroian (1947); Goodman (1960); MacKinnon and Dwyer (1993); 

Sobel (1982); MacKinnon, Warsi et al. (1995); MacKinnon, Lockwood et al. (2002).  

For the product of coefficients method, we will use the following regression 

equations in order to estimate the mediated effect: 

𝑀 = 𝛽01 + 𝛼𝑋 + 휀1  …    (3.45) 

𝑌 =  𝛽02 + 𝛽𝑀 + 𝜏𝑋 + 휀2  …   (3.46) 

The above Equation reflects the potential mediator M which is regressed on 

the regressor X.  

While in the Equation 3.46, we can see that the outcome variable Y is 

regressed on the regressor X and also that the potential mediator M.  

Now, we can observe that here Mediation is represented as the indirect effect 

of (X) on Y. The effect of the regressor on the potential mediator is represented by the 

coefficient α in equation 3.5. Whereas, the effect of the potential mediator – 

(M) on the outcome variable Y is represented by the coefficient β in equation 

3.46 after controlling the effect of the regressors. In the similar vein, the effect of the 

Outcome 

(Y) 

Treatment 

(X) 

α 
β 

𝛕 

 

Mediator 

(M) 
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regressor (X) on the outcome variable Y is represented by the coefficient τ in equation 

3.46 after controlling for the effect of the mediator  

Moreover, we can see that the constants 𝛽01 and 𝛽02 are the regression 

intercept terms and 휀1 and 휀2  are residuals in the above written two equations.  

Moreover, the mediated effect is estimated by the product of the two 

regression coefficients for α and β. It is to be observed that if the mediated effect is 

evaluated, the extent of treatment program changes the mediator (α) and the extent to 

which it changes the outcome (β). Full mediation only takes place if the direct effect 

is no longer statistically significant after the addition of mediator.  

But we will be focusing only on α x β) regardless of the size or statistical 

significance of τ. Even though there are numerous ways to analyze the product of two 

coefficients in order to find the standard error (MacKinnon, Lockwood et al. 2002). 

The best formula used to find the standard error of the product of the two 

coefficients is composed on the basis of multivariate delta method (Sobel 1982). 

Economists often called it as the first-order Taylor series. It is mentioned as follows: 

𝜎𝛼𝛽 = √𝛼2𝜎𝛽
2 + 𝛽2𝜎𝛼

2 …    (3.47) 

As we can clearly see that in the above written equation, α and 𝜎𝛼 are the 

regression coefficient and its standard error in Equation (3.45) and β and 𝜎𝛽 are the 

regression coefficient and its standard error in the Equation 3.46. The observed data in 

the sample estimates of α, 𝜎𝛼, β, and 𝜎𝛽 which are inserted in the Equation 3.47.  

It is important to explain here that the mediated effect is conducted by 

dividing the estimate of the mediated effect (𝛼𝛽) by the estimated standard error 

(𝜎𝛼𝛽), which is compared to a standard normal distribution. (MacKinnon, Lockwood 

et al. 2002). 

Contrary to the above mentioned method, there is also present an alternative 

method which is known as the asymmetric CI method (MacKinnon, Lockwood et al. 

2002). In this method, both α and β coefficients are converted to z scores (i.e., 𝑧𝛼= 

α/𝜎𝛼 and 𝑧𝛽 = β/𝜎𝛽) and the critical values for the two z scores are found from the 

tables in Meeker, Cornwell et al. (1981) to construct the CI. This method is workable 
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as it depends on the distribution of the product of αβ which is often asymmetric and 

also, we are bound to use different values for the upper and lower critical values. 

The formula for this purpose is explained as follows: 

 UCL = αβ + (upper critical value)* 𝜎𝛼𝛽  

For, LCL = αβ + (lower critical value)* 𝜎𝛼𝛽 

However, if the CI does not include zero, then we say that the mediated effect 

at given instant is found to be statistically significant. (MacKinnon, Lockwood et al. 

2002) 

3.3.6. A Dynamic Panel Data Approach; Two-step System GMM and Difference 

GMM 

In order to estimate the various parameters in dynamic panel data models, 

another method is used that is called as Generalized Method of Moments (GMM), 

given by Arellano and Bover (1995) and Blundell and Bond (1998). In this method, 

we use a system GMM estimator, which can combine the differenced equation with 

the level equation. However, the instruments for the level equation are lagged 

differences of the variables that can only work if the differences are uncorrelated with 

the individual effects.  

While elaborating some of the characteristics of this method, Blundell and 

Bond (1998) proposed that the system estimator carries superior properties regarding 

small sample bias and Root Mean Square Error (RMSE), specifically in the case of 

the persistent series.  

It is noticeable here that the practice to use the inverse of the moment matrix 

of the instruments as the initial weight matrix is a common practice among 

economists.  

In this research study, we will observe the potential efficiency loss from using 

this weight matrix using the efficiency bounds as derived by (Liu and Neudecker 

1997).  

Basically, the GMM estimator is a two-step estimator. The first step involves 

an initial positive semi-definite weight matrix which can be obtained from the 

consistent estimates of the parameters. Then, after getting estimates, we can further 

make a weight matrix out of it (Arellano and Bond 1991).  
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Moreover, the two-step estimated standard errors will have a small sample 

downward bias, while the one-step estimates will have vigorous standard errors. 

However, an efficient weight matrix for the differenced model with errors that are 

homoscedastic and serially non-correlated can easily be attainable.  

However, this study will focus on the potential efficiency loss while 

considering errors to be homoscedastic and serially uncorrelated errors. For this 

purpose, we will get upper bounds for the efficiency loss by calculating it through   

Liu and Neudecker's methodology that was primarily based on KI Kantorovich 

inequality (Liu and Neudecker 1997). It is important to notice here that the upper 

bounds are indicating the efficiency loss will be severe and variance of the individual 

unobserved heterogeneity is relatively small. 

In order to gain efficiency, let us consider the AR (1) from the panel data 

specification: 

𝑦𝑖𝑡 = 𝛼0𝑦𝑖𝑡−1 + 𝜂𝑖 + 휀𝑖𝑡           (3.48) 

In the above equation, i=1… N, t=2… T, with N large and T fixed.  

Now, as we know that the error terms will follow the error components 

structure like the following equations: 

𝐸(𝜂𝑖) = 0,             𝐸(휀𝑖𝑡) = 0, 

𝐸(휀𝑖𝑡
2 ) = 𝜎𝜀

2,             𝐸(𝜂𝑖𝑡
2 ) = 𝜎𝜂

2, 

𝐸(𝜂𝑖휀𝑖𝑡) = 0,             𝐸(휀𝑖𝑡휀𝑖𝑠) = 0,   𝑡 ≠ 𝑠 

 

The following observations are made in this process. Firstly, the OLS and 

within groups estimators of 𝛼0 in model (3.48) are biased and inconsistent, as evident 

from the above equation.  

Secondly, there is a consistent estimator for 𝛼0  which we are calling a system 

GMM estimator (Arellano and Bover (1995) and Blundell and Bond (1998). Hence, 

we can therefore, utilize these conditions (T+1) (T-2)/2 in order to formulate the 

following equations: 

 

𝐸[(∆𝑦𝑖𝑡 − 𝛼0∆𝑦𝑖𝑡−1)(𝑦𝑖𝑡−2, … , 𝑦𝑖1)] = 0,              (3.49) 

                                             𝐸[(𝑦𝑖𝑡 − 𝛼0𝑦𝑖𝑡−1)∆𝑦𝑖𝑡−1] = 0,              (3.50) 
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In the above equation, as we can observe for t = 3... T.  

Moreover, moment conditions (3.49) are for the model in first differences as 

they are utilizing appropriately lagged levels information as instruments. Furthermore, 

conditions (3.50) are for the model in levels that utilize lagged differences as 

instruments. Hence, this method is a significantly efficient method of estimator on the 

basis of mere moments conditions (Blundell and Bond 1998). 
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CHAPTER 4 

RESEARCH METHODOLOGY 

This chapter will briefly discuss the methodology for assessing causality tests 

for panel data in simulation research. This study compares the size and power features 

of each test under consideration. First, we will discuss the data generating process 

(DGP) and Monte Carlo simulation design used in this research. Second, steps for 

calculating size and power will be provided. The third section briefly explains the 

notions and terminologies of panel causality tests, which are utilized in testing and 

simulations. 

4.1 Methodology Description 

In the present study, we will be examining causal inference methods for 

testing particular hypothesized causal relations, H0: X causes Y. After that, employing 

all causality methods in this way requires benefits over the more distinctive 

application method. First, relatively small numbers of causally related variables are 

needed. Some variable Z that is causally related in a certain way to X and Y permits 

rejection  H0: irrespective of what other causally related variables may or may not 

exist. Second, this constricted focus indicates that there are only a limited number of 

techniques in which latent, related variables might influence the observed variables 

involved in the test. This permits us to estimate the size and power of the test. Using 

Monte Carlo Simulation, this study compares the power and size properties of 

existing and modified panel causality tests. In the existing test, Granger non-causality 

test, while in modified Sims’s and Final Prediction Error method are compared.  We 

modified the Sims test algorithms and the final prediction error method for panel data 

causality analysis. 

We will generate an artificial data-generating process with a known causal 

relationship among the variables. After that, we will test the methods mentioned 

above for causality for panel data. This study will show which procedure detects 

known causal relation or not, employing the appropriate causal method concerning the 

specific type of data. Further, it will present the results of the Monte Carlo 

Simulations. We will then analyze the size and power of all causality tests based on 

the outcome of the Monte Carlo Simulation. 
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4.2 Data Generating Process (DGP): 

The objective of the simulation experiment is to find out the size and power 

properties of methodologies for testing causality. Therefore, we need data with 

embedded causality (for power) and the data series with no causality (size).  

  The choice of DGP for comparative studies is critical. Different tests follow 

different theoretical bases; hence, choosing a data-generating method gives an 

advantage to some test statistics. Causality methods and tests can be compared in the 

same framework. The purpose is to eliminate the single test superiority. In such a 

situation, a simulation study is required. However, we continue with DGP to compare 

all the tests. For this purpose, we use the following framework. The data for testing 

properties of causality tests can be generated from a unified framework which is given 

below: 

[

𝑥𝑖𝑡
𝑦𝑖𝑡
𝑧𝑖𝑡
] =  [

𝜃11   𝜃12   𝜃13
𝜃21   𝜃22  𝜃23
𝜃31   𝜃32  𝜃33

] [

𝑥𝑖,𝑡−1
𝑦𝑖,𝑡−1
𝑧𝑖,𝑡−1

] + [

𝑎𝑖1   𝑎2
𝑏𝑖1  𝑏2
𝑐𝑖1  𝑐2

] [
1
𝑡
] + [

휀𝑥𝑖𝑡
휀𝑦𝑖𝑡
휀𝑧𝑖𝑡
]… (4.1) 

 

Where,  [

휀𝑥𝑖𝑡
휀𝑦𝑖𝑡
휀𝑧𝑖𝑡
] ~ 𝑁 [(

0
0
0
) , (

1   𝜌1   𝜌2
𝜌1  1     𝜌
𝜌2   𝜌    1

)] 

 

This general DGP equation can take various forms by specifying the 

parameters A, B and  Σ. The covariance matrix shows us the contemporaneous 

causality as they are correlated with each other. The above matrix form equation (4.1) 

can be written in the following form: 

 

𝑋𝑖𝑡 = 𝐴𝑖𝑋𝑖,𝑡−1 + 𝐵𝑖𝐷𝑡 + 𝛾𝑤𝑖𝑡 + 휀𝑖𝑡            휀𝑖𝑡 ~ 𝑁 [0, Σ ] … (4.2)  

Where, i=1, 2, 3…N and t=1, 2, 3… T 

 

Where,  𝑋𝑖𝑡 = [

𝑥𝑖𝑡
𝑦𝑖𝑡
𝑧𝑖𝑡
] , 𝐴𝑖 = [

𝜃11   𝜃12   𝜃13
𝜃21   𝜃22  𝜃23
𝜃31   𝜃32  𝜃33

] , 𝐵𝑖 = [

𝑎𝑖1   𝑎2
𝑏𝑖1  𝑏2
𝑐𝑖1  𝑐2

] , 𝐷 = [
1
𝑡
] , 휀𝑖𝑡 =

[

휀𝑥𝑖𝑡
휀𝑦𝑖𝑡
휀𝑧𝑖𝑡
]  𝑎𝑛𝑑  
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Σ = (

1   𝜌1   𝜌2
𝜌1  1     𝜌
𝜌2   𝜌    1

) 

 

Under the assumption of the Causal relation between X and Y (H0: X causes 

Y) and under other hypotheses of independence between X and Y (H1: X does not 

cause Y). As per the definition of Granger causality, Y is caused by X if the lag value 

of X can be used for predicting Y. 

There is introduce a confounding variable 𝑤𝑖𝑡 and we can say that X and Y are 

not causally correlated, but W indirectly affects them. So it will lead to the result that 

X is causing Y through confounding variable W. 𝑊𝑖𝑡 is also called strictly exogenous 

variable, which is highly correlated with regressor but uncorrelated with disturbance 

term. 

The proper specification of the DGP can add confounding variables. In DGP 

(4.1) suppose  𝐴1𝑖 = (𝛼, 0,0), 𝛼 ∈ (0,1) then 𝑦𝑖,𝑡−1 and 𝑧𝑖,𝑡−1 does not appear in the 

equation   𝑥𝑖𝑡. Therefore, 𝑦𝑖𝑡 and   𝑧𝑖𝑡 doesn’t Granger cause    𝑥𝑖𝑡, it means 𝑦𝑖𝑡 and 

   𝑧𝑖𝑡 have an indirect relationship, which behaves like confounding factors. If  𝜃12 =

𝜃13 ≠ 0, it means 𝑦𝑖𝑡 and    𝑧𝑖𝑡 Granger cause    𝑥𝑖𝑡. On the other hand, if  𝐴1𝑖 =

(0, 𝛼, 0), then 𝑥𝑖,𝑡−1 𝑎𝑛𝑑 𝑧𝑖,𝑡−1  doesn’t appear in the equation  𝑦𝑖𝑡 . Hence, 

𝑥𝑖𝑡 𝑎𝑛𝑑    𝑧𝑖𝑡  doesn’t Granger cause    𝑦𝑖𝑡, it means 𝑥𝑖𝑡 and    𝑧𝑖𝑡 have an indirect 

relationship which behaves like confounding factors. If  𝜃21 = 𝜃23 ≠ 0, it means 

𝑥𝑖𝑡 𝑎𝑛𝑑    𝑧𝑖𝑡 Granger cause     𝑦𝑖𝑡. The same causal direction can be examined if we 

have a case that   𝐴1𝑖 = (0,0, 𝛼) the above data generating process generates data in 

different ways by changing the value of parameters or imposing other restrictions. 

The series with contemporaneous correlation can also be generated from the 

data generating process (DGP 1). If 𝐴𝑖=0 and  휀𝑖𝑡 ~ 𝑁 [0, 1 ] then the series generated 

will be independent of each other. If  휀𝑖𝑡 ~ 𝑁 [0, Σ ] then the data generating process 

will generate series with contemporaneous correlation. These cases can be generated 

by imposing different restrictions on the data generating process. The series with drift 

and trend can also be developed from equation (4.1) by taking 𝐵𝑖 ≠0. We will 

generate three independent series with drift, without drift, with drift and trend.  
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First, the data generating process will generate three independent 

autoregressive series having drift and trend if [

−   𝜃12   𝜃13
𝜃21 −  𝜃23
𝜃31   𝜃32  −

]=0, and 𝜌 = 0. Second, the 

data generating process will generate three independent autoregressive series having 

drift if [

−   𝜃12   𝜃13
𝜃21 −  𝜃23
𝜃31   𝜃32  −

]=0, and 𝜌 = 0 and [

−   𝑎2
−  𝑏2
−  𝑐2

] =0. Third, the data generating process 

will generate three independent autoregressive series having no drift if 

[

−   𝜃12   𝜃13
𝜃21 −  𝜃23
𝜃31   𝜃32  −

]=0, and 𝜌 = 0 and [

𝑎𝑖1   −
𝑏𝑖1  −
𝑐𝑖1  −

]=0. Further, we will generate different but 

correlated series 𝑥𝑖𝑡 , 𝑦𝑖𝑡 , 𝑧𝑖𝑡 with drift, without drift, with drift and trend. First, the 

data generating process will generate three dependent series having drift and trend if 

no restriction is imposed on DGP. Second, the data generating process will generate 

three dependent series having drift if [

𝑎𝑖1   −
𝑏𝑖1  −
𝑐𝑖1  −

]=0. Finally, the data generating 

process will generate three dependent series having no drift if [

−   𝑎2
−  𝑏2
−  𝑐2

] =0. 

The parameter 𝐵𝑖 is called “nuisance”. The causality does not depend on the 

matrix of parameter𝐵𝑖, however the test statistics for coefficient present in “𝐴𝑖” which 

determine causality is heavily dependent on 𝐵𝑖 and incorrect specification of 𝐵𝑖 may 

create bias. So, to avoid biases, we have to include this nuisance term. The first 

column of 𝐵𝑖 shows the individual intercepts; we call this feature “cross-sectional 

interdependency.” 

The generated series are independent of each other, causality cannot be 

checked, so we will only determine the size of the test. Furthermore, we will generate 

different but correlated series 𝑥𝑖𝑡 , 𝑦𝑖𝑡 to check the causal ordering through the power 

of the test.  

The term "power of the test" refers to the ability to reject a hypothesis when 

the alternative hypothesis is true. 

𝑃𝑜𝑤𝑒𝑟= (𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝐻0 / 𝐻1 𝑖𝑠 𝑡𝑟𝑢𝑒) 

When a valid hypothesis is rejected, an error is created, which is represented 

by the symbol “α” and determines the size of the test.  
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α= (𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝐻0 / 𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒) 

Strength is the only number that measures the overall performance of a test. 

This means that all tests can be compared and ranked based on this measurement. 

Furthermore, there is a natural and intuitive explanation for the severity of the test. To 

define stringency- the crucial concept is the power envelope, which is the maximum 

possible power that can be achieved at a given alternative.  A test with stringency zero 

is a uniformly most powerful test –where power changes and we select the test which 

offers best power through simulation. It is the most powerful of all the alternatives. If 

it exists, this test should always be preferred. If a test has a 1% hardness test, it means 

that the test strength is only 1% less than the most powerful test available on any 

possible alternative. This test is equally as good as the most powerful test for practical 

purposes. If 5 to 10 between wiring tests can be found, we ’don’t need to search 

further for functional purposes. If the best available tests have a hardness of 50 or 

more, we should look for better testing methods. The point is that assessing the 

severity of the tests provides us with an essential guide for using and comparing tests 

in practical matters. (Rehman, Zaman, et al. 2017). 

4.3 Monte Carlo Simulation Design 

The study aims to assess all causality tests’ performance for panel data by 

investigating size and power properties. The study mainly focuses on Monte Carlo 

Simulations, and the optimal procedure will be selected. Finally, through that optimal 

procedure, causal relations between the intensity of government spending and 

household spending on education will be explored by taking real panel data.  

The following steps are involved in finding the required simulation values;  

 

1. Generate the data for a fixed sample size under null and alternative hypotheses 

using the given DGP.  

2. Testing the Panel Causality Tests 

3. Calculating the test's statistics.  

4. Size and Power 

5. Testing and Simulations 

6. Repeat the process a fixed number of times and save the repeated results in a 

column matrix. 
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4.4 Sample Size Selection 

An appropriate sample size is crucial for the data analysis, especially while 

conducting a panel data analysis. We have annual data sets and selected three 

different cross-section units for this study. We have categorized them into three other 

groups to proceed with this simulation study, i.e., 5, 10 and 20; as small cross-section 

units, medium cross-section units and large cross-section units, respectively. 

Similarly, three-time series lengths are taken to evaluate the performance of Causality 

tests; these time series levels are 25, 50, and 200. Similar to categorizing cross-section 

length into three types, a time series length of 25 indicates small time series, and 50 is 

assigned as a medium time-series length. At the same time, 200 is allotted as a large 

time-series length in this study. 

There is a problem with the Monte Carlo Sample Size (MCSS); there may be 

some disruptions when using small MCSS and often face the difficulty to enlarge 

MCSS. Furthermore, each test's analysis (i.e., simulation) is time-consuming (i.e. may 

take several days) to produce the same result, which further affects the time required 

for each refusal. In order to carry out simulations, an MCSS of 10,000 is taken to get 

the convergence effectively. 

4.5 Monte Carlo Simulation Design for Size of the Test 

Rejecting a true hypothesis is an error denoted by “α”. It constitutes the size of 

the test.  

                                                     α=𝑃 (𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝐻0 / 𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒)  

We calculate the test size using the following steps;  

1. Generate heterogeneous panel data for a fixed number of times and cross-

section dimensions under the null hypothesis   𝐻0 = 0. The number of time 

series and cross-section dimensions considered 25, 50, 200 and 5, 10, 20 

respectively. 

2. Apply the test statistic and calculate its value.  

3. Compute the values of Size and Power of each test.  
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4. Repeat this process for a fixed Monte Carlo sample size. The percentage of 

this count is called the size of the test, which is obtained as: 

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑇𝑒𝑠𝑡 =
𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑐𝑜𝑢𝑛𝑡

𝑀𝐶𝑆𝑆
× 100 

4.6. Monte Carlo Simulation Design for Power of Tests 

The term "power of the test" refers to the ability to reject a hypothesis when 

the alternative hypothesis is true. 

𝑃𝑜𝑤𝑒𝑟= (𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝐻0 / 𝐻1 𝑖𝑠 𝑡𝑟𝑢𝑒) 

 

We compared different panel causality tests used to investigate the causal 

relations in our analysis. All the tests are compared in a common framework to assess 

the ability to reject the null hypothesis when it is wrong.  

The powers of the tests are calculated following these phases;  

 

1. Generate heterogeneous panel data for a fixed number of time and cross-

section dimensions under the whole alternative space   𝐻1 =

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. The number of time series and cross 

section dimensions have considered are 25, 50, 200 and 5, 10, 20 respectively. 

2. Apply test statistics and calculate the test statistic for that particular alternate 

point.  

3. Compute the values of Size and Power of each test.  

4. Repeat this process for fixed MCSS; the percentage of these counts is called 

the power of the test at a specific alternate point.  

5. Replication for every point given in alternate space provides us with the power 

of the test against all possible alternates.  

The debate about the DGP conducted in the above section; powers of the test 

should be considered against each alternate, so we have overall ten alternates revealed 

in alternate space (AS). 
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So, the powers of each test against all alternatives will be calculated using 

10,000 simulations. These simulations give us powers of the test using three sample 

sizes; small (5, 25), medium (10, 50) and large (20, 200). 

4.7 Power Curves  

For a specific test, the powers of each test plotted against the elements of 

alternate space will give us a power curve. For example, we have three-panel 

causality tests to compare, so three power curves will be obtained for the whole 

alternative space (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1), and all the possible 

causal combinations.  

4.8 Power Gains and Size Distortions 

The size and power of each test are calculated using the theory mentioned 

above. The empirical analysis is based on two main observations calculated: 

 

𝑠𝑖𝑧𝑒 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛=𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑠𝑖𝑧𝑒 𝑜𝑓 the 𝑡𝑒𝑠𝑡−𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑖𝑧𝑒 (5%) 

𝑝𝑜𝑤𝑒𝑟 𝐺𝑎𝑖𝑛=𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡he 𝑡𝑒𝑠𝑡−𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡h𝑒 𝑡𝑒𝑠𝑡 

4.9 Real Data Analysis for Granger Non-Causality Test (2012) 

Granger non-causality test detects the correlation and direction of the 

causality. We claimed this challenge in this study. The two-null hypothesis for 

Granger non-causality are presented here as;  

 

   𝐻0: 𝑋𝑖𝑡 does not Granger cause 𝑌𝑖𝑡 

 

   𝐻1: 𝑌𝑖𝑡 does not Granger cause 𝑋𝑖𝑡 

 

In the first hypothesis, it is claimed that the intensity of government spending 

on education does not Granger Cause the intensity of household spending on 

education. If this null is rejected, it is claimed as the test's statistical power.  
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4.10 Panel Causality Tests 

4.10.1 Granger Non-Causality Test in Heterogeneous Panel Data by Hurlin 

(2012)  

Two theorists, Dumitrescu and Hurlin (2012), introduced a famous approach 

primarily used to test for Granger causality in macro panel datasets. Because in 

today’s world, we have increased demand for the macro-level panel data, there is a 

required new set of techniques that can help the econometricians grow and develop 

their skills. 

The Granger non-causality test utilizes the Akaike information criteria, 

Bayesian information criterion, or Hannan–Quinn information criterion to identify the 

optimal lag length. The length where the mentioned criteria give minimum test 

statistic value. 

Finally, to address the empirical problem of cross-sectional dependency, a 

bootstrap technique was used to obtain p-values and critical values. (Lopez and 

Weber, 2017) 

Granger's (1969) methodology is primarily established for investigating the 

causal relations between time series. Let us suppose 𝑥𝑡 and 𝑦𝑡 are two stationary 

series.  

𝑦𝑡 = 𝛼 +∑𝛾𝑘

𝐾

𝑘=1

𝑦𝑡−𝑘 +∑𝛽𝑘

𝐾

𝑘=1

𝑥𝑡−𝑘 + 휀𝑡      𝑤𝑖𝑡ℎ 𝑡 = 1,… , 𝑇                 (4.3) 

We can say that the model can be utilized to determine whether x causes y. In 

other words, if previous values of x are significantly predictive of the present value of 

y even though previous values of y would be included in the model, then x has a 

causal effect on y.  

While using (4.3), we can quickly identify causality that is centered on an F test with 

the following  𝐻0:  

𝐻0: 𝛽1 = ⋯ = 𝛽𝑘 = 0           (4.4) 

 

If 𝐻0 is denied, one might infer that there is causation from x to y. 

Furthermore, the x and y variables may be swapped to test for causation in the 

opposite direction, and reversible causality can be seen. (Lopez and Weber 2017) 
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However, Dumitrescu and Hurlin followed an extension explicitly designed to 

detect the causality in panel data. 

We can say the following equation will represent: 

We can say the following equation will represent the underlying regression: 

𝑦𝑖.𝑡 = 𝛼𝑖 +∑𝛾𝑖𝑘

𝐾

𝑘=1

𝑦𝑖,𝑡−𝑘 +∑𝛽𝑖𝑘

𝐾

𝑘=1

𝑥𝑖,𝑡−𝑘 + 휀𝑖,𝑡      𝑤𝑖𝑡ℎ  𝑖 = 1,… ,𝑁 𝑎𝑛𝑑 𝑡 

= 1,… , 𝑇      (4.5) 

In the above equation, we have 𝑥𝑖𝑡 and 𝑦𝑖𝑡  that represents the observations of 

two stationary variables for individual i in period t. Moreover, individual coefficients 

are permitted to differ, but they are supposed to be time-invariant at the same time. It 

is essential to mention here that the lag order K in this scenario is assumed to be equal 

for all individuals so that the panel should be balanced. 

Granger's method is used to establish causality and to assess the substantial 

impacts of past x values on the current value of y.  Hence, we can define the null 

hypothesis in the following manner:  

𝐻0:  𝛽𝑖1 = ⋯ = 𝛽𝑖𝑘 = 0          ∀ 𝑖 = 1,… ,𝑁       (4.6) 

 

Here we can observe that there is no causation for all members of the panel. 

The reason for this is that in the DH test, we can suppose that causality exists for 

some people but is unnecessary for all. Therefore, in such scenarios, we can assume 

some alternative hypotheses. For instance, let us consider the following alternative 

hypothesis: 

𝐻1: 𝛽𝑖1 = ⋯ = 𝛽𝑖𝑘 = 0          ∀ 𝑖 = 1,… ,𝑁1       (4.7) 

                      𝛽𝑖1 ≠ 0 𝑜𝑟 …𝑜𝑟 𝛽𝑖𝑘 ≠ 0          ∀ 𝑖 = 𝑁1 + 1,… ,𝑁    (4.8) 

 

Now, we can see that in the above equation, we have  𝑁1  ∈ [0, N − 1] that is 

not known. If 𝑁1   = 0, all of the individuals in the panel have a causal relationship. 𝑁1   

must be firmly smaller than N; there is no causation for all individuals, and 𝐻1   

reduces to 𝐻0.For such scenarios, Dumitrescu and Hurlin (2012) proposed that we can 

run the N individual regressions implicitly enclosed in (4.5), perform F tests of the K 
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linear hypotheses 𝛽𝑖1 = · · · = 𝛽𝑖𝑘 = 0 to retrieve the individual Wald statistic  𝑊𝑖, and 

finally compute the average Wald statistic  𝑊̅̅ ̅̅  , 

�̅� =
1

𝑁
∑ 𝑊𝑖
𝑁
𝑖=1                  (4.9) 

Thus, we can say that this test is primarily focused on detecting the causality 

at the panel level, and at the same instant, it is designed to reject  𝐻0 which will not 

exclude non-causality for some individuals. 

 However, one can also use Monte Carlo simulations while using �̅�  

asymptotically to investigate panel causality. (Lopez and Weber, 2017) For instance, 

let us suppose that the assumption for Wald statistics Wi are independently and 

identically distributed among individuals. It may be expressed as the standardized 

statistic where first T → ∞  and then N → ∞ (often read as “T should be big relative to 

N”) following a standard normal distribution as shown below: 

�̅� = √
𝑁

2𝐾
× (�̅� − 𝐾)             𝑁(0,1)        (4.10)

𝑇,𝑁  →∞
→      

𝑑  

Also, for a fixed T dimension with T > 5+3K, the approximated standardized 

statistic �̃� follows a standard normal distribution: 

 

�̃�  = √
𝑁

2𝐾
×
𝑇 − 3𝐾 − 5

𝑇 − 2𝐾 − 3
  × (

𝑇 − 3𝐾 − 3

𝑇 − 3𝐾 − 1
× �̅� − 𝐾)           𝑁(0,1)      (4.11)

𝑁  →∞
→     

𝑑  

In this procedure, we can see that the null hypotheses (equation 4.6) is based 

on 𝑍 ̅and �̃�. However, if these are pretty larger than the expected standard critical 

values, then we should reject 𝐻0 and simply, we can conclude that Granger causality 

exists in this scenario. But it is essential to mention here that for large N and T panel 

data sets, 𝑍 ̅ is a considerable option. �̃� should be preferred for datasets with large N. 

Still, relatively small T. Dumitrescu and Hurlin (2012) used Monte Carlo Simulations 

to show that they exhibits good finite sample characteristics, even when N and T are 

small. The selection lag order (K) is an empirical problem that Dumitrescu and Hurlin 

(2012) do not address. One solution is to use the number of lags based on an 

information criterion (AIC/BIC/HQIC).  (Lopez and Weber, 2017) 



63 
 

4.10.2 Sims Test (1972)  

The GC test (1969) explored that one variable is often regressed on its lags 

and the lags of another explanatory variable. But it is important to note that it does not 

include lead values of the explanatory variable during the process. The problem is 

confronted by Sims (1972). They argued that if one variable regresses on its lags, then 

the leading values of the explanatory variable will result in causality run from 

explanatory to regressed variable and all the leading values of the regressor in the 

regression will not become statistically significant and different from zero as a 

group.  Henceforth, Sims demonstrated that the “future cannot cause current or past” 

(Sims 1972).  

Moreover, it assumes that the error term white-noise and variables must be 

integrated of order zero at a level. However, one variable is non-stationary at level but 

becomes stationary at the first difference, then in that case variable at first difference 

should be used preferably (Sims 1972). 

Sims (1972) is applicable for only time-series data sets. In order to find the 

causal relations in panel data, we have modified the Sims test (1972) for panel data. 

Thus, the application of the modified Sims test will demand an equation for testing 

panel regression X to Y; 

𝑌𝑖𝑡 = 𝛼𝑖 +∑𝛼1𝑖

𝑚

𝑖=1

𝑋𝑖𝑡−𝑖 +∑𝑏𝑗

𝑛

𝑗=1

𝑋𝑖𝑡+𝑗 + 𝜈1,𝑖𝑡               (4.12) 

Here tested the following null hypothesis by using the F-test (eq.4.15): 

𝐻0: 𝑏11 = 𝑏12 = .   .  . =  𝑏1𝑛 = 0 

Now, If 𝐻0is accepted, then we will say X causes Y; otherwise, we will say 

that X does not Granger cause Y. Likewise, to assess causality from Y to X, we have 

to apply the following equation: 

𝑋𝑖𝑡 = 𝛼1𝑖 + ∑ 𝛼2𝑖
𝑚
𝑖=1 𝑌𝑖𝑡−𝑖 + ∑ 𝑏2𝑗

𝑛
𝑗=1 𝑌𝑖𝑡+𝑗 + 𝜈2,𝑖𝑡            (4.13)         

And for the process of conducting a test for the null hypothesis; we will use 

the following equation: 

𝐻0: 𝑏21 = 𝑏22 = .   .  . =  𝑏2𝑛 = 0                                       (4.14) 
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In order to see if jointly the coefficients associated with the regressors are 

statistically significant, conduct an F-test to test the null hypothesis. Now, run the 

following; 

 

𝐹 =
(𝑆𝑆𝑅𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑−𝑆𝑆𝑅𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑)∕𝑘

𝑆𝑆𝑅𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑∕(𝑇−2𝑘−1)
 ∼ 𝐹𝑘,   𝑇−2𝑘−1   (4.15) 

 

Dumitrescu and Hurlin (2012) proposed that we can run the N individual 

regressions implicitly enclosed in (4.12), perform F tests of the K linear hypotheses 

𝛽𝑖1 = · · · = 𝛽𝑖𝑘 = 0 to retrieve the individual Wald statistic  𝑊𝑖, and finally compute 

the average Wald statistic  𝑊̅̅ ̅̅  , 

�̅� =
1

𝑁
∑ 𝑊𝑖
𝑁
𝑖=1                 (4.16) 

Thus, we can say that this test is primarily focused on detecting the causality 

at the panel level, and at the same instant, it is designed to reject  𝐻0 which will not 

exclude non-causality for some individuals. However, one can also use Monte Carlo 

simulations while using �̅�  Asymptotically to investigate panel causality (Lopez and 

Weber 2017). For instance, let us suppose that the assumption for Wald statistics Wi 

are independently and identically distributed among individuals. It may be expressed 

as the standardized statistic where first T → ∞ and then N → ∞ (often read as “T 

should be big relative to N”) following a standard normal distribution as shown 

below: 

�̅� = √
𝑁

2𝐾
× (�̅� − 𝐾)             𝑁(0,1)        (4.17)

𝑇,𝑁  →∞
→      

𝑑  

4.10.3 Final Prediction Error (FPE) Method (Hsiao 1981)     

Hsiao introduced one of the relevant and intelligent compositions to handle the 

limitations of the Grangers Causality test. Hsiao (1981) merged the GC test with 

Akaike Final Prediction Error (FPE) criterion. The first step of the process involved 

using the regressed variable through a one-dimensional autoregressive procedure. 

After regressing a variable only on its lagged, it can calculate the FPE.  

In the second step, regress a variable on its lag, plus lags of the explanatory 

variable, and then calculate its FPE. Now, find out that the FPE of the second step is 
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far less than the first step FPE. This will conclude the causal relationship between the 

explanatory variable and the explained variable under such a scenario.  

The procedure can repeat the same process to examine the GC (1969) among 

three variables. It is significant to highlight here that both assumptions and 

methodology will be similar to (Sims 1972). However, the results reflect that FPE will 

minimize the mean square prediction error, further decreasing the uncertainty at the 

significance level while using the optimality criterion. Furthermore, Hsiao believed 

that additional variables are substantially allowed in this method (Hsiao 1981). 

We have modified the final prediction error method of Hsiao for panel data. 

Now represent the Hsiao method in the equations for panel data. As we can see in the 

first step, we have to estimate the following autoregressive equation having this 

particular form: 

𝑌𝑖𝑡 = 𝛼𝑖 +∑𝛼1𝑖

𝑚

𝑖=1

𝑌𝑖𝑡−𝑖 + 𝜈1,𝑖𝑡     (4.18) 

Now here selected “m” to the greatest extent possible. The FPE was then 

calculated in the following manner for each regression; 

𝐹𝑃𝐸(𝑚) =
𝑇 +𝑚 + 1

𝑇 −𝑚 − 1
𝑄(𝑚) 𝑇⁄      (4.19) 

In the above equation, we have ‘T,’ the number of observations utilized, m' is 

the lag order ranging from 1 to m, and Q (m) is the related sum of squared residuals. 

Assume that the precise value of m, say 𝑚∗,  is the optimal lag length, which results in 

the lowest FPE. 

Now in the second stage, treat ‘Y’ as the regressed variable with the optimal 

lag order set at 𝑚∗ and ‘X’ is regarded here as a regressor variable with the order of 

lags ranging from 1 to n. Then, after it, have to run the regression of the following: 

𝑌𝑖,𝑡 = 𝛼1,𝑖 +∑𝛼1,𝑖

𝑚∗

𝑖=1

𝑌𝑖,𝑡−𝑖 +∑𝑏1,𝑗

𝑛

𝑗=1

𝑋𝑖,𝑡−𝑗+ 𝜈2,𝑖,𝑡     (4.20) 

As we can see that the corresponding two-dimensional FPE will come out to be:  

 

𝐹𝑃𝐸(𝑚,𝑛) =
𝑇 +𝑚∗ + 𝑛 + 1

𝑇 −𝑚∗ − 𝑛 − 1
𝑄(𝑚, 𝑛) 𝑇⁄          (4.21) 
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In the above equation, ‘n’ is the order of lags on ‘X.’  We have witnessed here 

that once again, the optimum ‘n’ say "𝑛∗" is picked to reduce FPE (m, n).  

Hence, this procedure concludes here that X has Granger causality to Y only if FPE 

(𝑚∗, 𝑛∗)<FPE (𝑚∗). 

Furthermore, repeat the same process for the following regression lines if you 

want to run the GC test (1969) between three variables. 

 

Restricted equation                                                 Unrestricted equation 

𝑌𝑖𝑡 = 𝛼1 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑌𝑖𝑡) + 𝜈2,𝑖𝑡                             𝑌𝑖𝑡 = 𝛼1 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑍𝑖𝑡,𝑌𝑖𝑡) + 𝜈2,𝑖𝑡 

(4.22) 

𝑌𝑖𝑡 = 𝛼1 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑌𝑖𝑡) + 𝜈2,𝑖𝑡                             𝑌𝑖𝑡 = 𝛼1 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑋𝑖𝑡,𝑌𝑖𝑡) + 𝜈2,𝑖𝑡 

(4.23) 

𝑍𝑖𝑡 = 𝛼2 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑍𝑖𝑡) + 𝜈3,𝑖𝑡                            𝑍𝑖𝑡 = 𝛼2 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑍𝑖𝑡,𝑌𝑖𝑡) + 𝜈3,𝑖𝑡 

(4.24) 

𝑍𝑖𝑡 = 𝛼3 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑍𝑖𝑡) + 𝜈4,𝑖𝑡                            𝑍𝑖𝑡 = 𝛼3 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑍𝑖𝑡,, 𝑋𝑖𝑡) + 𝜈4,𝑖𝑡 

(4.25) 

𝑋𝑖𝑡 = 𝛼4 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑋𝑖𝑡) + 𝜈5,𝑖𝑡                            𝑋𝑖𝑡 = 𝛼4 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑍𝑖𝑡,, 𝑋𝑖𝑡) + 𝜈5,𝑖𝑡 

(4.26) 

𝑋𝑖𝑡 = 𝛼5 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑋𝑖𝑡) + 𝜈6,𝑖𝑡                            𝑋𝑖𝑡 = 𝛼5 + 𝑙𝑎𝑔𝑔𝑒𝑑 (𝑌𝑖𝑡,, 𝑋𝑖𝑡) + 𝜈6,𝑖𝑡 

(4.27) 

 

As we have written above estimated unrestricted and restricted equations, we 

found out that the associating minimum FPE for precise values of m and n are 

present; hence we can appeal conclusions. In all of the regressions mentioned above, 

errors are white noise, and all variables have been used stationary at their levels. 

To see if jointly the coefficients associated with the regressors are statistically 

significant, conduct an F-test to test the null hypothesis. Now, run the following; 

 

𝐹 =
(𝑆𝑆𝑅𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑−𝑆𝑆𝑅𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑)∕𝑘

𝑆𝑆𝑅𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑∕(𝑇−2𝑘−1)
 ∼ 𝐹𝑘,   𝑇−2𝑘−1   (4.28) 

Dumitrescu and Hurlin (2012) proposed that we can run the N individual 

regressions implicitly enclosed in (4.20), perform F tests of the K linear hypotheses 
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𝛽𝑖1 = · · · = 𝛽𝑖𝑘 = 0 to retrieve the individual Wald statistic  𝑊𝑖, and finally compute 

the average Wald statistic  𝑊̅̅ ̅̅  , 

�̅� =
1

𝑁
∑ 𝑊𝑖
𝑁
𝑖=1                 (4.29) 

Thus, we can say that this test is primarily focused on detecting the causality 

at the panel level, and at the same instant, it is designed to reject  𝐻0 which will not 

exclude non-causality for some individuals. However, one can also use Monte Carlo 

simulations while using �̅�  asymptotically to investigate panel causality (Lopez and 

Weber 2017). For instance, let us suppose that the assumption for Wald statistics Wi 

are independently and identically distributed among individuals. It may be expressed 

as the standardized statistic where first T → ∞ and then N → ∞ (often read as “T 

should be big relative to N”) following a standard normal distribution as shown 

below: 

�̅� = √
𝑁

2𝐾
× (�̅� − 𝐾)             𝑁(0,1)        (4.30)

𝑇,𝑁  →∞
→      

𝑑  
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CHAPTER 5 

SIZE AND POWER COMPARISON 

This chapter briefly discusses the simulation results of panel causality tests 

with heterogeneous panel DGP under various model specifications. Then, based on 

Monte Carlo simulation findings, a size and power comparison is performed between 

the Granger non-causality test, Sims test, and Hsiao's Final prediction error test. 

Finally, this chapter concludes on which panel causality test is the best performer and 

which one is the worst based on Monte Carlo simulations. 

The study's objective is to evaluate the performance of all causality tests for 

panel data by investigating size and power properties. To achieve this objective, the 

study mainly focuses on Monte Carlo Simulations, and the optimal procedure has 

been selected on its basis. 

In view of existing literature for panel data, almost all panel data tests were 

first developed for the single cross-section with a time series structure, and then 

expended for more than one cross-section. In the end, an average of all cross-sections 

is taken to develop a panel data test. Keeping in view the same practice, this study has 

modified Sim’s time series causality test and the final prediction error method of 

casualty for time series to panel counterparts to compare with the Granger non-

causality test. In the existing test, Granger non-causality test, while in modified Sims 

and Final Prediction Error are compared.  We modified the Sims test algorithms and 

the final prediction error method for panel data causality analysis. 

 A comparison of Panel Causality Tests is made through size and power 

properties. The power of the Granger non-causality Test by Dumitrescu and Hurlin 

(2012), Sims (1972), and the Final Prediction Error (FPE) method by Hsiao (1981) 

causal search algorithm is analyzed. The power of any test is defined as the 

probability of rejecting a null hypothesis when it is false i.e.   

𝑃𝑜𝑤𝑒𝑟 = 𝑃(𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝐻0/𝐻1 𝑖𝑠 𝑇𝑟𝑢𝑒) 

We analyze the power of Panel causality tests for a variety of situations. The 

power also depends on several nuisance parameters related to the “deterministic part” 

and the “stochastic part”. Among the deterministic part are a component of drift and 

trend. At the same time, among stochastic elements, we have the autoregressive 
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coefficient of the three series (X, Y, and Z), which also determines the series’ 

stationary.  This study used three different groups of the sample size, which were 

categorized into a small sample size, medium sample size, and large sample size for 

the data generating process under alternative hypotheses to calculate power. 

5.1. Power Analysis of Panel causality tests with stationary Series  

First, we have generated stationary series 𝑥, 𝑦, and 𝑧 based on the change in 

both stochastic and deterministic parts using the data developing process given in 

equation (5.1). We have attributed different diagonal values in matrix A  𝜃11 = 0.3, 

 𝜃22 = 0.5,   𝜃33 =  0.7  for making heterogeneous panel data, and the power of panel 

causality tests is calculated. We have also used heterogeneous drift and trend terms in 

DGP. The off-diagonal values (𝜃12 and 𝜃13, 𝜃21 and 𝜃23 , 𝜃31 and 𝜃32)  establish the 

correlation between x & y and y & z, and its value also changes from 1, 0.9, 0.8, 0.7, 

0.6, 0.5, 0.4, 0.3, 0.2, 0.1, and 0 in matrix A which shows that 𝑥 → 𝑦 and 𝑦 → 𝑧 

respectively. We have used all six causal combinations of three variables (X, Y, and 

Z) with different model specifications; only drift, with drift and trend for small, 

medium, and large panel sample sizes. 
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Table 5. 1: Power Analysis of Panel Causality Tests using stationary series with Drift 

Only for Small Sample T=25 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel(A)   X→Y/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 14.3 16.8 22.9 38.2 54.7 76.0 15.0 27.5 46.8 
0.1 0.9 16.2 20.7 28.0 39.1 55.8 77.3 18.6 29.8 51.1 
0.2 0.8 23.2 33.6 47.7 40.6 56.9 78.6 20.8 33.3 58.7 
0.3 0.7 38.9 53.9 77.4 41.0 58.9 79.6 24.9 43.5 71.6 
0.4 0.6 56.4 75.8 94.5 42.1 61.2 81.1 30.9 52.4 85.3 
0.5 0.5 73.4 92.1 99.2 42.9 62.1 83.6 41.4 66.4 92.3 
0.6 0.4 87.2 97.9 99.9 43.7 64.5 83.9 47.5 77.4 96.9 
0.7 0.3 94.7 99.8 100 44.0 65.5 84.4 58.0 86.5 99.4 
0.8 0.2 98.1 100 100 44.9 67.6 85.9 71.9 92.5 99.9 
0.9 0.1 99.3 100 100 45.3 68.3 87.2 79.8 97.8 100 
1 0 99.9 100 100 46.1 70.7 88.8 87.2 99.4 100 

  Panel(B)                   X→Z/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7 

0 1 15.8 19.5 28.6 27.3 38.0 55.0 16.5 29.7 55.4 
0.1 0.9 87.8 98.5 100 28.0 38.5 56.6 26.8 45.5 77.2 
0.2 0.8 99.2 100 100 28.7 39.8 57.4 31.9 50.5 83.9 
0.3 0.7 99.9 100 100 29.3 40.1 58.0 34.2 55.7 87.6 
0.4 0.6 100 100 100 30.5 41.8 59.5 37.1 63.4 89.2 
0.5 0.5 100 100 100 31.8 42.1 60.5 39.7 65.3 92.1 
0.6 0.4 100 100 100 33.6 43.4 61.9 41.8 68.7 92.7 
0.7 0.3 100 100 100 34.6 44.6 62.7 44.6 69.8 96.0 
0.8 0.2 100 100 100 36.0 46.1 63.9 46.6 70.7 96.3 
0.9 0.1 100 100 100 38.7 48.5 64.7 47.7 76.7 96.9 
1 0 100 100 100 44.5 51.8 65.0 50.8 78.5 97.7 

 

Panel A of Table 5.1 used stationary series having an autoregressive 

coefficient value less than one, i.e., 0.3, 0.5, and 0.7 are generated with cross 

dependence terms 𝜃12 and 𝜃13, keeping deterministic part with only drift term. 

The coefficients 𝜃12 and 𝜃13 vary from 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9 and 1, in matrix A of  DGP given in equation (1). First row of each panel in Table 

5.1 shows the size of the test which corresponds to series where 𝜃12 and 𝜃13 = 0 at 

different autoregressive coefficients (𝜃11 =0.3, 𝜃22 = 0.5, 𝜃33 = 0.7). In panels (A) 

and (B) of Table 5.1, the results indicate the power of the test at each alternative 

hypothesis when the coefficients of 𝜃12 and 𝜃13 vary from 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9, and 1  that treating the power of panel causality tests; Granger non-

causality, Sims causality, and FPE method of Hsiao. We find the high power of the 

Granger non-causality test in each sample size that is small, medium, and large with 
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only drift term. The conventional results in such a scenario indicate that measure of 

association between x and y (𝜃12), x and z (𝜃13)would have very high at each 

alternative hypothesis. But using the Granger non-causality test and FPE method of 

Hsiao algorithms in case of 𝑥 to 𝑦 (𝜃12) and 𝑥 to 𝑧 (𝜃13) variable both procedures 

perform well as compared to Sims causality test. 

It is also important to note that actual causal paths go from 𝑥 to 𝑦 and 𝑥 to 𝑧 in 

DGP. The power of having these paths is significant and has a regular pattern more in 

the Granger non-causality test and FPE method of Hsiao. 

Table 5. 2: Power Analysis of Causality Tests using stationary series with Drift Only 

for Medium Sample T=50 

                       Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)   X→Y/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 8.1 9.2 10.8 62.6 84.4 97.2 1.7 2.7 1.9 
0.1 0.9 12.7 16.2 21.1 63.8 85.7 97.9 2.3 3.5 3.8 
0.2 0.8 29.0 44.0 63.2 65.5 86.4 98.7 4.3 6.6 13.3 
0.3 0.7 59.0 79.5 96.2 66.8 87.2 99.1 12.5 21.9 39.8 
0.4 0.6 82.4 97.0 100 68.0 88.5 99.6 23.4 45.6 79.4 
0.5 0.5 95.7 99.8 100 69.9 89.0 99.9 44.1 76.2 96.8 
0.6 0.4 99.3 100 100 71.5 90.3 100 63.3 92.9 99.5 
0.7 0.3 99.9 100 100 72.9 92.7 100 85.6 99.1 100 
0.8 0.2 100 100 100 73.9 94.4 100 93.9 100 100 
0.9 0.1 100 100 100 74.0 95.4 100 98.3 100 100 
1 0 100 100 100 78.8 96.3 100 99.7 100 100 

   Panel (B)                X→Z/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7 

0 1 9.8 10.8 12.6 33.8 46.9 66.9 1.3 2.1 1.9 
0.1 0.9 96.1 99.8 100 35.8 48.6 67.3 5.4 7.9 14.9 
0.2 0.8 100 100 100 36.1 49.8 70.0 6.8 11.5 31.6 
0.3 0.7 100 100 100 37.1 50.4 74.7 13.5 21.1 42.2 
0.4 0.6 100 100 100 39.1 52.4 76.2 16.2 26.8 56.2 
0.5 0.5 100 100 100 45.3 54.1 80.2 18.4 30.8 63.5 
0.6 0.4 100 100 100 46.6 56.0 83.6 21.7 39.5 73.5 
0.7 0.3 100 100 100 49.2 58.2 84.0 23.4 49.2 83.9 
0.8 0.2 100 100 100 51.6 60.1 86.8 29.1 60.5 89.3 
0.9 0.1 100 100 100 56.6 69.7 89.1 35.6 63.6 93.8 
1 0 100 100 100 60.1 79.9 96.8 40.6 75.9 96.3 
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Table 5. 3: Power Analysis of Panel Causality Tests using stationary series with Drift 

Only for Large Sample T=200 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)   X→Y/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 5.0 5.3 5.6 9.9 10.8 12.9 0.57 1.63 2.19 

0.1 0.9 27.9 40.1 59.2 49.9 54.2 76.1 1.28 2.89 4.69 

0.2 0.8 86.0 98.0 100 64.0 100 100 18.7 35.4 72.1 

0.3 0.7 99.8 100 100 100 100 100 71.7 96.5 100 

0.4 0.6 100 100 100 100 100 100 98.2 100 100 

0.5 0.5 100 100 100 100 100 100 100 100 100 

0.6 0.4 100 100 100 100 100 100 100 100 100 

0.7 0.3 100 100 100 100 100 100 100 100 100 

0.8 0.2 100 100 100 100 100 100 100 100 100 

0.9 0.1 100 100 100 100 100 100 100 100 100 

1 0 100 100 100 100 100 100 100 100 100 

Panel (B)                   X→Z/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7 

0 1 5.2 5.3 5.7 82.7 96.5 98.9 0.2 0.4 0.9 

0.1 0.9 99.9 100 100 83.3 97.5 100 1.5 2.0 4.3 

0.2 0.8 100 100 100 84.3 98.4 100 8.2 21.8 48.7 

0.3 0.7 100 100 100 86.9 99.1 100 23.8 49.9 84.9 

0.4 0.6 100 100 100 88.8 99.9 100 40.6 75.9 97.6 

0.5 0.5 100 100 100 89.9 100 100 54.8 88.5 99.6 

0.6 0.4 100 100 100 90.7 100 100 70.8 95.9 100 

0.7 0.3 100 100 100 93.6 100 100 82.6 99.1 100 

0.8 0.2 100 100 100 95.8 100 100 92.6 99.4 100 

0.9 0.1 100 100 100 96.3 100 100 96.5 100 100 

1 0 100 100 100 98.8 100 100 99.9 100 100 

 

 The same procedure is used in Table 5.2 and Table 5.3, but the only difference 

is that the panel series have different sample sizes; the medium sample size (i.e. 

T=50) in Table 5.2 and the large sample size (i.e. T=200) in Table 5.3. In Table 5.2 

and Table 5.3, stationary series are generated with cross dependence terms 𝜃12 

and  𝜃13, keeping deterministic part only drift term present. We found about the same 

results as shown in Table 5.1. As the number of time lengths increases, each Panel 

Causality Test (PCT) gains much power at each stage of increasing cross-section units 

(i.e. N=5, N=10, and N=20) if DGP and test equation has drift term only. However, 

the Sims causality test has 78% maximum empirical power at N=5, T=50 when the 

causal combination is X causes Y in the Panel (A) of Table 5.2. Still, as the cross-

section unit increases to 10 and 20, then the empirical power of the SIM test statistic 

has been observed as 100% at 0.6 alternatives. At large time length, T=200 in Table 
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5.3, Granger non-causality test, Sims Causality and FPE Method of Hsiao have gained 

100% empirical power at 0.1 alternatives even at small cross-section unit. 

 In comparing size, the GC test has the least size distortion compared to size 

distortion of SIM and FPE causality tests at small, medium, and large cross-section 

units. All three tests archive increasing power pattern as a parameter of interest (𝜌1 

and  𝜌2) moves away from the null hypothesis corresponding to all cross-section 

dimensions. However, the power attainment of the GC test is much better than the 

other two tests (SIM and FPE) at all alternatives, whether the cross-sectional length is 

small, medium, or large. 

Table 5. 4: Power Analysis of Panel Causality Tests using stationary series with Drift 

Only for Small Sample T=25 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)   Y→X/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 11.8 14.1 19.5 20.0 27.3 40.8 15.8 25.3 44.8 
0.1 0.9 29.7 37.7 57.4 21.7 30.6 43.3 19.8 32.9 57.9 
0.2 0.8 66.8 89.7 98.3 24.4 33.4 48.2 35.2 61.3 87.5 
0.3 0.7 94.5 99.8 100 27.7 36.6 52.5 63.2 87.7 99.3 
0.4 0.6 100 100 100 29.2 38.4 55.3 85.4 99.9 100 
0.5 0.5 100 100 100 34.3 40.1 57.9 95.6 100 100 
0.6 0.4 100 100 100 36.8 43.3 58.4 99.5 100 100 
0.7 0.3 100 100 100 38.0 45.1 60.1 100 100 100 
0.8 0.2 100 100 100 40.8 54.2 64.6 100 100 100 
0.9 0.1 100 100 100 43.5 56.2 67.3 100 100 100 
1 0 100 100 100 46.0 58.0 73.0 100 100 100 

 Panel (B)                        Y→Z/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =
 0.7 

0 1 20.4 27.8 39.4 34.5 49.0 70.3 22.7 34.9 62.2 
0.1 0.9 95.7 99.9 100 38.9 50.1 73.6 32.7 53.7 83.1 
0.2 0.8 100 100 100 40.8 54.9 76.0 38.7 61.1 89.4 
0.3 0.7 100 100 100 42.3 58.8 79.7 42.9 70.7 93.9 
0.4 0.6 100 100 100 45.7 60.7 81.5 44.8 75.1 96.8 
0.5 0.5 100 100 100 47.8 64.0 85.2 53.2 80.5 97.7 
0.6 0.4 100 100 100 48.7 67.2 88.3 55.6 82.2 98.4 
0.7 0.3 100 100 100 52.9 70.7 89.0 58.3 85.5 98.9 
0.8 0.2 100 100 100 55.7 73.0 93.2 60.8 86.9 99.6 
0.9 0.1 100 100 100 58.4 76.1 95.0 63.9 88.8 99.8 
1 0 100 100 100 60.4 80.3 97.5 66.3 91.8 99.9 
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Table 5.4 shows the size and power attainment of panel causality tests for 

small-time dimensions and small, medium and large cross-section dimensions when 

both DGP and test equation have drift term only. Panel (A) of Table 5.4 explains the 

results for the situation when Y Granger causes X. In compression of size, the GC test 

has the least size distortion compared to size distortion of SIM and FPE tests at small, 

medium, and large cross-section units. All three tests archive increasing power pattern 

as a parameter of interest (𝜌1 and 𝜌2) moves away from the null hypothesis 

corresponding to all cross-section dimensions. However, the power attainment of the 

GC test is much better than the other two tests (SIM and FPE) at all alternatives, 

whether the cross-sectional length is small, medium or large. This test archives 100% 

power at 0.4 alternative corresponding to N=5 and at 0.2 for a large cross-section unit 

and is recognized as the best performer compared to the other two tests. Among Sims 

and FPE tests, the former gains the least power at all alternatives compared to the 

latter, which corresponds to small, medium and large cross-section units and is thus 

identified as the worst performer.                 

A similar pattern has been observed for almost all tests in Table 5.5 and Table 

5.6 when the causal combinations are Y causes X (𝜃21) and Y causes Z (𝜃23) in 

heterogeneous panel data in case of only drift term. At the medium-time length T=50, 

Panel (A) of Table 5.5 explains the results for the causal combination of Y causes X.  

In a comparison of size, the GC test has the least size distortion compared to the size 

distortion of SIM and FPE causality tests at small, medium, and large cross-section 

units. The (B) panel of Table 5.5 with a causal combination  𝜃23SIM causality test has 

taken maximum empirical power of 60%, 80%, and 97% at N=5, 10, and 20, 

respectively. In contrast, GC and FPE tests for both causal combinations have attained 

maximum empirical power equal to 100%.  

All three tests archive increasing power pattern as a parameter of interest (𝜌1 

and  𝜌2) moves away from the null hypothesis corresponding to all cross-section 

dimensions. GC test archives 100% power at 0.2 alternative corresponding to N=5 

and at 0.1 for large cross-section unit and recognized the best performer compared to 

the other two tests. Among SIM and FPE tests, the former gains least power at all 

alternatives compared to the later one corresponding to small, medium and large 

cross-section units and thus identified as the worst performer.                 
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 Further, at T=200, almost all test have attained their highest empirical power 

equal to 100% in Table 5.6. As the time series and cross-section length increase, the 

power of PCT tests also increases. However, the power attainment of the GC test is 

much better than the other two tests (SIM and FPE) at all alternatives, whether the 

cross-sectional length is small, medium, or large. 

Table 5. 5: Power Analysis of Panel Causality Tests using stationary series with Drift 

Only for Medium Sample T=50 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)   Y→X/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 8.3 9.2 11.3 15.0 20.1 28.3 1.7 2.7 4.5 
0.1 0.9 34.9 54.7 81.5 19.4 24.9 29.0 6.3 9.8 18.9 
0.2 0.8 93.6 99.6 100 23.2 28.2 30.2 34.5 64.8 92.9 
0.3 0.7 100 100 100 26.5 32.5 36.2 86.7 99.9 100 
0.4 0.6 100 100 100 31.6 35.1 39.2 99.5 100 100 
0.5 0.5 100 100 100 33.2 37.5 42.8 100 100 100 
0.6 0.4 100 100 100 38.7 40.8 48.4 100 100 100 
0.7 0.3 100 100 100 40.8 44.2 56.7 100 100 100 
0.8 0.2 100 100 100 43.2 47.9 59.0 100 100 100 
0.9 0.1 100 100 100 47.2 49.5 66.3 100 100 100 
1 0 100 100 100 50.3 57.4 74.5 100 100 100 

Panel (B)                  Y→Z/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7 

0 1 10.1 13.4 16.0 27.1 39.7 56.4 1.7 2.5 3.4 
0.1 0.9 99.1 100 100 28.4 40.2 57.7 7.37 9.6 22.5 
0.2 0.8 100 100 100 30.2 43.4 59.5 10.2 22.7 40.5 
0.3 0.7 100 100 100 33.3 47.6 61.8 16.8 29.9 62.2 
0.4 0.6 100 100 100 36.0 49.6 64.0 24.3 48.8 84.7 
0.5 0.5 100 100 100 38.8 52.1 66.8 31.9 61.3 92.3 
0.6 0.4 100 100 100 40.3 56.9 68.9 42.7 74.9 97.3 
0.7 0.3 100 100 100 43.3 59.0 74.0 50.5 81.3 98.9 
0.8 0.2 100 100 100 46.8 64.9 78.1 59.6 88.9 99.5 
0.9 0.1 100 100 100 49.8 69.9 84.4 67.5 94.2 99.9 
1 0 100 100 100 58.5 73.8 88.1 74.7 96.2 100 
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Table 5. 6: Power Analysis of Panel Causality Tests using stationary series with Drift 

Only for Large Sample T=200 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)      Y→X/causality                  𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 5.6 7.9 8.1 35.4 50.5 70.9 0.3 1.4 2.1 
0.1 0.9 94.4 99.8 100 38.9 54.9 78.1 30.2 57.7 93.2 
0.2 0.8 100 100 100 42.9 63.1 83.7 99.9 100 100 
0.3 0.7 100 100 100 48.3 68.5 89.0 100 100 100 
0.4 0.6 100 100 100 52.3 75.0 93.8 100 100 100 
0.5 0.5 100 100 100 59.1 81.5 96.3 100 100 100 
0.6 0.4 100 100 100 65.8 86.9 98.4 100 100 100 
0.7 0.3 100 100 100 71.5 91.3 99.4 100 100 100 
0.8 0.2 100 100 100 78.0 94.0 99.7 100 100 100 
0.9 0.1 100 100 100 80.5 96.1 99.9 100 100 100 
1 0 100 100 100 84.2 97.3 100 100 100 100 

   Panel (B)               Y→Z/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7 

0 1 5.4 6.4 7.0 57.6 77.3 94.9 0.3 2.9 4.1 
0.1 0.9 100 100 100 61.2 81.4 96.6 3.2 5.5 15.8 
0.2 0.8 100 100 100 66.1 86.6 97.7 17.1 41.8 75.5 
0.3 0.7 100 100 100 70.4 88.9 98.8 43.6 74.8 98.4 
0.4 0.6 100 100 100 73.2 92.0 99.5 69.5 95.7 100 
0.5 0.5 100 100 100 77.0 93.9 99.7 90.5 99.5 100 
0.6 0.4 100 100 100 81.0 95.7 99.8 96.7 100 100 
0.7 0.3 100 100 100 82.7 96.8 99.9 99.8 100 100 
0.8 0.2 100 100 100 83.9 97.1 100 100 100 100 
0.9 0.1 100 100 100 84.8 98.9 100 100 100 100 
1 0 100 100 100 86.0 99.4 100 100 100 100 
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Table 5. 7: Power Analysis of Panel Causality Tests using stationary series with Drift 

Only for Small Sample T=25 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)   Z→X/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 10.8 13.6 15.9 27.4 38.7 57.7 16.8 25.4 48.7 
0.1 0.9 99.9 100 100 33.0 39.4 58.0 94.6 99.8 100 
0.2 0.8 100 100 100 36.2 40.6 60.3 100 100 100 
0.3 0.7 100 100 100 39.1 43.6 62.2 100 100 100 
0.4 0.6 100 100 100 40.4 46.3 64.0 100 100 100 
0.5 0.5 100 100 100 43.0 48.0 66.3 100 100 100 
0.6 0.4 100 100 100 46.2 50.5 68.3 100 100 100 
0.7 0.3 100 100 100 48.6 54.4 70.8 100 100 100 
0.8 0.2 100 100 100 52.9 58.4 73.1 100 100 100 
0.9 0.1 100 100 100 55.0 60.0 75.5 100 100 100 
1 0 100 100 100 63.1 68.4 79.7 100 100 100 

 Panel (B)                                   Z→Y/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   
𝜃33 =  0.7 

0 1 10.3 12.8 16.6 40.1 60.1 80.6 14.7 25.3 52.3 
0.1 0.9 88.3 98.3 100 46.2 58.2 84.7 92.3 100 100 
0.2 0.8 100 100 100 49.5 59.5 88.9 100 100 100 
0.3 0.7 100 100 100 50.9 63.9 90.9 100 100 100 
0.4 0.6 100 100 100 54.3 65.3 93.1 100 100 100 
0.5 0.5 100 100 100 58.4 68.4 97.3 100 100 100 
0.6 0.4 100 100 100 62.6 70.6 98.6 100 100 100 
0.7 0.3 100 100 100 65.4 73.4 99.4 100 100 100 
0.8 0.2 100 100 100 67.1 75.1 99.6 100 100 100 
0.9 0.1 100 100 100 74.2 77.9 99.9 100 100 100 
1 0 100 100 100 78.5 85.6 100 100 100 100 

 

Tables 5.7, Table 5.8, and Table 5.9 show the size and power attainment of 

panel causality tests when the causal combinations are Z cause X (𝜃31) and Z causes 

Y (𝜃32) in heterogeneous panel data in case of only drift term. At the small-time 

length T=25, the Panel (A) of Table 5.7 with a causal combination of Z causes X 

(𝜃31), SIMS causality test has taken maximum empirical power of 79.7% at N=20, 

respectively. In compression of size, the GC test has the least size distortion from the 

nominal size of 5% compared to size distortion of SIM and FPE tests at small, 

medium, and large cross-section units. All three tests archive increasing power pattern 

as the parameter of interest (𝜌1 and 𝜌2) moves away from the null hypothesis 

corresponding to all cross-section dimensions. However, the power attainment of the 

GC test is much better than the other two tests (SIM and FPE) at all alternatives, 
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whether the cross-sectional length is small, medium, or large. This test archives 100% 

power at 0.2 alternative corresponding to N=5 and at 0.1 for large cross-section unit 

for both causal combinations and recognized the best performer compared to the other 

two tests. Among SIM and FPE tests, the former gains least power at all alternatives 

compared to the latter, which corresponds to small, medium and large cross-section 

units and is thus identified as the worst performer.                

Table 5. 8: Power Analysis of Panel Causality Tests using stationary series with Drift 

Only for Medium Sample T=50 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)   Z→X/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 6.9 7.1 8.3 21.6 29.3 41.5 0.8 1.3 1.8 
0.1 0.9 100 100 100 23.3 33.0 43.9 100 100 100 
0.2 0.8 100 100 100 25.9 36.3 47.7 100 100 100 
0.3 0.7 100 100 100 27.6 37.0 48.0 100 100 100 
0.4 0.6 100 100 100 29.2 39.4 49.9 100 100 100 
0.5 0.5 100 100 100 32.7 40.1 50.3 100 100 100 
0.6 0.4 100 100 100 34.8 44.5 52.8 100 100 100 
0.7 0.3 100 100 100 39.5 48.4 55.5 100 100 100 
0.8 0.2 100 100 100 41.7 49.8 59.5 100 100 100 
0.9 0.1 100 100 100 45.6 53.1 61.6 100 100 100 
1 0 100 100 100 55.7 60.1 65.4 100 100 100 

 Panel (B)                   Z→Y/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7 

0 1 7.3 8.0 8.5 28.1 40.6 60.8 0.3 1.7 2.3 
0.1 0.9 99.9 100 100 29.9 44.6 62.9 100 100 100 
0.2 0.8 100 100 100 33.3 47.5 64.8 100 100 100 
0.3 0.7 100 100 100 35.5 50.8 68.1 100 100 100 
0.4 0.6 100 100 100 38.9 52.1 69.6 100 100 100 
0.5 0.5 100 100 100 40.2 54.8 70.2 100 100 100 
0.6 0.4 100 100 100 42.5 56.8 74.2 100 100 100 
0.7 0.3 100 100 100 45.2 58.4 77.2 100 100 100 
0.8 0.2 100 100 100 48.4 60.5 79.3 100 100 100 
0.9 0.1 100 100 100 52.2 64.2 80.7 100 100 100 
1 0 100 100 100 58.6 70.4 83.6 100 100 100 

 

The same procedure is used in Table 5.8 and Table 5.9, but the only difference 

is that the panel series have different sample sizes; the medium sample size (i.e., 

T=50) in Table 5.8 and the large sample size (i.e. T=200) in Table 5.9. A similar 

pattern has been observed for almost all tests in Tables 5.8 and 5.9. GC and SIM test 

archive 100% power at 0.1 alternative corresponding to N=5 and recognized the best 
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performer compared to another test. SIM test gains least power at all alternatives 

compared to others one corresponding to small, medium, and large cross-section units 

and thus identified as the worst performer. Further, at the large sample size of T=200, 

the GC and SIM tests have attained their highest empirical power, equal to 100% in 

Table 5.9. At the same time, the SIM test has gained a maximum observed power of 

83% at T=200 and N=20. However, the power attainment of the GC test is much 

better than the other two tests (SIM and FPE) at all alternatives, whether the cross-

sectional length is small, medium or large. 

Table 5. 9: Power Analysis of Panel Causality Tests using stationary series with Drift 

Only for Large Sample T=200 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)   Z→X/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 4.2 4.6 5.1 16.2 21.4 29.0 0.6 2.1 3.2 
0.1 0.9 100 100 100 18.1 22.5 30.4 100 100 100 
0.2 0.8 100 100 100 20.2 24.3 33.8 100 100 100 
0.3 0.7 100 100 100 23.7 27.8 35.8 100 100 100 
0.4 0.6 100 100 100 27.0 30.2 38.6 100 100 100 
0.5 0.5 100 100 100 30.1 34.4 40.2 100 100 100 
0.6 0.4 100 100 100 32.0 37.3 43.5 100 100 100 
0.7 0.3 100 100 100 34.2 38.0 47.5 100 100 100 
0.8 0.2 100 100 100 36.2 40.2 51.4 100 100 100 
0.9 0.1 100 100 100 38.3 45.0 55.5 100 100 100 
1 0 100 100 100 42.1 50.8 60.2 100 100 100 

   Panel (B)                     Z→Y/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =
 0.7 

0 1 5.0 5.3 6.0 21.7 33.2 46.1 0.2 0.6 1.2 
0.1 0.9 100 100 100 22.4 35.1 47.5 100 100 100 
0.2 0.8 100 100 100 25.2 36.4 49.2 100 100 100 
0.3 0.7 100 100 100 28.6 40.1 50.8 100 100 100 
0.4 0.6 100 100 100 30.8 42.3 54.4 100 100 100 
0.5 0.5 100 100 100 35.3 44.9 57.2 100 100 100 
0.6 0.4 100 100 100 37.3 45.9 58.1 100 100 100 
0.7 0.3 100 100 100 41.1 49.9 62.2 100 100 100 
0.8 0.2 100 100 100 44.6 54.3 66.2 100 100 100 
0.9 0.1 100 100 100 48.8 64.5 72.1 100 100 100 
1 0 100 100 100 53.1 70.1 83.5 100 100 100 
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Table 5. 10: Power Analysis of Panel Causality Tests using stationary series with 

Drift and Trend for Small Sample T=25 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)   X→Y/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

           

0 1 17.8 22.5 32.1 26.3 38.0 56.1 20.7 32.6 57.4 

0.1 0.9 18.4 25.3 34.9 30.2 41.2 59.4 23.0 35.9 57.8 

0.2 0.8 26.9 36.8 53.6 30.6 43.5 62.2 25.7 42.4 66.8 

0.3 0.7 40.7 58.5 79.5 32.1 46.9 65.9 29.2 47.2 76.8 

0.4 0.6 59.1 79.4 95.8 34.3 48.8 69.5 34.1 59.6 86.7 

0.5 0.5 74.1 92.6 99.6 36.6 51.8 72.8 39.0 69.5 92.9 

0.6 0.4 87.7 98.2 100 37.8 55.0 75.1 49.1 81.3 98.1 

0.7 0.3 94.7 99.8 100 38.4 57.0 78.5 61.3 87.1 99.5 

0.8 0.2 98.3 99.9 100 39.9 58.4 79.3 71.3 94.6 100 

0.9 0.1 99.4 100 100 43.0 61.8 83.3 80.7 97.0 100 

1 0 99.9 100 100 44.3 64.5 84.1 86.8 99.2 100 

 Panel (B)                X→Z/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7 

0 1 23.6 32.0 47.0 25.7 35.9 53.1 22.6 39.5 68.2 

0.1 0.9 49.8 70.4 90.6 27.4 36.6 54.1 26.9 46.3 75.4 

0.2 0.8 82.4 96.6 99.9 26.6 38.1 56.8 34.2 54.7 86.4 

0.3 0.7 97.9 100 100 27.3 40.8 58.3 40.2 67.6 93.4 

0.4 0.6 99.9 100 100 29.1 43.2 60.5 47.6 75.7 97.6 

0.5 0.5 100 100 100 30.0 47.6 64.1 51.8 83.1 98.7 

0.6 0.4 100 100 100 34.1 49.4 67.2 58.4 88.4 99.2 

0.7 0.3 100 100 100 36.2 50.1 70.2 60.7 89.7 99.6 

0.8 0.2 100 100 100 37.5 53.4 73.3 69.6 93.8 99.8 

0.9 0.1 100 100 100 38.0 54.5 75.1 69.7 94.4 100 

1 0 100 100 100 40.4 55.5 81.8 71.6 94.8 100 
 

Table 5.10 shows the size and power analysis of the panel causality test with 

the causal combinations are X causes Y (𝜃12) and X causes Z (𝜃13) in heterogeneous 

panel data in case of keeping both deterministic parts with drift trend term. 

At the small-time length T=25, the Panel (A) of Table 10 with a causal 

combination of X causes Y (𝜃12). In compression of size, the GC test has the least 

size distortion compared to size distortion of SIM and FPE tests at small, medium, 

and large cross-section units. All three tests archive increasing power pattern as the 

parameter of interest (𝜌1 and 𝜌2) moves away from the null hypothesis corresponding 

to all cross-section dimensions. However, the power attainment of the GC test is 

much better than the other two tests (SIM and FPE) at all alternatives, whether the 

cross-sectional length is small, medium or large. This test archives 100% power at 0.5 

alternative corresponding to N=5 and at 0.3 for large cross-section unit for causal 
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combination X causes Z (𝜃13)  in the Panel (B) and recognized the best performer 

compared to the other two tests. SIM causality test has taken maximum empirical 

power of 84.1% at N=20, respectively. Among SIM and FPE tests, the former gains 

the least power at all alternatives compared to the later one corresponding to small, 

medium and large cross-section units and thus identified as the worst performer. 

Table 5. 11: Power Analysis of Panel Causality Tests using stationary series with 

Drift and Trend for Medium Sample T=50 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)   X→Y/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 10.8 11.6 14.7 54.1 74.5 94.0 1.1 2.5 3.3 

0.1 0.9 12.4 16.9 22.6 55.9 77.1 94.2 3.3 3.5 5.3 

0.2 0.8 31.0 45.0 65.3 56.5 79.8 95.0 3.7 7.1 12.8 

0.3 0.7 58.4 79.7 96.0 59.3 80.8 96.4 10.6 19.6 39.9 

0.4 0.6 83.6 96.7 99.9 62.2 82.8 96.5 24.6 47.2 79.6 

0.5 0.5 96.4 99.8 100 61.9 84.5 97.4 46.2 75.9 97.6 

0.6 0.4 99.2 100 100 63.3 84.8 98.0 66.8 92.9 99.9 

0.7 0.3 99.9 100 100 64.6 85.9 98.5 83.8 98.5 100 

0.8 0.2 100 100 100 65.7 86.8 99.4 95.4 100 100 

0.9 0.1 100 100 100 66.7 88.0 100 98.9 100 100 

1 0 100 100 100 67.8 89.1 100 99.3 100 100 

 Panel (B)                 X→Z/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7 

0 1 11.8 14.4 19.4 28.2 40.6 58.7 2.5 3.2 4.6 

0.1 0.9 47.2 68.2 89.2 29.0 41.3 60.6 2.8 4.8 8.7 

0.2 0.8 93.6 99.5 100 30.2 42.2 61.9 6.1 12.6 21.6 

0.3 0.7 99.9 100 100 33.9 43.7 63.7 11.4 21.8 43.5 

0.4 0.6 100 100 100 34.7 45.4 66.3 19.7 35.6 71.6 

0.5 0.5 100 100 100 36.6 46.9 66.8 28.3 52.7 85.3 

0.6 0.4 100 100 100 37.6 47.7 68.7 32.1 62.6 94.1 

0.7 0.3 100 100 100 38.9 48.8 70.5 40.2 72.4 97.2 

0.8 0.2 100 100 100 39.4 49.9 71.9 50.1 81.3 98.6 

0.9 0.1 100 100 100 40.0 50.4 72.6 56.3 87.9 99.7 

1 0 100 100 100 42.5 52.0 74.0 61.7 91.5 99.9 
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Table 5. 12: Power Analysis of Panel Causality Tests using stationary series with 

Drift and Trend for large Sample T=200 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)   X→Y/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 5.5 5.8 6.1 38.2 54.7 76.0 0.5 1.50 2.2 

0.1 0.9 26.4 38.0 58.5 39.1 55.8 77.3 1.5 2.19 3.8 

0.2 0.8 85.1 97.6 100 40.6 56.9 78.6 16.6 38.9 74.4 

0.3 0.7 99.9 100 100 41.0 57.9 79.6 70.7 95.3 100 

0.4 0.6 100 100 100 42.1 58.2 80.1 97.4 100 100 

0.5 0.5 100 100 100 43.1 59.1 80.6 100 100 100 

0.6 0.4 100 100 100 44.7 60.5 81.9 100 100 100 

0.7 0.3 100 100 100 46.8 61.5 83.0 100 100 100 

0.8 0.2 100 100 100 48.4 63.6 83.9 100 100 100 

0.9 0.1 100 100 100 49.3 64.3 84.2 100 100 100 

1 0 100 100 100 50.1 66.7 85.8 100 100 100 

 Panel (B)                 X→Z/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7 

0 1 5.6 5.9 7.1 78.9 95.4 99.4 0.1 0.4 0.9 

0.1 0.9 55.9 76.2 94.9 80.0 95.5 99.7 0.8 1.3 2.1 

0.2 0.8 99.6 100 100 82.4 95.9 99.9 2.7 3.5 6.9 

0.3 0.7 100 100 100 83.4 96.4 100 9.3 20.5 42.5 

0.4 0.6 100 100 100 84.7 97.2 100 27.6 55.7 88.6 

0.5 0.5 100 100 100 85.8 98.4 100 52.6 86.3 99.9 

0.6 0.4 100 100 100 86.1 98.8 100 74.3 97.4 100 

0.7 0.3 100 100 100 87.0 99.6 100 88.1 99.9 100 

0.8 0.2 100 100 100 88.9 99.9 100 96.6 100 100 

0.9 0.1 100 100 100 89.6 100 100 98.7 100 100 

1 0 100 100 100 90.4 100 100 99.9 100 100 

 

The same procedure is used in Table 5.11 and Table 5.12, but the only 

difference is that the panel series have different sample sizes; the medium sample size 

(i.e., T=50) in Table 5.11 and the large sample size (i.e. T=200) in Table 5.12. A 

similar pattern has been observed for almost all tests in Tables 5.11 and 5.12. 

However, the power attainment of the GC test is much better than the other two tests 

(SIM and FPE) at all alternatives, whether the cross-sectional length is small, 

medium, or large. This test archives 100% power at 0.4 alternative corresponding to 

N=5 and at 0.2 for a large cross-section unit in the Panel (A) and recognized the best 

performer compared to the other two tests. Among SIM and FPE tests, the former 

gains the least power at all alternatives compared to the latter, which corresponds to 

small, medium and large cross-section units and is thus identified as the worst 

performer.             
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Table 5. 13: Power Analysis of Panel Causality Tests using stationary series with 

Drift and Trend for Small Sample T=25 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)   Y→X/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 18.3 24.3 35.9 21.1 33.7 47.6 17.1 29.3 54.1 
0.1 0.9 48.5 68.3 88.6 24.1 35.1 48.7 23.2 38.8 66.1 
0.2 0.8 87.8 98.3 100 26.9 37.1 49.2 39.5 66.9 88.8 
0.3 0.7 99.4 100 100 28.5 38.2 51.5 63.5 90.2 99.6 
0.4 0.6 100 100 100 30.2 40.4 54.9 86.7 98.6 100 
0.5 0.5 100 100 100 35.2 43.4 56.3 96.6 99.9 100 
0.6 0.4 100 100 100 36.8 45.1 57.3 99.5 100 100 
0.7 0.3 100 100 100 39.7 48.1 59.8 100 100 100 
0.8 0.2 100 100 100 40.2 50.4 61.1 100 100 100 
0.9 0.1 100 100 100 42.4 53.5 64.1 100 100 100 
1 0 100 100 100 45.4 55.5 65.2 100 100 100 

  Panel (B)                Y→Z/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7 

0 1 32.9 47.8 66.4 37.0 53.9 74.7 29.3 47.3 75.8 
0.1 0.9 71.9 90.9 99.1 39.6 55.8 76.1 37.5 58.3 85.8 
0.2 0.8 97.1 99.9 100 40.6 58.1 79.1 46.8 75.7 95.9 
0.3 0.7 99.8 100 100 46.2 61.9 81.6 60.8 89.4 99.1 
0.4 0.6 100 100 100 47.0 63.0 83.1 72.3 94.6 100 
0.5 0.5 100 100 100 49.5 67.5 84.0 79.4 98.1 100 
0.6 0.4 100 100 100 50.4 69.9 86.2 82.9 98.6 100 
0.7 0.3 100 100 100 51.1 70.7 91.5 86.2 99.3 100 
0.8 0.2 100 100 100 53.7 72.0 94.5 89.6 99.9 100 
0.9 0.1 100 100 100 54.4 76.5 95.0 89.8 100 100 
1 0 100 100 100 55.9 81.3 98.5 91.5 100 100 

 

The Panel (A) of Table 5.13, the causal combinations are Y causes X (𝜃21) 

and Y causes Z (𝜃23) in heterogeneous panel data to keep both deterministic parts 

with drift and trend term. 

At the small-time length T=25, the Panel (A) of Table 5.13 with a causal 

combination of Y causes X (𝜃21). In compression of size, the GC test has the least 

size distortion compared to size distortion of SIM and FPE tests at small, medium, 

and large cross-section units. All three tests archive increasing power pattern as a 

parameter of interest (𝜌1 and 𝜌2) moves away from the null hypothesis corresponding 

to all cross-section dimensions. However, the power attainment of the GC test is 

much better than the other two tests (SIM and FPE) at all alternatives, whether the 

cross-sectional length is small, medium or large. This test archives 100% power at 0.4 

alternative corresponding to N=5 and at 0.2 for a large cross-section unit for both 
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causal combinations and recognizes the best performer compared to the other two 

tests. SIM causality test has taken maximum empirical power of 65.2% and 98.5% at 

N=20, for Y causes X and Y causes Z, respectively. Among Sims and FPE tests, the 

former gains the least power at all alternatives compared to the latter corresponding to 

small, medium and large cross-section units and thus identified as the worst 

performer. 

Table 5. 14: Power Analysis of Panel Causality Tests using stationary series with 

Drift and Trend for Medium Sample T=50 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)   Y→X/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 9.8 11.0 13.6 14.8 19.6 22.5 1.8 2.7 2.9 
0.1 0.9 55.4 76.6 94.4 16.9 22.5 25.2 6.9 11.1 20.3 
0.2 0.8 98.8 100 100 19.1 25.9 29.1 34.2 66.3 92.7 
0.3 0.7 100 100 100 24.4 29.7 33.2 86.1 99.3 100 
0.4 0.6 100 100 100 25.8 32.8 38.9 99.6 100 100 
0.5 0.5 100 100 100 27.7 37.5 42.8 100 100 100 
0.6 0.4 100 100 100 29.4 39.5 45.6 100 100 100 
0.7 0.3 100 100 100 30.5 43.3 48.6 100 100 100 
0.8 0.2 100 100 100 31.9 45.7 54.2 100 100 100 
0.9 0.1 100 100 100 35.4 48.7 57.8 100 100 100 
1 0 100 100 100 45.9 50.8 65.1 100 100 100 

    Panel (B)                     Y→Z/causality                  𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7 

0 1 14.7 20.3 28.0 25.3 36.4 52.4 2.9 4.3 5.7 
0.1 0.9 81.6 96.2 99.9 28.5 38.3 55.3 5.2 8.1 19.5 
0.2 0.8 100 100 100 32.4 43.7 58.7 15.9 34.8 59.8 
0.3 0.7 100 100 100 35.5 46.6 62.8 34.5 62.8 92.9 
0.4 0.6 100 100 100 36.6 46.7 64.0 53.2 86.8 99.4 
0.5 0.5 100 100 100 38.1 48.4 65.9 67.8 95.9 100 
0.6 0.4 100 100 100 49.5 51.7 69.2 82.3 98.4 100 
0.7 0.3 100 100 100 50.5 55.1 74.2 89.1 99.5 100 
0.8 0.2 100 100 100 54.9 59.3 75.2 93.1 99.8 100 
0.9 0.1 100 100 100 56.9 64.3 79.8 95.7 100 100 
1 0 100 100 100 61.2 68.8 81.1 96.4 100 100 
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Table 5. 15: Power Analysis of Panel Causality Tests using stationary series with 

Drift and Trend for Large Sample T=200 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)   Y→X/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 5.3 5.4 6.0 30.7 46.6 68.6 0.3 0.5 1.2 
0.1 0.9 97.0 99.9 100 100 100 74.1 30.4 58.6 92.9 
0.2 0.8 100 100 100 100 100 81.1 100 100 100 
0.3 0.7 100 100 100 100 100 86.4 100 100 100 
0.4 0.6 100 100 100 100 100 90.8 100 100 100 
0.5 0.5 100 100 100 100 100 95.4 100 100 100 
0.6 0.4 100 100 100 100 100 97.6 100 100 100 
0.7 0.3 100 100 100 100 100 98.6 100 100 100 
0.8 0.2 100 100 100 100 100 99.7 100 100 100 
0.9 0.1 100 100 100 100 100 100 100 100 100 
1 0 100 100 100 81.6 97.8 100 100 100 100 

  Panel (B)                Y→Z/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7 

0 1 5.8 7.1 7.9 46.3 65.1 86.0 0.2 0.6 0.9 
0.1 0.9 94.5 99.7 100 49.9 71.7 90.3 0.9 1.10 2.8 
0.2 0.8 100 100 100 55.0 75.8 93.5 14.1 25.8 57.2 
0.3 0.7 100 100 100 60.3 81.2 96.4 50.2 83.3 99.6 
0.4 0.6 100 100 100 65.2 85.7 97.7 86.2 99.7 100 
0.5 0.5 100 100 100 69.8 89.5 98.7 98.1 100 100 
0.6 0.4 100 100 100 74.8 92.8 99.5 99.9 100 100 
0.7 0.3 100 100 100 78.6 95.3 99.8 100 100 100 
0.8 0.2 100 100 100 82.3 96.2 99.9 100 100 100 
0.9 0.1 100 100 100 83.4 96.7 100 100 100 100 
1 0 100 100 100 84.7 97.2 100 100 100 100 

 

The same procedure is used in Table 5.14 and Table 5.15, but the only 

difference is that the panel series have different sample sizes; the medium sample size 

(i.e., T=50) in Table 5.14 and the large sample size (i.e., T=200) in Table 5.15. A 

similar pattern has been observed for almost all tests in the abovementioned tables. 

However, the power attainment of the GC test is much better than the other two tests 

(SIM and FPE) at all alternatives, whether the cross-sectional length is small, medium 

or large. This test archives 100% power at 0.2 alternative corresponding to N=5 and at 

0.1 for a large cross-section unit and recognized the best performer compared to the 

other two tests. Among SIM and FPE tests, the former gains the least power at all 

alternatives compared to the latter, which corresponds to small, medium and large 

cross-section units and is thus identified as the worst performer.             
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Table 5. 16: Power Analysis of Panel Causality Tests using stationary series with 

Drift and Trend for Small Sample T=25 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)   Z→X/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 12.9 15.8 20.6 36.3 51.8 73.8 17.9 29.8 52.6 
0.1 0.9 100 100 100 38.4 52.5 75.5 93.1 100 100 
0.2 0.8 100 100 100 43.9 55.7 81.0 100 100 100 
0.3 0.7 100 100 100 44.9 58.7 83.2 100 100 100 
0.4 0.6 100 100 100 46.3 61.3 88.1 100 100 100 
0.5 0.5 100 100 100 48.7 67.0 89.7 100 100 100 
0.6 0.4 100 100 100 52.9 68.6 90.3 100 100 100 
0.7 0.3 100 100 100 54.2 71.6 93.5 100 100 100 
0.8 0.2 100 100 100 57.6 72.2 97.6 100 100 100 
0.9 0.1 100 100 100 64.9 77.7 98.5 100 100 100 
1 0 100 100 100 67.8 84.3 99.6 100 100 100 

   Panel (B)               Z→Y/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7 

0 1 12.9 15.8 21.5 76.9 94.0 99.6 18.8 34.1 61.9 
0.1 0.9 87.2 97.9 100 100 100 100 65.3 90.4 99.6 
0.2 0.8 100 100 100 100 100 100 99.5 100 100 
0.3 0.7 100 100 100 100 100 100 100 100 100 
0.4 0.6 100 100 100 100 100 100 100 100 100 
0.5 0.5 100 100 100 100 100 100 100 100 100 
0.6 0.4 100 100 100 100 100 100 100 100 100 
0.7 0.3 100 100 100 100 100 100 100 100 100 
0.8 0.2 100 100 100 100 100 100 100 100 100 
0.9 0.1 100 100 100 100 100 100 100 100 100 
1 0 100 100 100 100 100 100 100 100 100 

 

Table 5.16, Table 5.17, and Table 5.18 show the size and power attainment of 

panel causality tests when the causal combinations are Z cause X (𝜃31) and Z causes 

Y (𝜃32) in heterogeneous panel data in case of with drift and trend term. At the small-

time length T=25, the Panel (A) of Table 5.16 with a causal combination of Z causes 

X (𝜃31), SIM causality test has taken maximum empirical power of 99.6% at N=20. In 

compression of size, the GC test has the least size distortion compared to size 

distortion of SIM and FPE tests at small, medium, and large cross-section units. All 

three tests archive increasing power pattern as a parameter of interest (𝜌1 and 𝜌2) 

moves away from the null hypothesis corresponding to all cross-section dimensions. 

However, the power attainment of GC and FPE tests is much better than SIM tests at 

all alternatives, whether the cross-sectional length is small, medium, or large. GC and 
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FPE test archive 100% power at 0.2 alternative corresponding to N=5 and at 0.1 for 

large cross-section unit for both causal combinations and recognized the best 

performer compared to tests. Among SIM and FPE tests, the former gains the least 

power at all alternatives compared to the latter, which corresponds to small, medium 

and large cross-section units and is thus identified as the worst performer.            

Table 5. 17: Power Analysis of Panel Causality Tests using stationary series with 

Drift and Trend for Medium Sample T=50 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)   Z→X/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 7.7 8.3 9.6 24.9 36.3 51.8 1.2 2.7 2.8 
0.1 0.9 100 100 100 25.8 38.0 53.7 100 100 100 
0.2 0.8 100 100 100 27.5 40.2 55.0 100 100 100 
0.3 0.7 100 100 100 34.4 43.4 58.9 100 100 100 
0.4 0.6 100 100 100 35.7 45.8 60.5 100 100 100 
0.5 0.5 100 100 100 38.6 51.7 63.3 100 100 100 
0.6 0.4 100 100 100 40.3 52.9 65.3 100 100 100 
0.7 0.3 100 100 100 43.1 53.2 68.5 100 100 100 
0.8 0.2 100 100 100 45.8 56.0 70.8 100 100 100 
0.9 0.1 100 100 100 47.0 59.4 72.1 100 100 100 
1 0 100 100 100 56.9 65.6 74.3 100 100 100 

   Panel (B)               Z→Y/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7 

0 1 7.9 8.4 9.5 50.5 70.8 91.5 1.7 2.6 3.3 
0.1 0.9 99.8 100 100 53.0 73.9 93.2 88.6 99.6 100 
0.2 0.8 100 100 100 59.6 76.1 95.3 100 100 100 
0.3 0.7 100 100 100 61.4 78.0 97.7 100 100 100 
0.4 0.6 100 100 100 69.9 81.1 99.5 100 100 100 
0.5 0.5 100 100 100 70.5 86.9 99.9 100 100 100 
0.6 0.4 100 100 100 72.5 88.0 100 100 100 100 
0.7 0.3 100 100 100 75.8 89.3 100 100 100 100 
0.8 0.2 100 100 100 81.8 90.3 100 100 100 100 
0.9 0.1 100 100 100 85.8 94.7 100 100 100 100 
1 0 100 100 100 90.0 97.5 100 100 100 100 
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Table 5. 18: Power Analysis of Panel Causality Tests using stationary series with 

Drift and Trend for Large Sample T=200 

  Granger Non-

causality 

         Sims Causality    FPE Hsiao 

Causality 

Panel (A)   Z→X/causality     𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7  

𝜌1 𝜌2 N=5 N=10 N=20 N=5 N=10 N=20 N=5 N=10 N=20 

0 1 5.0 5.6 6.1 17.9 22.9 32.4 0.4 0.7 0.9 
0.1 0.9 100 100 100 18.2 25.5 36.0 100 100 100 
0.2 0.8 100 100 100 20.8 28.0 38.5 100 100 100 
0.3 0.7 100 100 100 21.1 29.5 41.0 100 100 100 
0.4 0.6 100 100 100 24.9 31.1 43.7 100 100 100 
0.5 0.5 100 100 100 27.6 34.0 46.8 100 100 100 
0.6 0.4 100 100 100 28.2 35.5 51.1 100 100 100 
0.7 0.3 100 100 100 30.2 38.1 54.1 100 100 100 
0.8 0.2 100 100 100 33.5 41.9 56.8 100 100 100 
0.9 0.1 100 100 100 36.0 43.6 59.7 100 100 100 
1 0 100 100 100 39.7 47.0 64.2 100 100 100 

    Panel (B)              Z→Y/causality                    𝜃11 = 0.3,  𝜃22 = 0.5,   𝜃33 =  0.7 

0 1 4.6 4.8 5.6 24.1 34.4 50.4 0.2 0.5 0.8 
0.1 0.9 100 100 100 27.9 37.4 64.3 100 100 100 
0.2 0.8 100 100 100 32.9 38.9 67.7 100 100 100 
0.3 0.7 100 100 100 34.9 41.9 69.4 100 100 100 
0.4 0.6 100 100 100 36.4 47.1 70.8 100 100 100 
0.5 0.5 100 100 100 39.2 53.7 71.1 100 100 100 
0.6 0.4 100 100 100 43.6 55.7 76.7 100 100 100 
0.7 0.3 100 100 100 45.6 57.0 79.4 100 100 100 
0.8 0.2 100 100 100 46.7 59.9 84.4 100 100 100 
0.9 0.1 100 100 100 49.5 64.8 85.0 100 100 100 
1 0 100 100 100 51.2 70.9 88.5 100 100 100 

 

The same procedure is used in Table 5.17 and Table 5.18, but the only 

difference is that the panel series have different sample sizes; the medium sample size 

(i.e., T=50) in Table 5.17 and the large sample size (i.e., T=200) in Table 5.18. A 

similar pattern has been observed for almost all tests in the abovementioned tables. 

However, the power attainment of GC and FPE tests is much better than SIM tests at 

all alternatives, whether the cross-sectional length is small, medium, or large. GC and 

FPE test archive 100% power at 0.1 alternative corresponding to N=5 and for large 

cross-section unit for both causal combinations and recognized the best performer in 

comparison of tests. Among SIM and FPE tests, the former gains the least power at all 

alternatives compared to the latter, which corresponds to small, medium and large 

cross-section units and is thus identified as the worst performer. Further, at T=200, 
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almost all test has attained their highest empirical power equal to 100% in Table 5.18.  

As the time series and cross-section length increase the power of PCT tests also 

increases. However, the power attainment of the GC test is much better than the other 

two tests (SIM and FPE) at all alternatives, whether the cross-sectional length is 

small, medium or large.  

Figure 5. 1: Power Analysis of Panel Causality Tests for X→Y and X→Z with Drift 

Only, T=25 
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(b)     T=25, N=10
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(c)     T=25, N=20
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Figure 5. 2: Power Analysis of Panel Causality Tests for X→Y and X→Z with Drift 

Only, T=50 
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 GC          SIM    FPE

0

20

40

60

80

100

1

0
.9

0
.8

0
.7

0
.6

0
.5

0
.4

0
.3

0
.2

0
.1 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(d)     T=50,N=5

 GC          SIM    FPE



91 
 

Figure 5. 3: Power Analysis of Panel Causality Tests for X→Y and X→Z with Drift 

Only, T=200 
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(d)     T=50,N=5
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Figure 5. 4:Power Analysis of Panel Causality Tests for Y→X and Y→Z with Drift 

Only, T=25 
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Figure 5. 5: Power Analysis of Panel Causality Tests for Y→X and Y→Z with Drift 

Only, T=50 
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Figure 5. 6: Power Analysis of Panel Causality Tests for Y→X and Y→Z with Drift 

Only, T=200 
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Figure 5. 7: Power Analysis of Panel Causality Tests for Z→X and Z→Y with Drift 

Only, T=25 
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Figure 5. 8: Power Analysis of Panel Causality Tests for Z→X and Z→Y with Drift 

Only, T=50 
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Figure 5. 9: Power Analysis of Panel Causality Tests for Z→X and Z→Y with Drift 

Only, T=200 

 

0

20

40

60

80

100
1

0
.9

0
.8

0
.7

0
.6

0
.5

0
.4

0
.3

0
.2

0
.1 0

0 0.10.20.30.40.50.60.70.80.9 1

(a)     T=200,N=5

 GC          SIM    FPE

0

20

40

60

80

100

1 0.90.80.70.60.50.40.30.20.1 0

0 0.10.20.30.40.50.60.70.80.9 1

(b)     T=200,N=10

GC          SIM    FPE

0

20

40

60

80

100

1 0.90.80.70.60.50.40.30.20.1 0

0 0.10.20.30.40.50.60.70.80.9 1

(c)     T=200, N=20

GC          SIM    FPE

0

20

40

60

80

100

1 0.8 0.6 0.4 0.2 0

0 0.10.20.30.40.50.60.70.80.9 1

(d)     T=200,N=5

 GC          SIM    FPE

0

20

40

60

80

100

1 0.8 0.6 0.4 0.2 0

0 0.10.20.30.40.50.60.70.80.9 1

(e)     T=200,N=10

 GC          SIM    FPE

0

20

40

60

80

100

1 0.90.80.70.60.50.40.30.20.1 0

0 0.10.20.30.40.50.60.70.80.9 1

(f)     T=200,N=20

 GC          SIM    FPE



98 
 

Figure 5. 10: Power Analysis of Panel Causality Tests for X→Y and X→Z with Drift 

and Trend, T=25 
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Figure 5. 11: Power Analysis of Panel Causality Tests for X→Y and X→Z with Drift 

and Trend, T=50 
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Figure 5. 12: Power Analysis of Panel Causality Tests for X→Y and X→Z with Drift 

and Trend, T=200 
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Figure 5. 13: Power Analysis of Panel Causality Tests for Y→X and Y→Z with Drift 

and Trend, T=25 
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Figure 5. 14: Power Analysis of Panel Causality Tests for Y→X and Y→Z with Drift 

and Trend, T=50 
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Figure 5. 15: Power Analysis of Panel Causality Tests for Y→X and Y→Z with Drift 

and Trend, T=200 
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Figure 5. 16: Power Analysis of Panel Causality Tests for Z→X and Z→Y with Drift 

and Trend, T=25 
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Figure 5. 17: Power Analysis of Panel Causality Tests for Z→X and Z→Y with Drift 

and Trend, T=50 
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Figure 5. 18: Power Analysis of Panel Causality Tests for Z→X and Z→Y with Drift 

and Trend, T=200 
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study mainly focuses on Monte Carlo Simulations, and the optimal procedure has 

been selected on its basis. 

In this chapter, a comparison of Panel Causality Tests is made through size 

and power properties. The power of the Granger non-causality Test (GC) by 

Dumitrescu and Hurlin (2012), Sims (SIM) test (1972), and the Final Prediction Error 

(FPE) method by Hsiao (1981) causal search algorithm is analyzed. The power of any 

test is defined as the probability of rejecting a null hypothesis when it is false i.e.   

𝑃𝑜𝑤𝑒𝑟 = 𝑃(𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝐻0/𝐻1 𝑖𝑠 𝑇𝑟𝑢𝑒) 

We analyze the power of Panel causality tests for a variety of situations. We 

know that the power also depends on several nuisance parameters related to the 

“deterministic part” and the “stochastic part”. Among the deterministic part are a 

component of drift and trend, while among stochastic parts, we have the 

autoregressive coefficient of the three series(x,y,z), which also determine the 

stationary of the series.  This study used three different groups of the sample size, 

which were categorized into a small sample size, medium sample size, and large 

sample size for the data generating process under alternative hypotheses to calculate 

power.   

Table 1 to Table 18 show the size, and power analysis of panel causality tests 

with the all six causal combinations i.e., X causes Y (𝜃12) and X causes Z (𝜃13) , Y 

causes X (𝜃21) and Y causes Z (𝜃32), Z causes X (𝜃31) and Z causes Y (𝜃32) in 

heterogeneous panel data in case of keeping both deterministic part with drift only 

and with drift and trend. 

In compression of size, GC test has the least size distortion from the nominal 

size of 5% compared to size distortion of SIM and FPE tests at small, medium and 

large cross-section units. All three tests archive increasing power pattern as a 

parameter of interest (𝜌1 and  𝜌2) moves away from the null hypothesis corresponding 

to all cross-section dimensions. However, the power attainment of the GC test is 

much better than the other two tests (SIM and FPE) at all alternatives, whether the 

cross-sectional length is small, medium or large. This test archives 100% power at 

0.3/0.2 alternative corresponding to N=5 and at 0.1 for large cross-section unit for all 

causal combinations and recognized the best performer compared to the other two 

tests. Among SIM and FPE tests, the former gains the least power at all alternatives 
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compared to the latter, which corresponds to small, medium and large cross-section 

units and is thus identified as the worst performer. A similar pattern has been 

observed for almost all tests at different sample sizes; medium sample size (i.e., 

T=50) and large sample size (i.e., T=200). Based on the comparison of size and power 

analysis of the panel causality tests, this study concludes that the GC test is a point 

optimal. Overall research shows that the GC test performs better at all causal 

combinations and panel dimensions, whether drift only or both drift and trend take 

into account. On the other hand, the SIMS test with its lowest power gain at all causal 

combinations and panel dimensions is the worst performer test. However, the FPE test 

having a power curve between the better and worst performer test is graded as the 

average performer test. Theoretically, the GC test has more power than the AR (1) 

structure of DGP against all alternative hypotheses, which supports the GC test 

method. SIM's algorithm's lead values are not supported by the DGP, which might be 

one of the reasons for the algorithm's low performance. 
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CHAPTER 6 

ANALYSIS OF THE CAUSALITY BETWEEN INTENSITY OF 

GOVERNMENT SPENDING AND THE INTENSITY OF 

HOUSEHOLD SPENDING ON EDUCATION WITH THE ROLE 

OF CREDIT CONSTRAINTS: PANEL DATA 

This chapter is organized as follows; the first section describes the research 

topic's brief introduction, objectives, and significance. The existing literature on 

Government spending on education and household spending on education is reviewed 

in Section 2. Section 3 presents the data, variables and econometric methodology. 

Section 4 describes the results and discussions the empirical results. Finally, Section 5 

offers a conclusion. 

The simulation results reported in chapter 5 show that Granger non-causality 

test by Dumitrescu & Hurlin (2012) is the best performing test among its counterparts. 

Therefore, the study utilizes the said technique to analyze the causal relationship 

between the intensity of government spending and the intensity of household 

spending on education with the role of credit constraint. Alongside another 

econometric model for panel data is used. This research aims to find the causal 

relationship between government and household spending on education. 

6.1.  Introduction 

Causality is the most important concept which is tested frequently in social 

sciences. Unfortunately, it is not easily detected from observational studies. In the 

natural sciences, causality can be determined through controlled experiments, whereas 

controlled experiments are difficult to be carried out in social sciences. Furthermore, 

experimental and observational studies have different statistical tools that can be 

explained using descriptive analyses. Therefore, one has to investigate the causal 

analysis for observational data. However, in observational data, the causal inferences 

are among the most difficult and have many issues. 

The concept of Causality is essential but, unfortunately, cannot be detected 

easily. The exploration of data intensively is necessary for the detection of causality. 
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In some cases, the association between two variables exists due to the other 

confounding variables. Therefore, researchers were not able to identify which method 

should be preferred for testing causality in the presence of confounding variables. 

Freedman, Hall et al. (1995) states that “Indeed, causal inference requires many skills, 

intelligence and hard work. Natural variations need to be identified, and data must be 

collected. “Confounders need to be considered; Alternative explanations have to be 

tested”, Theory must support finding true causes than statistical analysis”. 

Economic theory is mainly concerned with causal relationships among social 

and economic variables, for example, government expenditures on education, 

Household expenditure on education with the role of credit constraints 

(nonperforming bank loans), and other control variables are GDP per capita of 

growth, Population density (annual %), Unemployment (total % of the labour force), 

and Inflation of these entities with time.  

Pakistan, a developing country, is struggling with economic growth and 

development. Through the mutual collaboration of federal and provincial institutions, 

the country spends a considerable amount every year on its education sector. In 

FY2020-21, the government allocated Rs.83 billion for the education sector. 

However, there is a need to spend more on education in Pakistan to ensure 

productivity and economic growth by developing human capital (PBS, 2020).  

It is no doubt that in any developing country, only education can ensure the 

probability of better opportunities in the future because of three significant outcomes. 

The first role of education is to prepare highly trained, skilled, productive human 

resources that can actively strengthen economic growth and stability. Another part is 

to facilitate trained people to advance their knowledge through experimentation and 

learning in pure sciences and applied sciences. Moreover, the last role is to bring 

conscious understanding and awareness of the surrounding environment's social, 

physical, economic, and political functionality (Downes, 2001).  

Contextualizing Barbados' economic growth and productivity, Downes 

observed in his research a solid and positive relationship between the public 

expenditure on education and human capital. He elaborates further by establishing the 

impact of education on the quality of labourers and their cognitive and critical skills 

after getting proper education and learning traditional skills in various fields of 
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knowledge. In the specific context of Pakistan, it has been established through past 

research that only education can help minimize and alleviate poverty. Therefore, this 

research will narrow the need for more public expenditure on the education sector. 

The independent variables of the current study include: Household expenditure on 

education, Bank nonperforming loans, GDP per capita of growth, Population density 

(annual %), Unemployment (total % of the labor force), Inflation, and the dependent 

variable is Government expenditure on education.  

The empirical analyses worldwide reflect the fast-track stimulation of 

economic growth after spending on the education sector. The most striking outcome 

of educated and trained human resources is that they begin to contribute to 

constructing sustainable economic accomplishments. Through skills and education, 

the chances of economic and social progress increased manifolds. Moreover, the 

pertinent need for efficient government expenditure on education can transform the 

economic landscape of the country (Kelly 1997). 

In the current scenario, the significance of the allocated budget for education 

by the government each year is insufficient to meet up the challenges and demands of 

education for developing countries in modern times. Therefore, the size of public 

allocation of the education budget concerning the household expenditure on 

education, bank nonperforming loans, GDP per capita of growth, population density, 

inflation, and unemployment is an exciting study that will reflect the problematic 

factors of budget allocation. 

Panel data offer both opportunities and challenges for causal inference. One 

key advantage of panel data over cross-sectional data is that it allows researchers to 

better handle the effects from unobserved time-invariant factors. At the same time, a 

fundamental problem in analyzing panel data is to account for possible serial 

correlations in the error terms for each individual. The underlying study aims to 

present models and methods for analyzing panel data, with particular attention to 

examining how the various models and methods handle causality issues. 

The main idea of the research question is the following: Is the tendency of 

households to spend on education a consequence of the government’s lack of 

education provision, or is it the case that the government itself responds to the 

households’ lack of spending on education? What is the role of credit constraints? 
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In other words, is it households’ spending on education that affects the 

government’s spending on education, or is it the government’s provision of education 

that affects household spending on education? It could also be that the level of credit 

provision affects household spending on education, affecting government spending.  

The theoretical studies on the effect of government expenditures on education 

show that If households are credit constrained, their spending on education is low 

(they may not be able to borrow to spend on education). So the government invests in 

education, making up for households’ lack of spending on education. Therefore, there 

might be a link between consumer credit provision and government spending on 

education via household spending. However, is this link statistically significant, or is 

it the case that households simply respond to government spending? In other words, if 

the government provides public education, then there is no need for households to 

spend on education. What is the correct causality? 

We have found no functional, effective comparison of different causality 

methods in the literature. As it is known that other causality techniques are applicable 

in different scenarios. Therefore, it is necessary to determine which statistical 

technique/test gives us better statistical properties in a particular scenario. Hence, it is 

required to explore which conventional causality method is more appropriate to 

determine the true causal relationship between government expenditures on education 

and household expenditures on education with credit constraints. 

This chapter contributes to the existing literature by examining the causal 

relationship between government spending on education and household spending on 

education with other confounding variables by using all conventional causality 

methods and tests for panel data. 

6.2.  Literature Review 

In 1998, a comprehensive study conducted by Judson examined data of 138 

countries to examine the impact of budget allocation on generating human capital 

resources and the relation of economic productivity with the spending on the 

education sector. The results revealed that the size and quality of budget allocation 

dominate the chances of economic growth compared to countries that were spending 
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less on people's education sector and social welfare. Hence, education stimulates and 

sustains the different areas of economic growth and prosperity (Judson 1998). 

The chances of educated labour income increase with time and experience, 

which automatically contributes to improving the financial institution of individuals in 

any country. For instance, in 1992, Fraumeni and Jorgenson conducted a study about 

how economic growth is linked with the level of education of labourers. Their 

findings confirmed that labourers who had attained better education and were skilled 

had better and higher lifetime incomes. The tremendous significance of investment in 

education can guarantee better human capital production and utilization (Jorgenson 

and Fraumeni 1992). In the like vein, Hutchinson and Schumacher (1997) observed 

that education is given the status of merit good due to the high impact factor. 

Government investment in an individual’s education can become a tool to secure 

future positive economic performance. The fiscal policy design of Latin American 

and Caribbean countries is evidently reflective of significant budget allocation for 

education expenditure. 

One of the problems that many employees in the job market face are that the 

income is decided on the worker's merit or level of education. Individuals who had 

better exposure and were more educated had high-income rates, while considerable 

income inequality was observed among less qualified individuals. In 2002, Sylwester 

proposed a solution for income inequalities by increasing the total allocated budget 

for education. He suggested that individuals can overcome income inequalities 

through the availability of getting an education. This study was conducted in OECD 

and non-OECD countries from 1970 to 1990. The income disparity solution lay only 

in public education expenditure (Sylwester 2002). 

In 2003, a study was conducted in Tanzania and Zambia about the relationship 

between education and poverty alleviation to find a path for economic growth. The 

study results ensured that when the government focused on education expenditure, the 

scope of labor expertise increased, which became a source of economic development 

of the country; through resourcing human capital with education, the potential of 

alleviating poverty increases (Jung and Thorbecke 2003).  

Similarly, a study conducted in Jamaica and Guyana from 1970-to 2004 

identified that after allocating the budget in the social sector transformation that is 
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related to the education and skill-building capacity of labours, a positive trend of 

economic productivity had been observed in the social sector, which allows us to 

witness the immediate effect of education on individual’s chances towards prosperity 

and stability. (Conrad 2011) 

To find out the relationship between public education expenditure and 

GDP/Capita, research was conducted in Pakistan in 2014 by Aqil et al., which 

revealed that education is a kinetic factor in building human resources for better 

economic performance in a robust manner. The overall relationship between 

education expenditure and GDP/capita is positive, therefore providing a vital 

opportunity for economists and researchers to witness the country's education sector 

(Aqil, Aziz, et al. 2014). 

The core significance of education is that it allows individuals to attain 

knowledge of various fields. Moreover, knowledge facilitates technological 

development and advancement, and its utilization becomes a source of economic 

activity.  A study conducted between the European Union and BRICS in 2015 

reaffirmed a positive correlation between education expenditure and economic 

growth. Hence, the significance of public education expenditure can never be 

undermined (Tomić 2015).  

Another significant study conducted in Malaysia by Ramli et.al; identified that 

there is a direct relationship between investment on education sector and economic 

growth. The analysis of the study concluded that education is the driving force for 

generating skilled labor for market demand, by educating more people, the ability to 

secure market jobs around the globe increases, contributing to the country's economic 

growth. Therefore, the annual spending on education expenditure significantly 

impacts the country's prosperity. Another benefit is that all the investment in the skills 

of the labourers can provide them with long-term earning opportunities and benefits, 

which will directly strengthen the country's employment sector, making more people 

stable and independent. The demand for technology-equipped labor increases 

worldwide due to digitalization and globalization. Therefore, only through education 

is there the possibility to produce skilled labor that can compete in the comparative 

digitalized contemporary demands. For that purpose, the investment in education 

expenditure is justified (Ramli, Hashim, et al., 2016). 
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Frank (2018) analyzed through the long run growth accounting model that 

there is a positive effect on economic growth through spending on the education 

sector. He took data from 179 countries from 1970-to 2014. The study results once 

again affirmed the relationship between education expenditure on economic 

development and the country's well-being. However, this particular research 

highlighted significant room for economic development by prioritizing technological 

innovation and advancement. As technology is demanded in all international and 

national markets worldwide, it can become a continuous source of collecting revenue. 

Therefore, the relationship between education expenditure and economic growth is 

multidimensional. It helps alleviate poverty and build capacity for new employment 

and space for new investments in the country market. 

The studies mentioned earlier refer to the fact that the education budget 

allocation can directly contribute to the country's long-term growth and economic 

development. Moreover, Pakistan is still struggling to achieve the status of a 

developed country. The only practical way to achieve this position is through 

spending on the education sector, contributing to long-term economic growth. 

6.3. Covariates of Public Education Expenditure 

In this section, there is a discussion about different covariates/determinants of 

public education expenditure. Much research has been conducted in the area. Still, 

none has been done to examine the immediate need to increase total education 

expenditure as a strategy to overcome the economic crisis. The current study will 

examine the various determinants of public education expenditure, keeping in mind 

the socio-economic and socio-political conditions of the country. It is evident through 

past research that education is the sole contributor to generating human capital. For 

this purpose, government allocation of the education budget is crucial in the long-run 

economic development plan. By drawing upon past studies, this section will discuss 

covariates of public education expenditure in Pakistan. 

A study conducted in the United States revealed five factors that control per 

capita education expenditure. These factors include population size, demographic 

variables like age and structure of the population, physical infrastructure including 

size and form of buildings, the role of government, and the economic features/status 

of the country (Hirsch 1960). 
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However, a study conducted through cross-section analysis by McMahon in 

1970 highlighted that the expenditure on public education is directly related to the 

demand, cost of production and tax behaviour of individuals. The study also 

highlighted several indicators that contribute to the education sector's overall 

expenditure. These include the number of pupils per teacher, school-age population of 

children, and substitutions of public schools. The study confirmed the population of 

school-age children as a significant factor. Another considerable point highlighted in 

the study is that the state of employment and the state aids are two factors that 

contribute to designing the allocated budget for education expenditure (McMahon 

1970). 

Another determinant is the state of the running economy of the country. If the 

government is going through an economic crisis, then the treatment of education 

expenditure is different, especially in Pakistan. Research from the world also ensured 

this factor that economies prefer to benefit from instantly from their investments 

compared to long-term investment plans. A research study conducted by Tilak (1989) 

reflected that the country's economic state directly participates in allocating the size of 

the budget. Therefore, the precarious economic state can contribute to less allocation 

of the total funding in the education sector compared to a stable economic state. The 

study further concluded that the most common vulnerable budget area is education in 

the recession.  

Tilak (1989) gave various reasons for that purpose. Firstly, the investment in 

the education sector is seen as a long-term investment by the government. So, it is 

overlooked in developing countries where poverty rates are high, and employment 

rates are low. Secondly, during the critical inflation time, the allocation of the 

education sector seems impractical to most policymakers. Thirdly, the intangible 

benefits of education are not viewed as productive for the economic growth activity. 

The state of the country's economic activity is a significant contributor to determining 

the size of the allocated budget (Tilak 1989). 

A study highlighted that in OECD countries since 1960, it has been surveyed 

that the influence of demographic factors and economic state fluctuations control the 

total budget allocation for education expenditure (Castles 1989). In a similar vein, a 

study conducted by Falch and Falch and Rattsø (1997) proposed that the role of a total 
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number of older people out of the total population, public debt, unemployment and 

inflation contribute to fluctuating allocation of the education budget. He further 

explained that macroeconomic economy fluctuations intensify the chances of 

vulnerability for the education sector, especially in developing countries (Falch and 

Rattsø 1997). 

On the other hand, while analyzing the impact of demographic factors on the 

political functionality of the spending budget in the education sector, Poterba 

commented that the elderly population, compared to the school-age children 

population, hinders the massive investment in the education sector. It is because the 

government has to place subsidies for older people because of their passive role in the 

development of economic growth. At the same time, the population of school-age 

children is a controllable factor in the budget (Poterba 1997). 

Another critical finding from the study of Verbina and Chowdhury (2004) 

reflected that population density negatively influences the allocation of the education 

expenditure budget. Due to the constantly increasing population rate, the budget 

allocated for education expenditure becomes more vulnerable because of its 

relationship to poverty and unemployment. Additionally, the study also discussed the 

increase in per capita revenue of the country has a positive influence on the size of the 

allocating budget and its distribution (Verbina and Chowdhury 2004). 

Two researchers in Switzerland confirmed almost the same findings. Their 

study revealed that demographic factors create an intensively competitive 

environment for allocating and distributing funds during the budget planning process. 

As a result, the financial constraints negatively delimit the budget's size for education 

spending. Furthermore, through empirical findings of the study, the results reflected 

that between young adults and older people, the financial expenditure and distribution 

become problematic (Grob and Wolter 2007). 

The study conducted in 2007 through time series analysis revealed similar 

findings. The population sample was 21 OECD countries, and the data was taken 

from 1980-to 2001. Results, however, again confirmed that the level of economic 

development is directly linked with the demographic factors of the country. This 

implied that positive GDP growth is a product of the spending budget on labourers' 

skills and education (Busemeyer 2007).  
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Another research on African countries revealed that education had become one 

of the most successful investments to alleviate poverty and positive economic growth 

to exercise public welfare policies and strategies. The study also reflected that 

because the population was under 14 years of age. So, the investment in the education 

sector became more productive as it created skilled and educated labourers and 

professionals. Moreover, positive GDP growth has been observed after spending on 

the education sector (Akanbi and Schoeman 2010). Similarly, a study conducted in 

Thailand about the determinants of education expenditure revealed that the education 

expenditure budget was not dependent on demographic factors. The government of 

Thai made it compulsory to allocate a specific budget for education irrespective of the 

country's economic status. Moreover, education is not compromised because of 

inflation or recession. The priority was education over the demographical needs of the 

homeland (Sagarik 2013). 

In a study conducted in India, it has been found that when the government 

gives more aid and help to educational institutions, the rate of economic growth 

increases. Moreover, the total revenue collected from taxation allowed the 

government to allocate a higher budget for education expenditure, which positively 

influences the overall GDP growth. However, it has also been found that due to the 

high population of school-age children in the community, the spending of education 

budget gets lower as the total financial cost of education expenditure becomes far less 

than the demand present (Chatterji, Mohan et al., 2014). 

A study conducted in Cameroon, Chad, and the Central African Republic 

estimated a negative relationship between inflation and the probability of allocating a 

high budget for the education sector. The study explained that the chances of 

employment decrease simultaneously at the time of inflation, and the total budget 

allocated for different social sectors is greatly disturbed. Therefore, the efficiency of 

education expenditure to the economic instability is greatly hindered by uncertainty. 

Additionally, during the stable economic condition, the efficiency and the distribution 

of allocated education expenditure are enhanced. The relationship between the two 

variables mentioned above confirmed that the state's economic condition could 

directly influence the country's GDP (Fonchamnyo and Sama 2016). 
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Bischoff and Prasetyia (2015) analyzed the education spending determinants 

that involved 398 Indonesian panel data from the years 2005 to 2012 by using random 

effects and fixed effects models in their research study. Their results exposed that the 

public education expenditure increases due to the larger share of children population 

in any community. Moreover, the study further highlighted that the citizens were 

found unwilling to support high shares of public expenditure invested in the form of 

tax contributed by them because it created financial distress for them to pay for 

communal welfare. 

Contradictory to the above studies, a study conducted by Kurban, Gallagher et 

al. (2015) confirmed a different perspective. The study's findings refuted the earlier 

studies' results confirming the elderly population as a source of a hindrance to the 

growth and prosperity of the per-pupil education expenditure of the total population of 

the children. By conducting a re-inspection on the United States data, it has been 

found that older adults do not control or create any competition on the resources 

allocated for the education of the children who school are going age (Kurban, 

Gallagher et al. 2015). 

The study conducted by Imana (2017) found that some significant economic 

factors, such as real GDP per capita, budget deficits, and the education lagged 

expenditure, contributed negatively to controlling the size of the allocation budget. 

She further suggested that urbanization has become another factor in managing the 

education expenditure budget, and more specifically, primary education expenditure 

is directly suffered from it. Moreover, due to the domestic debt, low-income rates, and 

high inflation, the children's chances of secondary school education become scarce. 

She highlighted various reasons for it. Firstly, the role of government is crucial; more 

borrowing and loans led to high taxes and to meet the revenue demand, the prices 

became high, and the affordability factor of services area became challenging to 

attain. Secondly, due to inflation, the necessities are challenging to fulfill, and the 

long term plans of investing in the future become worthless (Imana 2017). 

A critical assessment of the determinants of education expenditures within 

Malaysian society was carried out by Abdul Jabbar and Selvaratnam (2017)and Yun 

and Yusoff (2018). Both studies pointed out that the economic demographics and 

political factors played a vital role in determining the Malaysian public education 
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expenditure from 1990 to 2015. The study results confirmed that revenue had been 

positively significant for education expenditure, while the results were negatively 

significant in the budget deficit. Additionally, the unemployment rate had an inverse 

and insignificant impact on the overall education expenditures of the country. The 

same studies reflected that the policymakers did not consider economic and political 

indicators as the decision on the education expenditure was given priority to achieve 

more important future goals. Both studies emphasized that the long term sustainable 

economic growth is dependent on the quality education expenditure, and the short-

term variable like poverty, unemployment, inflation, and budget deficits were handled 

with other economic strategies while securing the allocated budget for the education 

sector. 

Smith (1776) represented the idea of labour specialization that can contribute 

to the total world economy. He found out that the number of annual products of any 

nation depends on the amount of labor employed in the production and the 

productivity of the labor. He explained that the first element is of lesser importance 

than the second element because the quality of the productivity of the laborers will 

decide their payments. So, by creating more educated and skilled laborers, the 

amplitude of financial worth will increase and positively impact economic growth. 

The demand and the need of the time are crucial with much technological 

advancement in today’s world. However, the investment in the education sector is not 

up to the demand. 

Adolph Wagner first witnessed the positive correlation between economic 

growth and government activity, and active growth. As well pointed out by 

Henrekson (1993), Wagner saw three significant reasons for assessing the state's role 

in maintaining the pace of economic activity. Firstly, due to rapid industrialization 

and modernization in contemporary times, it is estimated that there would be a 

definite increase in private sector development and economic activity. Therefore, the 

total expenditures allocated for the law-and-order situation and the contractual 

enforcement will increase. Secondly, the increase in real income due to taxation will 

enhance and expand the income elastic earmarked for the budget of cultural and social 

welfare projects and their expenses. Lastly, Wagner identified that the government is 

a better controller and executor of the expenditure only in the education and cultural 

sectors. 
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Sinha (1998) observed that the government should deal with natural 

monopolies such as railroads because private companies cannot plot these 

monopolies. For private companies, it is impossible to arrange huge finances for mere 

losses. It is an interesting phenomenon that the government can prefer to spend the 

budget on building failed and unproductive industrial significance projects for years. 

Still, it cannot see the possibility of spending on the education sector for the long-term 

benefits. 

The selected research area is undoubtedly significant in the contemporary 

world. Still, the problems lie in understanding the practical worth of the relationship 

between education expenditure and economic prosperity in the long run. Several 

empirical studies are conducted to assess the relationship between human capital 

investment and the country's economic growth. Researchers such as Ghosh Dastidar, 

Mohan et al. (2013) elaborated the relationship is tested positive in their seminal 

work. In Tanzania and Zambia, a study was conducted by Jung and Thornback and in 

Nigeria by Oguibe and Adeniyi.  And in India, a survey conducted by Chandra 

revealed a positive relationship between education expenditure and the economic 

growth rate. Hence, all these papers concluded a positive relationship between the 

spending on education and the GDP growth rate. 

Fiszbein and Psacharopoulos carried out a study to analyze the impact of 

educational investment in Venezuela. They identified that investments in primary 

education could largely boost economic growth. On the other hand, the total 

investments in the higher education category yield the lowest results among the three 

distinctive levels of the educational institution of the society.  

In a study conducted by Oluwatobi and Ogunrinola (2011) for Nigeria, it has 

been noted that there is a positive relationship between the increased growth of 

expenditures in the education and the economic sector by using an expanded model of 

economic reproduction, in which they also included the impact of costs of education 

and health care in designing the size of the budget. Similarly, Sinha (1998) carried out 

research in Malaysia, which revealed a significant long-term relationship between the 

costs spent on education and economic growth; however, there is no mutual 

relationship between the increase in the total cost of education and the economic 

growth. This analysis is conflicting yet present in the research analysis. 
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Idrees and Siddiqi (2013) conducted research based on panel analysis. They 

identified a significant positive relationship present between the rising cost of 

education and economic growth due to different reasons. Firstly, the investments 

spent on the education sector ensure the availability and access to learning various 

skills and techniques that can generate income. Secondly, there is a vast competition 

present in contemporary times regarding the quality of education and the research-

oriented studies that can effectively help other people and communities. Thirdly, the 

total amount spent on the education sector increases due to the digitalization and 

commercialization of the education field and the increased taxes related to the 

services industries. Therefore, the market worth of well-educated and well-equipped 

labour is increased. 

One of the most typical examples given in this regard is often India. Chandra 

(2010) observed that the sole reason for India’s boom in the software industry in the 

twentieth century is the result of the enormous investments in the 1950s and 1960s in 

the technological and education sector. The 40-year-old investment is paying 

immensely in multiple employment spaces and the revenue through the taxation 

system. Moreover, it is also generating competition in the global job market. The 

fruitful investment in the long run in the education sector is evident. Therefore, the 

relationship of economic growth and education is vividly positive. 

It is essential to understand that education in Pakistan is related to the 

provincial governments.  According to the population growth rate, the National 

Finance Commission Award reveals that the provinces receive the considerate amount 

of funds from the federal divisible pool. Then these provinces prioritize their funding 

according to the needs and requirements of the services sector. As education is one of 

the country's sectors, its expenditure is decided according to the total budget. Through 

past research, it has been observed that Punjab allocated 30 percent of the funds for 

education. It has been observed further that KPK allocates the second big budget. On 

the other hand, it has been observed that Sindh and Baluchistan spend less budget on 

the education sector. 

Since (2003), according to the districts' devolution plan, the districts have 

received education-development funds from the respective provincial governments. In 

addition to their resources and the presence of the allocated funds, the districts later 
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distribute funds across various sectors, including the Education sector. The low 

priority accorded to the education sector is observed primarily in the development 

expenditures. It is one of the reasons that we keep many variations in the literacy 

levels among the various districts of the same province. Some researchers believe that 

there is a possibility that expenditures on education and literacy levels are 

interdependent with each other. For instance, the study conducted by Husain, Qasim 

et al. (2003) shows that large-scale disparities are present among Urban and rural 

Punjab at one side and on the other side between urban and rural Sindh on the other 

side in terms of literacy rates.  The problem goes on because these specific districts 

that include Rajanpur, Muzaffargarh, Lodhran, D. G. Khan, etc., in Punjab and Mithi, 

Thatta, Badin, etc. in Sindh that are highly illiterate on record are also found in 

allocating fewer budgets for education expenditure purpose (Husain, Qasim et al. 

2003). 

According to the different studies, it has been identified that the public sector 

expenditure on education does not equally benefit all the discreet groups of the 

population. Other factors can influence the benefits of spending. These factors include 

income, age, gender and region. Husain, Qasim et al. (2003) noted that the 

expenditure on the state of art coronary care services is selectively beneficial for rich 

people because of the affordability factor, while financing in the unemployment 

insurance company will help empower the poor.  

While it is observed that the competition between populations of different ages 

may vary the benefit of expenditures, it has been observed that a higher allocation of 

funds for pension is beneficial to only older people because they cannot earn at this 

point in time. On the other hand, funding a school meal is only significant to the 

young ones (Husain, Qasim, et al., 2003).  

Another perspective raised in this regard is that public spending on education 

can be progressive or regressive. For instance, studies like Gupta, Hanges et al. 

(2002), and SPDC Report (2004) reflected that in the countries like Columbia, 

Ecuador, Malaysia, Philippines, and Pakistan, there is a progressive benefit linked 

with the expenditure on primary and secondary education, health care, public 

transport and infrastructure. According to Rasmus et al. (2001), this is possible due to 
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the following reasons. Firstly, the spending on primary education, especially in rural 

areas and less developed sectors, will be progressive. 

Also, it is observed that the access to publicly provided education services 

may vary because of race, gender, caste, region, and religious factors. Government 

expenditure will not reach such groups since the chances of service utilization rates in 

such cases are lower than in the privileged groups. For example, research by Al‐

Samarrai and Zaman (2007) in Malawi; Sabir, Ahmed et al. (2003); Shahin (2001) in 

Côte d’Ivoire and Selden and Wasylenko (1992) in the Peru States have been able to 

establish the fact that females of the school-age group are less privileged in terms of 

having fewer benefits as compare to men in getting an education. 

Cama, Jorge et al. (2016) has observed the same results that describe that the 

females are less prioritized by their parents to accomplish their educational goals. The 

expenditure spent on females in Pakistan is far less than that spent on males. 

In a cross-sectional study of 56 countries studied by Gupta, Hanges et al. 

(2002), it has been observed that the increase in total government expenditure on the 

education sector is directly associated with the improvement in the accessibility and 

attainment of education in the schools.  It is significant to highlight that the 

government expenditure on education can be utilized in the long run to reduce 

poverty. Analyzing the fiscal policy in Thailand, a study conducted by Hyun in 2006 

explained that the government subsidies the tax exemption o for the poor and the 

subsidies in the education services would help in getting education significantly it will 

benefit the less privileged and the marginalized communities.  

The studies in the same vein conducted by researchers like Sahn and Younger 

(2000), Demery and Verghis (1994) and Younger, Warrington et al. (1999) have 

critically examined the education expenditure at different levels of education. The 

study's findings have revealed that primary education is the most progressive than 

secondary education, public universities, and private sector universities. (Hakro 2007) 

Different researches have explained the different determinants of public education 

expenditure worldwide. However, this literature review is limited to the selected 

variables used for this study purpose. Nevertheless, with the help of different studies, 

a theoretical ground has been established that explains the relationship of public 
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education expenditure with inflation, unemployment, population density and GDP per 

capita growth. 

6.4. Data and Econometric Methodology  

The study's annual data from 2004 to 2018 for all countries are available data 

for variables. This panel data set is explored by UNESCO, the data bank of the World 

Bank World development indicators, and the data bank of IMF’s International 

Financial Statistics online database. Note that 𝐻𝐸𝑋𝑖𝑡 is the Initial household funding 

of secondary education, (% of GDP) and 𝐺𝐸𝑋𝑖𝑡  is Government expenditure on 

education, total (of % of GDP). Measuring credit constraints is a bit tricky, especially 

for panel data. Some researchers use non-performing loans; others construct specific 

indexes. Here, BNL𝑖𝑡  is bank nonperforming loans to total gross loans (%) as a proxy 

of Consumer credit constraints. The problem with these approaches (mentioned 

below) is that such data may not be available for a long time series and an adequate 

number of countries. Therefore, we examined a full sample with a mixture of 

countries. Further, this study also employs other four potential determinants of public 

expenditures on education Consumer price index (2010 = 100), Population density, 

GDP per capita (constant 2010 US$), Unemployment, total (% of the total labor 

force) (modelled ILO estimate). The summary statistics of all variables are reported in 

Table 6.1. The figures in the table below show the means and standard deviations of 

variables.  

Table 6. 1: Descriptive Statistics 

 Mean    Median Maximum Minimum Std.Dev.  

𝐿𝑛𝐻𝐸𝑋𝑖𝑡 -1.182 -0.966  1.5247 -6.778 1.397  

𝐿𝑛𝐺𝐸𝑋𝑖𝑡 1.443 1.498 2.147 0.412 0.349  

𝐿𝑛𝑁𝑃𝐿𝑖𝑡  1.524 1.405 4.090 -0.581 0.8163  

𝐿𝑛𝐶𝑃𝐼𝑖𝑡 4.629 4.637 5.947 3.809 0.2412  

𝐿𝑛𝑃𝑂𝑃.𝐷𝑒𝑛𝑖𝑡 4.437 4.717 7.322 0.963 1.277  

𝑈𝑁𝑃𝑖𝑡 6.529 5.890   26.091 0.130 3.945  

Observations 600 600 600 600 600  

Note: Annual data for the period 2004-2018; whole sample, 40 countries. 
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6.4.1 Econometric Methodology 

This paper investigates the causality between household spending and 

government spending on education. In doing so, we consider the ability of households 

to borrow as it may affect the causality both directly and indirectly. Approximately, 

the ability to borrow by credit risk as non-performing loans express it. Thus, the latter 

is incorporated as a mediator in estimating the causality. This paper has applied Panel 

Granger non-causality test proposed by Dumitrescu and Hurlin (2012), and the Panel 

corrected standard error (PCSEs) model to tackle the problem of heteroscedasticity 

Serial correlation of AR (1), and Cross-sectional dependence. For testing stationarity 

of the variables, the second-generation panel unit root test is Im-Pesaran and Shin 

(IPS) Test at level and difference.  Pedroni’s cointegration test and Panel ARDL 

model, i.e., Pooled Mean Group (PMG) estimation for heterogeneous panel data is 

used for cointegration analysis. This model (PMG) is used for long-run, short-run 

causality, and the error correction term (ECT). Dynamic panel data estimation two-

step system GMM is also used to handle the problem of endogeneity. The 

endogeneity problem means that the dependent variable in each regression is 

correlated with the regression's error term. Therefore, least squares cannot be used to 

estimate the model. Alternatively, we have estimated our model with a two-step 

system GMM, using lagged values of the regressors as instruments. As a robustness 

test estimated a VAR (3) and computed the Impulse response function using Cholesky 

decomposition and a 95% confidence interval. 

6.4.2 Panel Granger non-causality test 

Panel Granger non-causality test was proposed by Dumitrescu and Hurlin 

(2012) is applied to investigate the causal relationships between Government 

expenditure on education and household expenditures on education with credit 

constraints. As a preliminary overview, present tests of causalities (whole sample, 

low-income subsample, high-income subsample) using the Dumitrescu and Hurlin 

(2012) test. Table 6.2 displays the p-values for both �̅� and �̃�. 
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Table 6. 2: Granger non-causality test – Dumitrescu & Hurlin (2012) 

𝐻0 whole sample high income low income 

 p-values 

 �̅� 𝑍 �̅� 𝑍 �̅� 𝑍 

𝐻𝐸𝑋𝑖𝑡 ↛ 𝐺𝐸𝑋𝑖𝑡  0.00***       0.15  0.00***  0.09*   0.01***         0.17  

𝑁𝑃𝐿𝑖𝑡  ↛ 𝐺𝐸𝑋𝑖𝑡  0.00*** 0.03**  0.00***         0.15   0.02***         0.21   

𝐺𝐸𝑋𝑖𝑡 ↛ 𝐻𝐸𝑋𝑖𝑡  0.00*** 0.02**  0.00***        0.26   0.00***     0.00***  

𝑁𝑃𝐿𝑖𝑡  ↛ 𝐻𝐸𝑋𝑖𝑡  0.33       0.92  0.00***          0.45         0.30  0.29   

𝐺𝐸𝑋𝑖𝑡 ↛ 𝑁𝑃𝐿𝑖𝑡  0.05**       0.80  0.00***          0.90   0.01***  0.96   

𝐻𝐸𝑋𝑖𝑡 ↛ 𝑁𝑃𝐿𝑖𝑡  0.00***       0.14  0.00***    0.01**    0.00***     0.00*** 

*** 1% significance level; ** 5% significance level; * 10% significance level. 

Annual data for 2004-2018; whole sample, 40 countries; high income, 29 countries; low income, 11 countries. 

The lags for each case were chosen using BIC; the minimum number of lags is found to be 1 and the maximum 3. 

 

Table 6.2 displays results from the procedure proposed by Dumitrescu & 

Hurlin (2012) –referred to hereafter as the DH approach- an extension of Granger's 

bivariate framework to test stationarity in panel data. The null hypothesis is that x 

does not Granger cause y, and the table presents p-values for the standardized 

statistics �̅� and �̃�, for the whole sample, a subsample contains only the low-income 

countries and a subsample that comprises only the high-income countries.4 The p-

values for the �̅� Statistic suggests that there is bivariate causality between HEX, GEX 

and NPL that runs both ways in all samples apart from causality 𝑁𝑃𝐿 → 𝐻𝐸𝑋, which 

does not hold for the whole sample and the low-income sample.  

The  �̅� statistic, however, is more appropriate when both T and N are relatively 

large, and T is large relative to N.  The �̃� statistic, on the other hand, corresponds to 

the case where N is large relative to T and 𝑇 > 5 + 3𝐾, where K denotes the number 

of lags for x. Since 𝑇 = 18, 𝑁 = 40 and the maximum K is found to be 3 using BIC, 

the �̃� Statistics appear to be the most appropriate measure for our samples. The results 

based on the �̃� statistic firstly indicates that for the low-income and whole sample, the 

causality only runs from 𝐺𝐸𝑋 to 𝐻𝐸𝑋 at the 1% and 5% significance levels, 

respectively. For the high-income sample, it runs only from 𝐻𝐸𝑋 to 𝐺𝐸𝑋 at the 10% 

significance level. This leads us to conclude that the weakening of the statistical 

significance of 𝐺𝐸𝑋 → 𝐻𝐸𝑋 in the whole sample relative to that of the low-income 

sample is due to the reversal of the causality in the high-income sample.  

                                                           
4 The second-generation panel unit root test of Im, Pesaran and Shin (1997) indicates that 𝐺𝐸𝑋𝑖𝑡 , 𝐻𝐸𝑋𝑖𝑡 
and 𝑁𝑃𝐿𝑖𝑡 are all level stationary at 5% significance levels, without including a trend.  
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Secondly, the causalities are only direct as no secondary statistically 

significant causalities support indirect effects.5 It is also worth highlighting two more 

aspects of those results. First, the fact that causality 𝑁𝑃𝐿 → 𝐺𝐸𝑋 is statistically 

supported in the whole sample but none of the other two subsamples causes doubts 

about the validity of this causality. Since 𝑁𝑃𝐿 → 𝐺𝐸𝑋  holds for the entire sample, 

one would naturally expect it to hold in at least one subsample. Second, while 

causality 𝐻𝐸𝑋 → 𝑁𝑃𝐿 is statistically insignificant in the whole sample, it appears to 

be highly statistically significant in the two subsamples. These results are consistent 

with one another, as long as the effects of 𝐻𝐸𝑋 on 𝑁𝑃𝐿 in the two subsamples go in 

opposite directions in a way that they cancel one another. Our estimates suggest that 

this is indeed the case. 

The above Table (6.2) establishes the causalities based on past values of one 

of the variables. Next, we have quantified the causal relationships by controlling for 

the possible dependence of other variables that may act as mediators. Finally, in 

examining the causality between HEX and GEX, we consider the role of credit market 

risk, which is approximated by non-performing loans (𝑁𝑃𝐿).  In particular, we believe 

the following model: 

𝑨𝒀𝑡 = 𝑨0 + ∑ 𝑨𝑗𝒀𝑡−𝑗
𝑁
𝑖=1 + 𝜺𝑡                              (6.1) 

Where  𝒀𝑡 includes the three variables of interest, 𝐻𝐸𝑋𝑡, 𝐺𝐸𝑋𝑡 and 𝑁𝑃𝐿𝑡 as 

well as other variables which may interact and feedback the three variables of interest. 

Specifically, 

𝒀𝑡 ≡ [𝐻𝐸𝑋𝑡 𝐺𝐸𝑋𝑡 𝑁𝑃𝐿𝑡 𝐶𝑃𝐼𝑡 𝑃𝑂𝑃𝑡 𝑈𝑁𝑃𝑡]′, 

All variables are stationary and expressed in logarithm, apart from the 

unemployment rate, and thus coefficients in the regressions refer to elasticities.  

Matrix 𝑨 is 6 x 6 with all diagonal elements equal to 1, and the error vector 𝜺𝑡 

has zero mean and a diagonal variance-covariance matrix. To estimate the sign and 

magnitude of the causality between 𝐻𝐸𝑋𝑡 and 𝐺𝐸𝑋𝑡 requires not only the estimation 

of {𝑨𝑗}𝑗=1
𝑁

 but also  𝑨. The fact that there are infinite combinations of different values 

                                                           
5 Even though causalities 𝑁𝑃𝐿 → 𝐺𝐸𝑋 for the whole sample and 𝐻𝐸𝑋 → 𝑁𝑃𝐿 for the two subsamples 

are statistically significant, neither of them supports indirect effects of GEX on HEX and HEX on GEX 

respectively. In the first case, the effect is not triggered by GEX while in the second case, although the 

effect is triggered by HEX, NPL has no effect on GEX.  
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for {𝑨𝑗}𝑗=1
𝑁

 And 𝑨 that implies the same probability distribution for the observed data 

leads to a well-known fundamental problem in estimation—in particular, estimating 

equation (6.1) as a structural VAR requires identifying restrictions on parameters.  

The problem is that the theory is not informative, let alone conclusive, 

regarding possible restrictions that would be adequate to identify the first two rows of 

the equation (6.1). Therefore, since firm theoretical foundations are absent, a priori 

restrictions will be somewhat arbitrary and thus not well justified. An alternative 

approach is to find six exogenous variables which would be used as instruments to 

help with identification. For each equation in (6.1), the corresponding exogenous 

variable should be highly correlated with the dependent variable but uncorrelated with 

the contemporaneous, future, or past realizations of the structural shocks of the other 

equations.  

Finding such distinct exogenous variables is a significant challenge. Sims 

(1980) hinted that even though many of these variables are treated as exogenous by 

default, there are no good reasons to believe they are strictly exogenous. Thus, the 

choice of exogenous variables that can be used as instruments is quite controversial. 

Within our framework, where structural errors are assumed to be independent and 

identically distributed, prominent instruments are lagged values of the regressors. As 

explained below, we adopt a version of the latter approach.  Furthermore, estimating 

equation (1) as an SVAR restricts us from using a third dimension of the data: the 

country cross-sectional dimension. The latter is significant as time series data for 

several countries is relatively short, while many countries have data availability, 

including developing economies. 

In this analysis, we adopt a rather heuristic approach to the problem by 

estimating directly and separately each equation included in equation (6.1) using 

cross-country data. Although we have several control variables, we also add fixed 

effects in the regressions to mitigate further bias concerns due to omitted variables. 

The latter enables us to control for the impact of time-invariant unobserved 

heterogeneity. The regressions are specified as follows. 

𝑦𝑖,𝑡 = 𝛼
𝑦 + 𝜷𝑦(𝐿)𝒀𝑖,𝑡 + 𝛾

𝑦𝑓𝑖
𝑦
+ 휀𝑖,𝑡

𝑦
,            (6.2) 

For 𝑦 = 𝐻𝐸𝑋, 𝐺𝐸𝑋,𝑁𝑃𝐿, 𝐶𝑃𝐼, 𝑃𝑂𝑃𝐷𝐸𝑁, 𝑈𝑁𝑃 
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where, 𝒀𝑖,𝑡 ≡ [𝐻𝐸𝑋𝑖,𝑡 𝐺𝐸𝑋𝑖,𝑡 𝑁𝑃𝐿𝑖,𝑡 𝐶𝑃𝐼𝑖,𝑡 𝑃𝑂𝑃𝑖,𝑡 𝑈𝑁𝑃𝑖,𝑡]′ and  

𝜷𝑦(𝐿) is a 1 x 6 vector of polynomials in the lag operator, 𝐿, with elements 𝛽𝑠
𝑦
(𝐿) =

∑ 𝛽𝑠,𝑗
𝑦
𝐿𝑗𝑁

𝑗=0  for the coefficients that do not correspond to the variable in 𝒀𝑖,𝑡 which 

coincides with 𝑦𝑖,𝑡, and 𝛽𝑠
𝑦
(𝐿) = ∑ 𝛽𝑠,𝑗+1

𝑦
𝐿𝑗+1𝑁−1

𝑗=0  for the coefficient that corresponds 

to the variable in 𝒀𝑖,𝑡 which coincides with 𝑦𝑖,𝑡, for s = 1, 2, 3, …, 6.  

For instance, if 𝑦 = 𝐻𝐸𝑋, then 𝛽1
𝐻𝐸𝑋(𝐿) = ∑ 𝛽1,𝑗+1

𝐻𝐸𝑋 𝐿𝑗+1𝑁−1
𝑗=0  while for s = 2, 3, 

4, 5, 6. 𝛽𝑠
𝐺𝐸𝑋(𝐿) = ∑ 𝛽𝑠,𝑗

𝐺𝐸𝑋𝐿𝑗𝑁
𝑗=0 . Likewise, if 𝑦 = 𝐺𝐸𝑋, then 𝛽2

𝐺𝐸𝑋(𝐿) =

∑ 𝛽2,𝑗+1
𝐺𝐸𝑋 𝐿𝑗+1𝑁−1

𝑗=0  while 𝛽𝑠
𝐺𝐸𝑋(𝐿) = ∑ 𝛽𝑠,𝑗

𝐺𝐸𝑋𝐿𝑗𝑁
𝑗=0  for s = 1, 3, 4, 5, 6. Note that whether 

there is a direct or indirect effect depends on the statistical significance of the 

estimated coefficients. Noticeably, there is an endogeneity problem, which means that 

the dependent variable in each regression is correlated with the regression's error 

term. Therefore, least squares cannot be used to estimate the model. Alternatively, we 

can estimate those equations with GMM, using lagged values of the regressors as 

instruments. Then, after obtaining estimates for the three equations and assuming 𝑁 =

3 (according to the BIC criterion), the dynamic components of those equations can be 

written as a VAR (3) process: 

�̂�0Y𝑡 = ∑ �̂�𝑗
3
𝑗=1 Y𝑡−𝑗 + 𝜖𝑡                        (6.3) 

Where Y𝑡 = [𝐻𝐸𝑋𝑡 𝐺𝐸𝑋𝑡 𝑁𝑃𝐿𝑡 𝐶𝑃𝐼𝑡 𝑃𝑂𝑃𝑡 𝑈𝑁𝑃𝑡]′ is country-invariant, 

�̂�0, �̂�1, . . . , �̂�3 are matrices that include the estimated parameters of the previous 

regressions: 

�̂�0 =

[
 
 
 
 
 
 
 
1 �̂�2,0

𝐻𝐸𝑋 �̂�3,0
𝐻𝐸𝑋 �̂�4,0

𝐻𝐸𝑋 �̂�5,0
𝐻𝐸𝑋 �̂�6,0

𝐻𝐸𝑋

�̂�1,0
𝐺𝐸𝑋 1 �̂�3,0

𝐺𝐸𝑋 �̂�4,0
𝐺𝐸𝑋 �̂�5,0

𝐺𝐸𝑋 �̂�6,0
𝐺𝐸𝑋

�̂�1,0
𝑁𝑃𝐿 �̂�2,0

𝑁𝑃𝐿 1 �̂�4,0
𝑁𝑃𝐿 �̂�5,0

𝑁𝑃𝐿 �̂�6,0
𝑁𝑃𝐿

�̂�1,0
𝐶𝑃𝐼 �̂�2,0

𝐶𝑃𝐼 �̂�3,0
𝐶𝑃𝐼 1 �̂�5,0

𝐶𝑃𝐼 �̂�6,0
𝐶𝑃𝐼

�̂�1,0
𝑃𝑂𝑃 �̂�2,0

𝑃𝑂𝑃 �̂�3,0
𝑃𝑂𝑃 �̂�4,0

𝑃𝑂𝑃 1 �̂�6,0
𝑃𝑂𝑃

�̂�1,0
𝑈𝑁𝑃 �̂�2,0

𝑈𝑁𝑃 �̂�3,0
𝑈𝑁𝑃 �̂�4,0

𝑈𝑁𝑃 �̂�5,0
𝑈𝑁𝑃 1 ]

 
 
 
 
 
 
 

, 
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�̂�𝑗 =

[
 
 
 
 
 
 
 
�̂�1,𝑗
𝐻𝐸𝑋 �̂�2,𝑗

𝐻𝐸𝑋 �̂�3,𝑗
𝐻𝐸𝑋 �̂�4,𝑗

𝐻𝐸𝑋 �̂�5,𝑗
𝐻𝐸𝑋 �̂�6,𝑗

𝐻𝐸𝑋

�̂�1,𝑗
𝐺𝐸𝑋 �̂�2,𝑗

𝐺𝐸𝑋 �̂�3,𝑗
𝐺𝐸𝑋 �̂�4,𝑗

𝐺𝐸𝑋 �̂�5,𝑗
𝐺𝐸𝑋 �̂�6,𝑗

𝐺𝐸𝑋

�̂�1,𝑗
𝑁𝑃𝐿 �̂�2,𝑗

𝑁𝑃𝐿 �̂�3,𝑗
𝑁𝑃𝐿 �̂�4,𝑗

𝑁𝑃𝐿 �̂�5,𝑗
𝑁𝑃𝐿 �̂�6,𝑗

𝑁𝑃𝐿

�̂�1,𝑗
𝐶𝑃𝐼 �̂�2,𝑗

𝐶𝑃𝐼 �̂�3,𝑗
𝐶𝑃𝐼 �̂�4,𝑗

𝐶𝑃𝐼 �̂�5,𝑗
𝐶𝑃𝐼 �̂�6,𝑗

𝐶𝑃𝐼

�̂�1,𝑗
𝑃𝑂𝑃 �̂�2,𝑗

𝑃𝑂𝑃 �̂�3,𝑗
𝑃𝑂𝑃 �̂�4,𝑗

𝑃𝑂𝑃 �̂�5,𝑗
𝑃𝑂𝑃 �̂�6,𝑗

𝑃𝑂𝑃

�̂�1,𝑗
𝑈𝑁𝑃 �̂�2,𝑗

𝑈𝑁𝑃 �̂�3,𝑗
𝑈𝑁𝑃 �̂�4,𝑗

𝑈𝑁𝑃 �̂�5,𝑗
𝑈𝑁𝑃 �̂�6,𝑗

𝑈𝑁𝑃
]
 
 
 
 
 
 
 

, for 𝑗 = 1, 2, … ,𝑁. 

As long as the inverse of the matrix �̂�0 exists, the reduced form of (6.3) is given 

by 

Y𝑡 = ∑ Γ̂𝑗
3
𝑗=1 Y𝑡−𝑗 + 𝑢𝑡,                       (6.4) 

      Where Γ̂𝑗 = �̂�0
−1�̂�𝑗 and 𝑢𝑡 = �̂�0

−1𝜖𝑡. (4) Can be further written as 

               𝑋𝑡 = Π𝑋𝑡−1 + 𝜆𝑡                    (6.5) 

         Where   𝑋𝑡 = [Y𝑡 Y𝑡−1 Y𝑡−2]′, 𝜆𝑡 = [𝑢𝑡 06
1 06

1]′ and 

Π = [
Γ̂1 Γ̂2 Γ̂3
𝐼6 06 06
06 𝐼6 06

], 

Where 06
1   6 x 1 vector of zeros is, 06 is a 6 x 6 matrix of zeros and 𝐼6 is a 6 x 

6 identity matrix. As long as all eigenvalues of Π are strictly less than one in modulus, 

(6.5) can be written as a moving average process;  

𝑋𝑡 = [𝐼18 − ΠL]
−1𝜆𝑡 = 𝜆𝑡 + Π𝜆𝑡−1 + Π

2𝜆𝑡−2 +⋯+ Π
𝑗𝜆𝑡−𝑗 +⋯  (6.6) 

It follows that the percentage dynamic response of HEX to a 1% innovation in 

GEX is given by the first element of   Π𝑗𝜆, where 𝜆 = [�̂�0
−1𝜖2 06

1 06
1]′ and  𝜖2 =

[0 1 0 0 0 0]′. In other words, we can plot the first element of Π𝑗𝜆 as a 

function of j. Likewise, the percentage dynamic response of GEX to a 1% innovation 

in HEX is given by the second element of Π𝑗𝜆, where 𝜆 = [�̂�0
−1𝜖1 06

1 06
1]′ and 

𝜖1 = [1 0 0 0 0 0]′. These dynamic responses will quantify the causality 

𝐺𝐸𝑋 → 𝐻𝐸𝑋 and the causality  𝐻𝐸𝑋 → 𝐺𝐸𝑋, respectively. To quantify the indirect 

effect of GEX on HEX via NPL, we can set  �̂�2,𝑗
𝑁𝑃𝐿 = 0 for j = 0, 1, 2, 3 and recompute 

the response and then compare them with the previous, likewise, for the indirect effect 

of HEX and GEX via NPL.  
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6.5. Empirical Results and Discussions 

Table 6.3 represents the estimators of Pooled OLS, Fixed Effect Model, and 

Random Effect Model with their standard errors in parentheses. According to our 

panel data set, the Hausman test to check which model (Fixed effect or Random 

effect) is appropriate. The p-value of the Hausman test is 0.0000, statistically 

significant, which concludes that the fixed effect model is suitable for this panel data 

set. Therefore, again regressed the fixed effect model. After it, checked the diagnostic 

test for Cross-sectional dependence is the Pesaran, Schuermann et al. (2004). This 

diagnostic test examined whether the residuals are correlated across entities. Here, the 

p-value of 0.000 rejects the null hypothesis and concludes that cross-sectional 

dependence exists across the Panel members. Therefore, the Panel Corrected Standard 

error model has been used to tackle the problems of heteroscedasticity, serial 

correlation of AR (1), and cross-sectional dependence.  

Table 6. 3: Pooled, Fixed Effect, Random Effect, and Panel Corrected Standard Error 

(PCSE) Model 

       Coefficient-values  

Models Pooled        Fixed Effect       Random Effect     PCSE                [95% Conf.   Interval]  

PCSE 

 𝐿𝑛𝐺𝐸𝑋𝑖𝑡 𝐿𝑛𝐺𝐸𝑋𝑖𝑡 𝐿𝑛𝐺𝐸𝑋𝑖𝑡 𝐿𝑛𝐺𝐸𝑋𝑖𝑡  

𝐿𝑛𝐻𝐸𝑋𝑖𝑡 -0.188**     -0.203  -0.243   -0.027*   -0.058        0.003 

𝐿𝑛𝑁𝑃𝐿𝑖𝑡  0.043*** -0.012**  -0.008        -0.052***   -0.089  -0.014 

𝐿𝑛𝐶𝑃𝐼𝑖𝑡 -0.078     -0.339**  -0.145        0.063   -0.074  0.201 

𝐿𝑛𝑃𝑂𝑃.𝐷𝑒𝑛𝑖𝑡 0.001***  0.005***      0.002***          0.012         -0.013  0.038 

𝑈𝑁𝑃𝑖𝑡 -0.038**     -0.009   -0.019*          0.000   -0.009  0.009 

Constant  0.897*     -0.447*  1.395    1.133***   0.485 1.781 

R Squared  0.275      0.174   0.215    0.491  Rho   0.8661 
*** 1% significance level; ** 5% significance level; * 10% significance level. 

Annual data for 2004-2018; whole sample, 40 countries. The number of observations is 600. 

6.5.1 Panel Unit Root Test 

The second-generation panel unit root test was used to test the stationarity of 

the variables, which is the Im-Pesaran and Shin Test (1997) at level and difference. 

This test (IPS) concludes that𝐿𝑛𝐺𝐸𝑋𝑖𝑡, 𝐿𝑛𝐻𝐸𝑋𝑖𝑡, LnBNLit and 𝐿𝑛𝐶𝑃𝐼𝑖𝑡 are stationary 
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at level and difference as well. While other control variables 𝐿𝑛𝑃𝑂𝑃.𝐷𝑒𝑛𝑖𝑡, and 

𝑈𝑁𝑃𝑖𝑡 are non-stationary at level then become stationary at the first difference of the 

variables. 

6.5.2 Panel Cointegration Test 

Pedroni’s panel cointegration test is displayed in table 6.4. The results of this 

test contain seven statistics, i.e., panel and group statistics. Most of them are 

statistically significant to accomplish the presence of cointegrated relationships 

among 𝐿𝑛𝐺𝐸𝑋𝑖𝑡,𝐿𝑛𝐻𝐸𝑋𝑖𝑡, 𝐿𝑛𝐵𝑁𝐿𝑖𝑡, 𝐿𝑛𝐶𝑃𝐼𝑖𝑡,  𝐿𝑛𝑃𝑂𝑃.𝐷𝑒𝑛𝑖𝑡, and 𝑈𝑁𝑃𝑖𝑡. 

6.5.3 Pooled Mean Group (PMG) Estimation for heterogeneous panel data. 

This model (PMG) is used for long-run and short-run coefficients, implying 

long-run and short-run causality. These coefficients and the error correction term both 

show strong causality among variables. The PMG model assumed that long-run 

coefficients are the same across all countries in the panel.  Here, the most important 

thing is the long-run coefficients of the PMG model presented in table 4. This shows 

long-run coefficients are statistically significant at a 1% level to indicate long-run 

causal relationships exist among variables  𝐿𝑛𝐺𝐸𝑋𝑖𝑡, 𝐿𝑛𝐻𝐸𝑋𝑖𝑡, LnBNLit, 𝐿𝑛𝐶𝑃𝐼𝑖𝑡, 

 𝐿𝑛𝑃𝑂𝑃.𝐷𝑒𝑛𝑖𝑡and 𝑈𝑁𝑃𝑖𝑡. The PMG also shows short-run coefficients at the 

difference of independent variables and the error correction term (ECT).  

The PMG model also assumed that short-run coefficients and ECT are not the 

same for each country in the panel. ECT is negative -0.6770 and statistically 

significant at a 1 % level of significance, which shows a cointegration relationship 

among panel variables and indicates that any deviation from long-run equilibrium is 

corrected at 67% speed of adjustment. ECT gives a joint causal effect among the 

variables.  

6.5.4 Dynamic Panel Data Estimation, Two-step System GMM 

This study applies a two-step system GMM model to investigate the true 

causal relationship between the intensity of household spending on education (HEX) 

and government spending on education (GEX) with the role of credit constraints. This 

model requires the number of instruments should be less than the number of groups 

(countries), and the overall validity of the instruments is determined by the values of 
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AR (1), AR (2), Sargan and Hansen Test. These statistic values should be higher to 

conclude that can’t reject the null hypothesis, here null hypothesis is desirable i.e., 

Instruments as a group are exogenous. 

 

Table 6. 4: Pedroni’s Cointegration Test and Pooled Mean Group (PMG) Estimation 

Pedroni’s Cointegration Test 

 Panel v-statistic  -3.676*** Group rho-

statistic 

7.539**  

 Panel rho-

statistic 

  5.238** Group t-statistic -17.55***  

 Panel t-statistic  -13.06*** Group ADF-

statistic 

 3.973***  

 Panel ADF-

statistic 

  2.951    

Pooled Mean Group Estimation (PMG) 

Dependent 

variable 
𝑑𝑙𝑛𝐺𝐸𝑋𝑖𝑡      

Long-run Coefficients  Short-

run 

Coefficients   

𝐿𝑛𝐻𝐸𝑋𝑖𝑡 -0.079***  ECT -0.677***   

𝐿𝑛𝑁𝑃𝐿𝑖𝑡  0.001  𝑑𝑙𝑛𝐻𝐸𝑋𝑖𝑡 -0.061   

𝐿𝑛𝐶𝑃𝐼𝑖𝑡 -0.149***  𝑑𝑙𝑛𝑁𝑃𝐿𝑖𝑡  -0.0323   

𝐿𝑛𝑃𝑂𝑃. 𝐷𝑒𝑛𝑖𝑡 0.524***  𝑑𝑙𝑛𝐶𝑃𝐼𝑖𝑡 -0.973**   

𝑈𝑁𝑃𝑖𝑡 -0.017***  𝑑𝑙𝑛𝑃𝑂𝑃.𝐷𝑒𝑛𝑖𝑡 -0.633   

   𝑑𝑈𝑁𝑃𝑖𝑡 -0.016   

Note: *, **, *** indicate statistical significance at the 10%、5%, 1% level, respectively. 

 

The Two-step System GMM model shows higher AR (1), AR (2), Sargan and 

Hansen Test, which indicates the overall validity of the instruments. And the number 

of instruments is also less than the number of groups that lead to being a good model. 

All the diagnostic tests are satisfied the criterion at the 5 % level of significance. 

Table 6.5 displays the estimated coefficients of the six-panel regressions. In summary, 

table 6.5 confirms the main result of the DH bivariate test for the whole and low-

income sample under �̃�, That is, only GEX causes HEX, while the causality is only 
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direct. The latter is inferred that we do not find statistically significant mediators that 

would support an indirect relationship among our set of variables.  

Table 6. 5: Dynamic Panel Data Estimation: Two-step System GMM 
  dependent variables 

regressors 𝐻𝐸�̌�𝑖,𝑡 𝐺𝐸�̌�𝑖,𝑡 𝑁𝑃�̌�𝑖,𝑡 𝐶𝑃𝐼̌ 𝑖,𝑡 𝑃𝑂�̌�𝑖,𝑡 𝑈𝑁�̌�𝑖,𝑡 

𝐻𝐸𝑋𝑖,𝑡  

 

-0.223 

(0.49) 

-0.911 

(1.72) 

0.576 

(0.68) 

0.057* 

(0.03) 

9.319 

(7.35) 

𝐺𝐸𝑋𝑖,𝑡 3.192** 

(1.63) 

 

 

1.941 

(1.95) 

0.351 

(0.93) 

0.188 

(0.16) 

-0.004 

(4.04) 

𝑁𝑃𝐿𝑖,𝑡 0.121 

(0.657) 

-0.223 

(0.17) 

 

 

0.062 

(0.24) 

0.082 

(0.51) 

21.80 

(19.06) 

𝐶𝑃𝐼𝑖,𝑡 3.435 

(4.54) 

1.485 

(2.13) 

-7.868* 

(4.55) 

 

 

-0.056** 

(0.02) 

-1.474 

(2.02) 

𝑃𝑂𝑃𝑖,𝑡 -1.333 

(9.87) 

0.040 

(2.71) 

0.606 

(2.99) 

33.38** 

(17.19) 

 

 

8.568 

(25.02) 

𝑈𝑁𝑃𝑖,𝑡 0.073 

(0.18) 

0.015 

(0.05) 

.2103* 

(0.12) 

0.003 

(0.09) 

0.004 

(0.01) 

 

 

𝐻𝐸𝑋𝑖,𝑡−1 0.733*** 

(0.13) 

0.158 

(0.33) 

-1.313 

(1.10) 

-0.284 

(0.63) 

-0.045* 

(0.02) 

-6.128 

(2.81) 

𝐺𝐸𝑋𝑖,𝑡−1 -1.98** 

(1.09) 

0.664*** 

(0.13) 

0.428 

(1.091) 

-0.385 

(0.52) 

-0.095 

(0.10) 

0.281 

(2.38) 

𝑁𝑃𝐿𝑖,𝑡−1 -0.163 

(0.56) 

0.176 

(0.16) 

1.078*** 

(0.26) 

-0.062 

(0.24) 

0.051*** 

(0.02) 

1.436 

(26.07) 

𝐶𝑃𝐼𝑖,𝑡−1 -4.485 

(6.35) 

-2.434 

(3.21) 

10.266 

(6.31) 

1.809*** 

(0.52) 

-0.052 

(0.71) 

-28.659 

(3.45) 

𝑃𝑂𝑃𝑖,𝑡−1 1.391 

(0.89) 

-23.18 

(2.23) 

19.043 

(1.89) 

-69.16** 

(34.88) 

1.639*** 

(0.64) 

-3.876 

(0.20) 

𝑈𝑁𝑃𝑖,𝑡−1 0.009 

(.06) 

0.002 

(0.024) 

-0.144 

(0.10) 

0.042 

(0.04) 

0.004 

(0.01) 

0.402** 

(2.12) 

𝐻𝐸𝑋𝑖,𝑡−2 0.099 

(0.16) 

-0.017 

(0.12) 

-0.139 

(0.42) 

0.021 

(0.20) 

-0.014 

(0.01) 

-2.195 

(0.82) 

𝐺𝐸𝑋𝑖,𝑡−2 -0.252 

(0.25) 

0.008 

(0.10) 

-0.047 

(0.44) 

-0.134 

(0.12) 

-0.032 

(0.02) 

0.487 

(1.08) 

𝑁𝑃𝐿𝑖,𝑡−2 0.066 

(0.14) 

-0.005 

(0.06) 

-0.169 

(0.31) 

0.013 

(0.13) 

0.007 

(0.01) 

-0.601 

(5.18) 

𝐶𝑃𝐼𝑖,𝑡−2 0.963 

(1.93) 

1.194 

(0.97) 

-1.691 

(2.26) 

-0.685 

(0.89) 

0.027 

(0.18) 

3.302 

(79.55) 

𝑃𝑂𝑃𝑖,𝑡−2 4.617 

(27.7) 

-1.191 

(7.21) 

-2.936 

(8.75) 

42.254* 

(23.98) 

-0.392 

(1.28) 

-26.794 

(0.11) 

𝑈𝑁𝑃𝑖,𝑡−2 0.036 

(0.05) 

-0.008 

(0.01) 

0.058 

(0.05) 

0.005 

(0.04) 

0.002 

(0.01) 

0.038 

(1.17) 

𝐻𝐸𝑋𝑖,𝑡−3 0.147 

(0.11) 

0.069 

(0.11) 

-0.424 

(0.42) 

-0.077 

(0.25) 

0.003 

(0.01) 

-0.915 

(0.92) 

𝐺𝐸𝑋𝑖,𝑡−3 -0.767 

(0.51) 

0.265** 

(0.11) 

0.405 

(0.46) 

-0.019 

(0.17) 

-0.058 

(0.03) 

-0.120 

(0.36) 

𝑁𝑃𝐿𝑖,𝑡−3 -0.000 

(0.13) 

-0.001 

(0.04) 

0.055 

(0.13) 

-0.001 

(0.13) 

-0.013 

(0.01) 

0.277 

(0.34) 

𝐶𝑃𝐼𝑖,𝑡−3 0.341 

(0.63) 

-0.259 

(0.53) 

-1.047* 

(0.66) 

-0.640** 

(0.32) 

-0.204*** 

(0.07) 

5.533 

(4.51) 

𝑃𝑂𝑃𝑖,𝑡−3 -3.283 

(17.98) 

1.156 

(4.58) 

2.344 

(6.64) 

-6.477 

(8.66) 

-0.246 

(0.65) 

18.148 

(54.78) 

𝑈𝑁𝑃𝑖,𝑡−3 0.000 

(0.03) 

0.017 

(0.01) 

-0.046 

(.05) 

0.002 

(0.02) 

0.000 

(0.003) 

-0.220 

(0.14) 

intercept -1.267 

(1.22) 

-1.26** 

(0.66) 

-1.92 

(1.71) 

.067*** 

(0.57) 

-2.602*** 

(0.19) 

.067** 

(4.50) 
*** 1% significance level; ** 5% significance level; * 10% significance level. 

Numbers in parenthesis correspond to the standard deviations of the estimates. 
According to the BIC criterion, we choose 3 lags for each regression. 
 

Moreover, our estimates suggest that an increase of GEX by 1% affects HEX 

both in the current year as well as in the subsequent year, inducing an overall increase 

in a roughly equal percentage of HEX. Specifically, an increase in the intensity of 
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government education spending by 1% increases HEX on impact by about 3% and 

decreases it the following year by about 2%. 

Our findings indicate that an increase in the intensity of government spending 

on education encourages households to increase the intensity of their spending on 

education in the same year. They do so, but the percentage increase is three times 

higher than the increase in the intensity of government spending. For instance, an 

increase in government investment in infrastructure, say via an investment in school 

premises and computer labs, induces households to increase their spending 

significantly more by enrolling in private classes and purchasing new equipment. The 

overreaction of households to the increase in the intensity of government spending on 

education is followed by a “correction” the year after. The “correction” in relative 

expenditure that occurs in the subsequent year brings the overall percentage increase 

of the intensity of household spending to the same level as the initial percentage 

increase of the intensity of government spending. Among others, we do not find any 

evidence that credit constraints, proxied by the share of non-performing loans, affect 

directly or indirectly the intensity of spending on education. 

To confirm the validity of the instruments, we perform further tests displayed 

in table 6.6. Given that table 6.5 displays no evidence for mediator variables that 

channel indirect relationships between GEX and HEX, we report results only for the 

first two main regressions. First, we check for serial correlation in the residuals of the 

system GMM by employing the Arellano-Bond test. The results for the main 

regressions are displayed in the first two columns. While the first order is statistically 

significant for both regressions with p-values of 5.2% and 6.5%, respectively, the 

second-order is clearly statistically insignificant as the p-values are as high as 82% 

and 66%, respectively. First-order serial correlation is not surprising since residuals in 

first differences correlate by construction. 

On the other hand, the absence of second-order serial correlation implies that 

residuals are uncorrelated in levels, suggesting that the instruments are strictly 

exogenous. As shown in table 6.6, statistics from the Sargan and Hansen tests of over-

identifying restrictions are in line with the Arellano and Bond test results. 

Specifically, the Sargan-Hansen result suggests that the instruments are jointly 
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uncorrelated with the error term as the null hypothesis of over-identifying restrictions 

cannot be rejected. 

Table 6. 6: Two-step System GMM: test results 
 dependent variables 

 𝐻𝐸�̌�𝑖,𝑡 𝐺𝐸�̌�𝑖,𝑡 𝐻𝐸𝑋𝑖,𝑡 𝐺𝐸𝑋𝑖,𝑡 

regressors 

𝑗 = 𝑡, 𝑡 − 1, 𝑡 − 2, 𝑡 − 3 

𝐺𝐸𝑋𝑖,𝑗 

𝑡∗∗, 𝑡 − 1∗∗ 

𝐻𝐸𝑋𝑖,𝑗 𝐺𝐸𝑋̅̅ ̅̅ ̅̅
𝑗 𝐻𝐸𝑋̅̅ ̅̅ ̅̅

𝑗 

CD Pesaran test 0.105 0.143 0.341 0.464 

Arellano-Bond, AR(1) 0.052 0.065 0.895 0.500 

Arellano-Bond, AR(2) 0.824 0.658 0.870 0.812 

Sargan test 0.992 0.273 0.110 0.413 

Hansen test 0.940 0.243 0.206 0.384 

The number of instruments is 33; 𝐺𝐸𝑋̅̅ ̅̅ ̅̅
𝑡 ≡ (∑ 𝐺𝐸𝑋𝑗,𝑡

𝑁
𝑗=1 )/𝑁 and; 𝐻𝐸𝑋̅̅ ̅̅ ̅̅

𝑡 ≡ (∑ 𝐻𝐸𝑋𝑗,𝑡
𝑁
𝑗=1 )/𝑁; ** 5% significance level. 

To examine whether there are differences in the causality across -low and 

high-income countries, similarly to what the bivariate tests suggest, we extend (6.3) 

by introducing income-level dummies that enable us to capture possible differentiated 

effects. Nonetheless, the dummies are statistically insignificant, which indicates that, 

on average, income levels are irrelevant to the causality between the intensities of 

government and household spending on education.6 This finding refutes the 

differentiated responses across the two subsamples implied by DH bivariate tests. The 

discrepancies between the multivariate and bivariate models results could be 

attributed to the aforementioned missing aspects of the bivariate test. Finally, to 

examine whether 𝐺𝐸𝑋𝑖,𝑡 and 𝐻𝐸𝑋𝑖,𝑡 respond to country invariant components of HEX 

and GEX, respectively, we replace regressors at time t with 𝐻𝐸𝑋̅̅ ̅̅ ̅̅
𝑡 and 𝐺𝐸𝑋̅̅ ̅̅ ̅̅

𝑡 and in all 

corresponding lags, and then re-estimate the models. We find that all regressors 

involving the country invariant factors are statistically insignificant both 

contemporaneously and in lags. This result indicates that household spending 

intensities on education respond only to country-specific changes in corresponding 

government intensities. We do not report the complete set of available estimates upon 

request to save on space. However, we report the various tests for the two regressions 

in the last two columns of table 4 to demonstrate that the models are well-specified.  

                                                           
6 To save on space, we do not report the estimates with dummies which are available upon request. 
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6.6. Conclusion  

The central research question of this study is to evaluate the tendency of 

household educational spending vis-à-vis government spending on education, given 

the household’s credit constraints. This analysis used the annual panel data from 2004 

to 2018 for all countries with available data. All variables are expressed in logarithm, 

apart from the unemployment rate, and thus, coefficients in the regressions refer to 

elasticities. The study took into account the ability of households to borrow as it may 

affect the causality both directly and indirectly—the ability to borrow by credit risk as 

expressed by non-performing loans approximately. Thus, the latter is incorporated as 

a mediator in estimating the causality. 

As a preliminary overview, the Panel Granger non-causality test by 

Dumitrescu and Hurlin (2012) is applied to investigate the above causal relationships. 

The best performing test, the Granger non-causality test by Dumitrescu & Hurlin 

(2012), has been used to examine the causal relationship between the intensity of 

government spending and the intensity of household spending on education with the 

role of credit constraint, based on simulation results obtained in Chapter 5. In 

addition, panel data econometric models are applied. After that, the Panel corrected 

standard error (PCSEs) model is applied to tackle heteroscedasticity, Serial 

correlation of AR (1), and Cross-sectional dependence. For testing stationarity of the 

variables used second-generation panel unit root test that is the Im-Pesaran and Shin 

(IPS) Test at level and difference conclude that 𝐿𝑛𝐺𝐸𝑋𝑖𝑡, 𝐿𝑛𝐻𝐸𝑋𝑖𝑡, LnBNLit and 

𝐿𝑛𝐶𝑃𝐼𝑖𝑡 are stationary at level and difference as well. While other control 

variables  𝐿𝑛𝑃𝑂𝑃.𝐷𝑒𝑛𝑖𝑡, and 𝑈𝑁𝑃𝑖𝑡 are non-stationary at level then become 

stationary at the first difference of the variables.   

In this paper, we examine the causality between the intensities of government 

and household spending on education. Using data from a cross-country panel, we 

show that appropriate bivariate causality tests suggest that the intensity of government 

spending on education causes the intensity of household spending on education, while 

the reverse does not hold. Although we find a relatively weak reversal of the causality 

for high-income countries, we demonstrate that this reversal, and thus the 

differentiated responses among low- and high-income countries, disappears when we 

consider a multivariate model that also controls for contemporaneous relationships, 
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cross-country dependence, homoskedasticity and autocorrelation within countries as 

well as country fixed effects. The result is fascinating and useful for policymakers. It 

further shows that the causality clearly runs from the intensity of government 

spending on education to the corresponding household intensity, but the effect is only 

direct.  

  Our findings suggest that households tend to overreact when the government 

increases its spending intensity by increasing its intensity three times more. In the 

following year, however, they correct their response by decreasing their spending 

intensity so that there is an overall one-to-one relationship between government and 

household spending intensities on education. Interestingly, when we approximate 

credit market tightness with the percentage of non-performing loans, we find no 

evidence that the latter affects the intensity of household spending on education or 

government spending on education. 
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CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH DIRECTION 

7.1. Summary 

Causality is the most important concept which is tested frequently in social 

sciences. Unfortunately, it is not easily detected from observational studies7. In the 

natural sciences, causality can be determined through controlled experiments, whereas 

controlled experiments are difficult to be carried out in social sciences. Experimental 

and observational studies have different statistical tools, which can be explained with 

various descriptive analyses. Therefore, one has to investigate the causal analysis for 

observational data. But in observational data, the causal inferences are among the 

most challenging inferences and have several issues. The first and the most critical 

point is that causality is not directly observable in the non-experimental data. Second, 

one cannot control primary confounding factors in observational data. Third, 

statistical measures of relationship are symmetric and don’t directly in the form of 

causality. Hence, it’s difficult for the researcher to differentiate between cause and 

effect. 

The main objective of this study is to analyze the effective functional 

comparison of all the causality methods regarding the type of data, i.e., cross-section, 

time series, and panel data. Furthermore, this study will show which methodology 

detects true causal relation by employing the appropriate method for specific data 

types.  

We have found no effective functional comparison of different causality 

methods in the literature as it is known that different causality techniques are 

applicable in different scenarios. Therefore, it is necessary to determine which 

statistical technique/test gives better statistical properties in a particular scenario. 

Econometric analyses like cointegration, error-correction model and Granger or Sims 

causality tests are applied to examine this issue. These existing regression 

methodologies rely on normality and linearity assumptions not supported by the data 

                                                           
7 Observational study draws inferences from a sample to a population where the independent 

variable is not under the control of the researcher because of ethical concerns or logistical constraints. 
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used in the analysis and may lead to inconclusive results. These techniques sometimes 

may not be able to provide proper/true results. Therefore, it becomes impossible to 

formulate policies based on the studies' findings following conventional methods. 

Hence, exploring which traditional method of causality is more appropriate to find out 

true causal relationships is required. Therefore, the present study has analyzed the 

performance of the panel causality test. 

Further, it investigated which causality test is the best performer based on the 

size and power properties. This study modified the time series causality test for panel 

data, i.e., the Sims test and Hsiao's final prediction error method. Monte Carlo 

simulations are used to calculate these methods' size and power characteristics, and an 

optimum causal approach is proposed. The objective of the simulation experiment is 

to find out the size and power properties of methodologies for testing causality. 

Therefore, we need data with embedded causality (for power) and the data series with 

no causality (size).  

The selection of DGP for simulation study is crucial in most comparative 

analyses. Different tests have a diverse theoretical base, so selecting one DGP can 

benefit some test statistics. Causality methods and tests can be compared in a 

homogeneous framework to conclude the superiority of a single test or show the 

strength and weaknesses of the tests under some alternative. In this regard, a 

simulation study should be needed; however, we proceed with our research by 

selecting a feasible DGP to compare all the tests. Under the Null hypothesis of a 

causal relation between X and Y (H0: X causes Y) and under alternative hypotheses 

of independence between X and Y (H1: X doesn’t cause Y). As per the definition of 

Granger causality, Y is caused by X if the lag value of X can be used for predicting Y. 

The generated series are independent of each other, causality cannot be checked, and 

so we will only determine the size of the test. Furthermore, we will develop different 

but correlated series 𝑥𝑖𝑡 , 𝑦𝑖𝑡 To check the causal ordering through the power of the 

test.  

Power of the test means rejecting a hypothesis when the alternative hypothesis is true.  

𝑃𝑜𝑤𝑒𝑟= Prob (𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝐻0 / 𝐻1 𝑖𝑠 𝑡𝑟𝑢𝑒) 

When a true hypothesis is rejected, this is an error probability denoted by “α” and 

establishes the size of the test.  
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α= Prob (𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝐻0 / 𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒) 

Selection of sample size is critical in analyzing any data, especially for the 

panel data set. We have annual data sets and selected three cross-section units for this 

study. We have categorized them into three groups for this simulation study, i.e., 5, 

10, and 20, as small cross-section units, medium cross-section units, and large cross-

section units, respectively. Similarly, three-time series lengths are taken to evaluate 

the performance of Causality tests; these time series levels are 25, 50, and 200. 

Similar to categorizing cross-section length into three types, a time series length of 25 

indicates a small-time series, and 50 is assigned as a medium time-series length. At 

the same time, 200 is allotted as a large time-series length in this study. To carry out 

simulations and MCSS of 10,000 is taken to get the convergence effectively. 

The study also includes a real-world application. The best causality test algorithms 

are used for real-world data analysis to discover the causal drivers of government 

expenditure on education intensity. The present investigation also uncovers answers 

that provide researchers with a high confidence level. The result is fascinating and 

useful for policymakers. It further shows that the causality clearly runs from the 

intensity of government spending on education to the corresponding household 

intensity, but the effect is only direct.  

7.2. Conclusion 

In compression of size, GC test has the least size distortion from the nominal 

size of 5% compared to size distortion of SIM and FPE tests at small, medium, and 

large cross-section units. All three tests archive increasing power pattern as the 

parameter of interest (𝜌1 and 𝜌2) moves away from the null hypothesis corresponding 

to all cross-section dimensions. 

However, the power attainment of the GC test is much better than the other 

two tests (SIM and FPE) at all alternatives, whether the cross-sectional length is 

small, medium, or large. This test archives 100% power at 0.3/0.2 alternative 

corresponding to N=5 and at 0.1 for a large cross-section unit for all causal 

combinations and recognizes the best performer compared to the other two tests. 

Among SIM and FPE tests, the former gains least power at all alternatives compared 

to the latter, which corresponds to small, medium and large cross-section units and is 
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thus identified as the worst performer. A similar pattern has been observed for almost 

all tests at different sample sizes; medium sample size (i.e. T=50) and large sample 

size (i.e. T=200).  

Based on the comparison of size and power analysis of the panel causality 

tests, this study concludes that the GC test is a point optimal. Overall analysis shows 

that GC test performs better at all causal combinations and panel dimensions, whether 

drift only or both drift and trend take into account. On the other hand, the Sim’s test, 

with its lowest power gain at all causal combinations and panel dimensions, is the 

worst performer test. However, the FPE test with a power curve between the better 

and worst performer is graded as the average performer test. The GC test's theoretical 

reasoning has better power because of the AR (1) structure of DGP against all 

alternative hypotheses, which supports the algorithm of GC test. On the other hand, 

the DGP does not keep the lead values for Sim's algorithm, which might be one of the 

potential reasons for Sim's poor performance. 

7.3.  Limitations and the Direction for Future Research 

This comparative simulation research studied the performance of panel 

causality tests using a stationary scenario with varied DGPs of causal combinations 

for three-panel series. Model specifications have been employed with drift only and 

with drift & trend for different sample sizes, small, medium, and large. The current 

study used DGP as AR (1) process only; the autoregressive structure can be converted 

to a distributed lag structure so that one can use distributed lag structure in the future. 

The optimal point tests under the stringency criteria must be developed for 

future research studies. For example, this study employed three-panel causality tests 

because of a shortage of time and resources in the future to investigate at least six to 

eight other panel causality tests and evaluate the size and power performance of these 

tests. Then, create the optimal point test and determine the most stringent test. 

This research observed less convergence and the size distortion for small-time 

series and cross-section dimensions, especially for SIM and FPE tests. Therefore, a 

panel causality test (PCT) with adequate maximum power at small time-series and 

cross-section length must be developed to close the gap. 
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