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ABSTRACT 

The estimates of the Maximum Likelihood estimation method are the estimates of 

the global maximum likelihood function, by definition. However, the present study showed 

empirically that the likelihood function of the GARCH model is multimodal. Due to the 

presence of multimodality in the likelihood function leads to a difference in estimates at 

local and global maxima, and hence, Maximum Likelihood estimation methods can have 

unstable performance in such situations. Therefore, it will face the problem in inference 

and prediction, due to the difference in estimates at local and global maxima(s). Two 

estimation methods are chosen from the Frequentist and the Bayesian approach, 

respectively, to measure the significance of the difference in estimated parameters due to 

the presence of multimodality in the likelihood function. Besides, to calculate the level of 

difference, a standard method of Monte Carlo simulation method is used. The surface plot 

is constructed by changing the value of the Monte Carlo simulation method to evaluate 

their performance along the whole surface. these surfaces are then compared within each 

approach.  

Subsequently, the preferable algorithms are compared across the Bayesian and 

Frequentist approaches. For comparison, the present study has calculated bias and variance 

around the true data generating process. Empirically it is found that in case of Frequentist 

approach Differential Evolution (DE) algorithm is preferable estimation method for 

GARCH type models, as compared to Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithm. Because there is multimodality in the likelihood function of the GARCH model, 

and BFGS uses a single starting value to search maximum point in the likelihood function, 

and often this single starting value traps into local maxima. Therefore, the estimated 
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parameter at the local and global maxima vary, and hence, inferences and predictions. 

Conversely, DE uses multiple starting values with multiple chains, due to which it 

automatically avoid local maxima and converges to global maxima.  

In the case of the Bayesian approach, Robust Adaptive Metropolis (RAM) is a 

preferable estimation for GARCH type models as compared to Metropolis Hasting (MH). 

Because RAM is based on the strategy of adaptive mechanism, i.e., the Markov Chain of 

the RAM move to the next point, after taking information from the previous point, and 

finally converge to some particular value of the estimate. While MH use chain of 

independent nature, i.e., it does not take information while moving from one point to 

another point in the Markov Chain. After confirming the best estimator from frequentist 

and the Bayesian approach, this study compared these approaches with each other. 

Empirically, it is found that the Bayesian approach (RAM) is the preferable estimation 

method than the Frequentist approach (DE) because the level of bias and variance around 

the true parameter for RAM is lower than DE.  

Pakistan Stock Exchange (PSX) is used as a real-world application. Empirically it 

is found that the Bayesian approach is preferable estimation method than the frequentist 

approach. Reasons are followed; first, in the frequentist approach estimated parameters are 

the point estimates, while in the case of the Bayesian approach, the complete distribution 

of the estimated parameter is obtained at the low cost of simulation. Second, the 

distribution of the point estimate is hypothetically assumed to be normal, while in case of 

Bayesian approach it is not valid, i.e., the distribution of the estimates could be skewed in 

either direction. Therefore, the frequentist approach either over or underestimate the true 

value of the parameter. Finally, the standard error of the estimates which are obtained 
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through the DE algorithm is more precise as compared to the estimates of BFGS. 

Therefore, the forecasting based on DE is more accurate about risk and return. 

 

 

 

Keywords: Multimodality, Likelihood Function, Estimation Methods, Bayesian Approach, 

Frequentist Approach, Monte Carlo Simulation, Surface Plot, Single Starting Value, 

Multiple Starting Value, Pakistan Stock Exchange.  
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CHAPTER 1 

INTRODUCTION 

            Volatility plays a crucial role in empirical finance and financial risk management 

and is the basis of any model for financial time series, such as; stock prices, exchange rate, 

interest rate. Since the seminal work of Engle (1982) on Auto-Regressive Conditional 

Heteroscedasticity (ARCH) model, extensive research has been conducted on changing 

volatility (i.e., conditional variance) using time series models. Bollerslev (1986) proposed 

a Generalized ARCH (GARCH) model, which extended the specification of the conditional 

variance. Since 1982, ARCH-type models overgrew into a family of empirical financial 

models for forecasting volatility. The primary purpose of ARCH-type modeling is to 

understand systematic changes in the volatility of financial time series to minimize the risk 

in the future. These GARCH-type models are now general and vital tools in financial 

econometrics. 

            Maximum Likelihood (ML) estimation method is usually used to estimate the 

GARCH-type models. The standard theory showed that these estimates follow ideal 

asymptotic properties (Bollerslev et al., 1994). Conversely, these asymptotic properties are 

slightly different when there are boundary constraints on the estimates (Zaman, 2002), as 

covariance stationarity condition and positive conditional variance conditions are applied 

to estimate GARCH models. Besides, the estimates of the ML estimation method are the 

estimates of the global maximum of the likelihood function, by definition. However, it has 

been shown theoretically by Jerrell and Campione (2001), and the present study also 

confirms it empirically that, the likelihood function may fail to have a global maximum; 

there are singularities at which the likelihood peaks to an infinite value. After excluding 
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neighborhoods of singularities, the highest local maximum has the optimality properties of 

the ML, but numerical estimation methods may fail to find this and instead converge to 

some lesser local maximum. 

            ML estimation method is easy to understand and implement and is readily available 

in statistical software. Most commonly used estimation method is Broyden-Fletcher-

Goldfarb-Shanno (BFGS). BFGS is based on a “hill-climbing” strategy, i.e., it starts from 

an initial value and searches for the maxima in the likelihood function. Besides BFGS, 

Stron and Price (1997) developed a Differential Evolution (DE) estimation method, and 

was implemented by Mullen et al., (2011). DE uses multiple chains with multiple starting 

values to search global maxima in the likelihood function. Due to multiple chains and 

multiple starting values, it avoids local maxima automatically. 

            Moreover, the estimation of GARCH type models is achieved after imposing two 

types of constraints, i.e., positive conditional variance and covariance stationary condition. 

If an inequality constraint, then the procedure of optimization can be cumbersome. 

Additionally, if the value of the actual parameter is close to boundary space, then the 

numerical method may fail to converge (Ardia, 2008). These are theoretical problems of 

ML because the asymptotic theory for constrained estimators is different from the standard 

ML asymptotic theory (Zaman, 2002). 

            Contrary to the frequentist approach, there is a Bayesian approach and all the 

difficulties which are found in the frequentist approach – as discussed above, disappear 

when the Bayesian approach is used to estimate GARCH type models (Ardia, 2008). First, 

the Bayesian method estimates using averages over the posterior distribution and is not 

directly affected by the presence of multiple local maxima. Second, any constraint on the 
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model parameter can be incorporated in the modeling through the appropriate prior 

specification. Third, the exact distribution of the parameter is obtained at the low cost of 

simulation, which resolves the problem created by multiple maxima and constraints, and 

permits direct inference. Therefore, the present study also uses a Bayesian approach for the 

estimation of GARCH type models. 

            The main objective of this study is to select different estimation techniques from 

the literature, which are commonly used for the estimation of GARCH type models and 

assess their ability to estimate volatility accurately. It would allow ascertaining whether 

these estimation techniques have practical value in the context of volatility models. The 

present study uses simulation to evaluate the power, and afterward, algorithms will be 

compared within each approach. Second, to increase the reliability of the first objective 

present study repeat the experiment of simulation with multiple data generating process. 

Repeating the experiment with multiple data generating process will give a clue about the 

estimation methods that either the result of each algorithm is consistent across different 

data generating process or not. Because, in the real world application, the true data 

generating process is unknown; therefore, in a real-world application, econometrician is 

interested in approximation.  

Thirdly, to increase the enforceability of comparison, present study repeats 

experiment for a large number of combination, to construct the surface plot analysis, to 

analyze the difference along the whole surface. Fourth, after comparing algorithm within 

each approach, the selected algorithm will be compared across approaches. Fifth, the 

Pakistan Stock Exchange (PSX) will be used as a real-world application and apply GARCH 

(1, 1) model, to analyze the significance of the difference in inference and prediction, in 



 
 

4 
 

the presence of multimodality. In the frequentist approach, estimated parameters are the 

point estimates, and the distribution of these are assumed to be normal, hypothetically. To 

analyze this issue through posterior distribution is the sixth objective of the present study.  

After achieving six objectives of this study, mentioned above, will prove the 

hypothesis, i.e., the choice of the algorithm in the presence of multimodality for the 

estimation of GARCH type models, both in Bayesian and frequentist approach. The present 

study will now move towards the estimation of asymmetric GARCH type model for the 

window of PSX. This step will be done after confirming the presence of Leverage effect; 

this is the seventh objective of the study. Consequently, the good fitted asymmetric 

empirical model will be extended in the presence of skewed student t distribution. It is the 

eighth objectives of the study. As already discussed that the main objective of the GARCH 

type model is forecasting; therefore, this study will also discuss forecasting based on Value 

at Risk (VaR), Expected Short Fall and Predictive density measure. It is the ninth and final 

objective of the present study.  

           Most of the applications of GARCH type models are found in financial economics, 

where researchers are focusing on two types of issues; best specification of error and the 

choice of most efficient approach for inference (Virbickaite & Ausin, 2015). The present 

study focuses on both issues, i.e., the performance of different estimation techniques are 

evaluated using simulation with different error specification. By doing so, it will give a 

clue about the choice of estimation technique, which is consistent across the various 

distribution. Also, it removes the ambiguity among the selection of estimation approach as 

well, i.e., Bayesian and Frequentist. Consequently, it will lessen the risk due to the choice 

of inappropriate estimation technique for the inference and prediction. 
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1.1. Illustration of Multimodality: 

Two illustrative examples of multimodality in the likelihood function are taken 

from literature. The choice of these examples is made on the bases of the empirical studies 

of the GARCH (1, 1) model. The first example is based on the exchange rate, which is 

used in the seminal paper of Bollerslev (1987). The second example is also based on the 

exchange rate and is taken from Ardia (2008). While the third illustration is from the daily 

Pakistan Stock Exchange (PSX). 

1.1.1 Illustration from Bollerslev (1987) 

The series of US dollar versus the British pound exchange rate is chosen from the 

study of Bollerslev (1987) to illustrate the multimodality in the likelihood function. The 

frequency of the exchange rate is daily, from March 1, 1980, to January 28, 1985. The 

likelihood function is constructed by using the same window of the exchange rate and is 

presented in Fig. 1. Contour plots are used to analyze this issue, and it represents in 

different circles or layers. These circles are centered in a different region of the plot, and 

each of these centered represented unique modality. For example, the value of ML 11640 

represents three different circles, which implies that there are three peaks in ML function. 

Moreover, 11460 and 11400 are other peaks in the same ML function. Hence, there is 

multimodality in the ML function of exchange rate US dollar vs. British pound.  

1.1.2 Illustration from Ardia (2008) 

The daily data of Deutschmark vs. British Pound exchange rate is taken from Ardia 

(2008). The lower plot of Fig. 2 represents multi-modality for this data set. It is observed 

that the maximum peak with the value of 210, with this same value, apparently there are 

four peaks. On the other hand, there are also other local peaks with a value of 200, 180, 

and 190. Hence, similar to the previous example, this series also highlighted multimodality 

in the ML function of GARCH (1, 1) model. 
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Figure 1. represents the ML Function of GARCH (1,1) for the exchange rate of the US Dollar vs 

British Pound. The x-axis represents different values for 𝜷, and the y-axis represents different values 

for 𝜶𝟏. Layer in graphs represent the level of ML, and different circles represent peaks in ML, 

implies multimodality. 

 

Figure 2. represents the ML Function of GARCH (1,1) for the exchange rate of the Deutschmark vs 

British Pound. The x-axis represents different values for 𝜷, and the y-axis represents different values 

for 𝜶𝟏. Layer in graphs represent the level of ML, and different circles represent peaks in ML, 

implies multimodality. 
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1.1.3 Illustration of Pakistan Stock Exchange 

The daily data of the Pakistan Stock Exchange index is used as the third illustration 

to present the multimodality in the likelihood function. The sample period is from March 

20, 2002, to January 11, 2005, with 696 number of observations, excluding weekdays and 

holidays. The data span covers about three financial years and is long enough to apply ML 

Estimation Method (Arida, 2008). Also, this sample period satisfies the condition of 

asymptotic normality condition. Hence, the data is large enough to represent the ML 

function. The nominal returns are expressed in percent as in Bollerslev and Ghysels (1996). 

The data set is readily available on the open source of yahoo finance. Fig. 3 represents the 

ML function of PSX. Similar to the previous example, this graph also represents 

multimodality in the ML function of GARCH (1, 1).  

 

Figure 3. represents the ML Function of GARCH (1,1) for PSX. The x-axis represents different 

values for 𝜷, and the y-axis represents different values for 𝜶𝟏. Layer in graphs represent the level of 

ML, and different circles represent peaks in ML, implies multimodality. 
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 From these illustrations, it can be inferred that there is multimodality in the 

likelihood function of the GARCH model. Hence inference of each empirical model at each 

mode in these contour surface plots is different, consequently predictions. Most commonly, 

the assumption of covariance stationarity is violated in all cases. Furthermore, there are 

two types of models for each of the data set presented above depending on the modes, i.e., 

standard GARCH with (𝑎𝑙𝑝ℎ𝑎 + 𝑏𝑒𝑡𝑎 < 1)  and Integrated GARCH with (𝑎𝑙𝑝ℎ𝑎 +

𝑏𝑒𝑡𝑎 > 1). 

            This study comprises of six chapters. Chapter 1 introduces the purpose of this study.  

Chapter 2 is the literature review of GARCH type models and then followed by brief detail 

about the choice of distribution in the GARCH type models, and contains literature on a 

different type of algorithms in Bayesian and Frequentist approaches. Chapter 3 discusses 

the basic model for the simulation-based empirics to analyze and compare the performance 

of different algorithms and samplers. Chapter 4 is divided into two major sections. The 

first section of Chapter 4 will discuss the empirical results of GARCH (1, 1) model with a 

normal distribution, while the second section of Chapter 4 will discuss the empirical results 

of GARCH (1, 1) for PSX with the student-t distribution. 

Similarly, Chapter 5 is divided into two major sections. The first section of Chapter 

5 will discuss the choice of most appropriate asymmetric model for the same window of 

PSX, and the second section the same chapter will extend the selected asymmetric model 

in the presence of skewed distribution, subsequently, value at risk, expected shortfall, and 

predictive density. Finally, Chapter 6 includes the conclusion for the study and 

recommendations for future research based on this dissertation.  
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Figure 1.4: Flowchart of Empirical Study  
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CHAPTER 2 

LITERATURE REVIEW 

            Engle (1982) introduced the ARCH model to estimate the volatility of financial 

time series, which was extended by Bollerslev (1986), as a generalized ARCH model 

(GARCH). These models assume a normal distribution for the error, but Bollerslev (1987) 

observed that the financial time series have more massive tail compared to the normal 

distribution; therefore, he suggested t-distribution for the error in GARCH models. These 

models were updated into different dimensions, based on error specifications and choice 

of the most efficient approach for inference (Virbickaite et al., 2015). 

            Usually, Maximum likelihood estimation method is used to estimate the GARCH 

type models, although some authors (Gallant et al., 1989, Pagan et al., 1990) have also 

applied semi and non-parametric techniques. The primary appeal of the Maximum 

likelihood technique stems from the well-known asymptotic optimality conditions of the 

resulting estimators under ideal conditions (Bollerslev et al., 1994). However, asymptotic 

theory for constrained parameters; as in case GARCH models, is different from the 

standard Maximum likelihood asymptotic theory (Zaman, 2002). The standard theory of 

Maximum likelihood is incorrectly applied to GARCH models since the GARCH model 

has multi-modality and boundary constraint. Doornik and Ooms (2000, 2008) first noted 

multimodality. However, according to them, multi-modality arises when the dummy 

variable is added in the mean equation to correct the effect of an additive outlier. 

On the other hand, Jerrell and Campione (2001) applied two different algorithms to 

estimate the GARCH type model and found different estimated results. The difference in 
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the estimated parameter directly implies that multiple maxima exist in the likelihood 

function. Nevertheless, the authors did not explore this further. 

            Moreover, Maximum Likelihood estimation method is simple to understand and 

easy to implement, and readily available in the econometric or statistical software. Most of 

this software, like Ox-Metrix use BFGS estimation method to estimate GARCH type 

models. It is a numerical method of maximization. Numerical methods are often 

susceptible to the starting value of algorithms, since they converge to the nearest local 

maximum, instead of the global maximum. BFGS is a hill-climbing strategy where it starts 

searching for a maximum point in the likelihood function, from the initial value. In the case 

of BFGS, this initial value is specified by using the method of Fiorentini et al. (1996).  

            In the GARCH models, there are multiple maxima, and therefore, the numerical 

maximization algorithms such as BFGS are sensitive to the starting value. Due to this 

sensitivity, the system might not converge to the global maximum. Moreover, these 

numerical algorithms use the line search criterion to make the decision where a new value 

of the parameter is accepted if it maximizes the value of likelihood function. Although with 

the line search criterion, the system converges very fast, yet there is a risk of getting trapped 

by local maxima. On the other hand, there is a parallel search method similar to DE 

strategies. In a parallel search, there is a built-in safeguard to prevent misconvergence into 

local maxima. 

Furthermore, these parallel search techniques satisfy all four requirements,  (i) 

Ability to handle non-differentiable, nonlinear and multimodal cost functions (ii) 

Computational efficiency (iii) Ease of use (iv) Good convergence. One such parallel search 
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technique is DE – (Stron & Price, 1997). Price et al., (2006) developed a practical 

procedure to find a good starting point, which was implemented by Ardia et al., (2015). 

The problem of misconvergence can easily be overcome by combining starting value 

procedure from Price et al., (2006) with DE from Stron and Price (1997). 

            For the Bayesian approach, several Monte Carlo Markov chain methods are 

available to form the posterior distribution. These Markov chains are used to compute the 

information about different parameters for a particular posterior distribution. Tierney 

(1994) mentioned several well-known Markov chain to compute posterior density, but few 

of them can be used to estimate GARCH type models. More specifically, Tierney (1994) 

suggested that the Markov chains in hybrid strategies are more appropriate for the 

estimation of GARCH type models. Ardia and Hoogerheide (2010) presented Markov 

chains, which are relevant to the GARCH-type models, i.e. Griddy Gibbs Sampler and 

Metropolis Hasting (MH).  

The simple Gibbs sampler is used only when there is full conditional density, i.e. 

conjugacy property (Ardia, 2008). Some complicated Bayesian problems cannot be solved 

by using the Gibbs sampler. For example, when it is not easy to break down the joint 

density into full conditional density or when the full conditional densities are in the 

unknown form (Ardia, 2008). Ritter and Tanner (1992) overcame this problem by 

suggesting the Griddy Gibbs sampler for the non-conjugacy situations. The basic idea is to 

approximate the true distribution by a piecewise linear function. This sampler is easy to 

understand and implement, but it is time-consuming. This procedure was extended by using 

student t-distribution by Bauwens and Lubrano (1998), and practically, Ausin and Galeano 

(2007) used it. However, Arida (2008) suggested that the Gibbs sampler is not an 
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appropriate choice of estimation, due to issues explained above, while MH is the most 

preferable choice of estimation for GARCH type models.  

             Metropolis algorithm was introduced by Metropolis et al., (1953) and generalized 

by Hastings (1970). In the Markov chain, candidate draws are generated from conditional 

density. The candidate is then accepted or rejected based on acceptance probability. If the 

candidate’s density is accepted, then the chain will move to the next step. Otherwise, it will 

stay on the current stage. Two varieties of Metropolis-Hastings chain are most common. 

One is independence chain, in which the candidate draws are generated from the 

unconditional candidate distribution. The other is a random walk chain; in which current 

draw is a condition on the current value of the chain. In both methods, the chain distribution 

must be tuned to achieve a reasonable acceptance rate and to explore sufficiently the 

domain of the posterior distribution. The values of the chains are correlated,1 so, it takes 

some time to control the effect of the arbitrarily chosen initial value. To produce the iid 

sample from the posterior distribution, samples are taken at a long distance from each other 

within the chain. In random walk and independence chains, preliminary runs and tuning 

are necessary. Therefore, the method is not entirely automatic, which is not desirable. 

            Ardia (2008) used the Metropolis-Hasting sampler independent chains.2 

Independence means that the current proposal draw is independent of the previous draws 

of the chain (Sarkka, 2013). The chain approaches its equilibrium distribution as the 

                                                 
1Bauwens and Lubrano (1998), explains that if the parameter have correlation in the posterior distribution 

then the convergence is slower. As the level of autocorrelation increases the level of convergence become 

slower. In addition when correlation increases in the posterior distribution, the draws then to cluster, so that 

it takes a lot of draws to explore the posterior, and convergence is slower. This phenomenon can also be 

explained by the correlogram of the Markov chain. 
2Metropolis-hasting samplers also follow the procedure of random walk chains – for detail see Tierney 1994. 
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number of iterations increases (Tierney, 1994). On the other hand, Vihola (2012) suggested 

that the dependence of the chain converges to the excellent choice for approaching the 

equilibrium distribution. Vihola (2012) developed a new sampler, i.e. RAM. It was 

practically used by Ardia et al., (2016) for the estimation of the GARCH type models. This 

latest algorithm has a speciality that it estimates the shape of the target distribution and 

simultaneously forces the acceptance rate. Furthermore, adaptive algorithms require burn-

in of some iteration to obtain independent chain; this algorithm does not require any burn-

in iteration. Lastly, as it is shown that the likelihood function of the GARCH type model 

is multimodal, and most of the algorithm fails to converge global maxima, while this latest 

algorithm also works well in this situation.  
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CHAPTER 3 

THE MODEL AND ESTIMATION APPROACHES 

            Volatility is a statistical measure of the dispersion from the mean. It can be 

measured by using variance (or standard deviation); the higher value of variance means 

more uncertainty about the next event and vice versa. The conventional time series 

econometrics assumes that the variance of the disturbance term is constant. However, time 

series data exhibit unusually large volatility followed by periods of relative tranquillity. It 

is one of the stylized properties.3 In such circumstances, the assumption of constant 

variance is violated. Therefore, it is needed to specify this non-constant variance 

(conditional) along with the mean (conditional) equation. These type of models are also 

called volatility models and are extensively studied in financial econometrics. The most 

well-known volatility models are the GARCH type models. The purpose of these models 

is to analyze the historical pattern of volatility and predict future volatility by incorporating 

stylized properties. 

             Extensive literature is available on the GARCH type models, which either discuss 

different extensions of the GARCH models or focus on the specification of the error 

distribution. There is no previous study, which gives attention to multimodality in the 

likelihood function of the GARCH type models. However, theoretically, it is discussed by 

Zaman (2002) in the context of random coefficient models. The present thesis shows 

empirically that the likelihood function of the GARCH model is multimodal. When the 

                                                 
3 Other are; non-stationarity of the price series, absence of autocorrelation for the prices variations, 

autocorrelation of the squared prices returns, fat-tail distribution, leverage effect and seasonality, for detail 

see, Francq and Zakoian (2010), pp. 7-10. 
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likelihood function is multimodal, then the starting value should be taken with much 

consideration. Otherwise, inconsistent starting value converges to local maxima, and 

hence, the estimated parameter will not maximize the value of the likelihood function. In 

the previously available literature, different algorithms have been used to estimate the 

likelihood function of the GARCH type models. The most well-known and commonly used 

algorithm is BFGS, that is a numerical method, and the most recent algorithm used is DE. 

These algorithms are discussed in detail in the following sections. This study compared the 

performance of these algorithms for the estimation of the GARCH type models while 

keeping in mind the concept of multimodality in the likelihood function.  

             The Maximum Likelihood estimation method is generally preferred to estimate the 

GARCH type models. It is simple to understand and implement. However, there are some 

practical difficulties. First, the estimation of the GARCH type models require some 

constraints on parameters, i.e., positive conditional variance, and covariance stationary 

condition. These constraints are of inequality, which makes optimization difficult. Also, 

the optimization procedure might not converge if the value of the true parameter is close 

to the boundary of parameter space or if the process is a non-stationary process. Second, 

numerical algorithms are used to estimate the likelihood function of the GARCH type 

models. These algorithms are acceptable if the likelihood function of the GARCH type 

model is unimodal. However, empirically, it has been shown that the likelihood function 

of the GARCH type model is multimodal. In this case, the estimates of the Maximum 
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Likelihood method are sensitive to the starting values.4 These difficulties disappear when 

a Bayesian approach is used.  

            The plan of the study is as follow: Section 1 explains the model. Section 2 explains 

different approaches for estimation of GARCH type models. Section 3 explains the 

different steps for the comparison of different algorithms. The last section of this chapter 

explains the comparison with the help of visualization. 

3.1. The Model 

            The standard approach of modeling volatility is to introduce an exogenous 

variable𝑥𝑡, which helps to predict the variance of 𝑦𝑡 which is the dependent variable. The 

expected mean of 𝑥𝑡 is zero, and the model can be written as,  

 𝑦𝑡 = 휀𝑡𝑥𝑡−1      1  

            where,  𝑦𝑡 is a variable of interest, 휀𝑡is white noise disturbance term with constant 

variance 𝛿2, 𝑥𝑡−1 is exogenous variable, 𝑡 = 1,2,3 … , 𝑇. The variance of  𝑦𝑡 is 

simply 𝛿2𝑥𝑡−1
2 , i.e., the variance of 𝑦𝑡 depends upon the variance of 𝑥𝑡. This specification 

does not seem convincing because this model assumes a specific cause, i.e., 𝑥𝑡, for 

changing variance in 𝑦𝑡. Also, often the choice of 𝑥𝑡 is theoretical, i.e., it could be oil price 

shock, monetary policy shock, or any other factor. Granger and Andersen (1978) modified 

it by replacing the exogenous variable with the past realized values of 𝑦𝑡. A simple case is  

 𝑦𝑡 = 휀𝑡𝑦𝑡−1     2  

                                                 
4 For other issues with Maximum Likelihood methods, see Ardia 2008, pp 2-4. 
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              Now the variance (conditional) of 𝑦𝑡 is  𝛿2𝑦𝑡−1
2 , while the unconditional variance 

is either zero or undefined (Engle, 1982) which makes this type of modeling odd for 

practical use. Engle (1982) introduced conditional variance ℎ𝑡 at time 𝑡 and postulated as 

a linear function of the square of past observations 

𝑦𝑡 = 휀𝑡ℎ𝑡
1/2 

                3  

ℎ𝑡 =  𝛼0 + 𝛼1𝑦𝑡−1
2     4  

            where, 𝛼0 > 0 and𝛼1 ≥ 0, in order to ensure that the conditional variance is 

positive.  Variance of 휀𝑡 is equal to 1. This model is known as the ARCH (1) model. The 

general form of variance function can be expressed as: 

ℎ𝑡 =  𝛼0 + ∑ 𝛼𝑖𝑦𝑡−𝑖
2𝑞

1     5 

              where 𝑞 is the order of the ARCH process and 𝛼 is a vector of unknown 

parameters. Creating good fits to data would often require large numbers of lags and hence 

ARCH model with a large number of parameters; this creates difficulties in finding 

reasonable estimates, especially with smaller samples. To bypass this problem, Bollerslev 

(1986) proposed the Generalized ARCH or GARCH (p, q) model, which can be written as 

follows: 

ℎ𝑡 =  𝛼0 + ∑ 𝛼𝑖𝑦𝑡−𝑖
2𝑞

1 +  ∑ 𝛽𝑗ℎ𝑡−𝑖
𝑝
1    6 

                Where, 𝛼0 > 0, 𝛼𝑖 ≥ 0 (𝑖 = 1,2,3, … , 𝑞) and 𝛽𝑗 ≥ 0 (𝑖 = 1,2,3, … , 𝑝). Now in 

Eq. 6, conditional variance depends upon its past values, which make the model more 

parsimonious. In most of the empirical applications, the simple specification 𝑝 = 𝑞 = 1has 
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been found to work well. This specification led to the GARCH (1, 1) model. Because it has 

become the most frequently used, default model of choice, it is often known as the 

workhorse model. 

3.2. Estimation Approach 

              There are two primary approaches used to estimate the GARCH type models, i.e., 

the frequentist approach and the Bayesian approach. These approaches use different 

algorithms to estimate models, consequently, have a difference in inference. However, the 

present study only used two algorithms from each approach. Each of these approaches 

along with algorithms is discussed in the following sub-sections; 

3.2.1. Frequentist Approach 

              Most of the available statistical software has a built-in package to estimate the 

GARCH type models. In these packages, the researcher specifies the order of process, and 

the computation is performed. However, there are also some softwares which requires 

writing a program for estimation. This section explains the Maximum Likelihood method 

required to understand and write a program for the GARCH type models.5 

The log-likelihood function for the GARCH (1, 1) model is as follow: 

𝑙𝑛𝐿 = −
𝑇−1

2
ln(2𝜋) − 0.5 ∑ ln (𝛼0 + 𝛼1𝑦𝑡−1

2 + 𝛽1ℎ𝑡−1
𝑇
𝑡=2 ) − 0.5 ∑ (𝑇

𝑡=2
𝑦𝑡

2

𝛼0+𝛼1𝑦𝑡−1
2 +𝛽1ℎ𝑡−1

) 

        7 

Maximizing the log-likelihood function, with respect to 𝑤 = (𝛼0, 𝛼1 𝑎𝑛𝑑 𝛽1) yields: 

                                                 
5 For detail, see Enders (2015), pp. 152-154, and Tsay (2010), pp. 120-122. 
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𝜕𝑙𝑛𝐿

𝜕𝑤
=  −0.5 ∑

1

(𝛼0 + 𝛼1𝑦𝑡−1
2 + 𝛽1ℎ𝑡−1)

∗  
𝜕(𝛼0 + 𝛼1𝑦𝑡−1

2 + 𝛽1ℎ𝑡−1)

𝜕𝑤

𝑇

𝑡=2

− 0.5 ∑ [
𝑦𝑡

2

(𝛼0 + 𝛼1𝑦𝑡−1
2 + 𝛽1ℎ𝑡−1)2

]

𝑇

𝑡=2

∗  
𝜕(𝛼0 + 𝛼1𝑦𝑡−1

2 + 𝛽1ℎ𝑡−1)

𝜕𝑤
 

=  −0.5 ∑
1

(𝛼0 + 𝛼1𝑦𝑡−1
2 + 𝛽1ℎ𝑡−1)

∗  
𝜕(𝛼0 + 𝛼1𝑦𝑡−1

2 + 𝛽1ℎ𝑡−1)

𝜕𝑤

𝑇

𝑡=2

+ 0.5 ∑ [
𝑦𝑡

2

(𝛼0 + 𝛼1𝑦𝑡−1
2 + 𝛽1ℎ𝑡−1)2

]

𝑇

𝑡=2

∗  
𝜕(𝛼0 + 𝛼1𝑦𝑡−1

2 + 𝛽1ℎ𝑡−1)

𝜕𝑤
 

           … 8            

It is possible to maximize the 𝑙𝑛𝐿 concerning𝛼0, 𝛼1 𝑎𝑛𝑑 𝛽1. However, first order 

conditions are the non-linear function as shown in Eq. 8, because ℎ𝑡 is a function of 𝛽1; 

therefore, an analytical solution is not possible. Instead, the solution requires the search 

algorithm. Statistical software uses these algorithms and selects the value of parameters at 

which log-likelihood function is maximized. One such algorithm that is used to estimate 

the GARCH type model is BFGS. 

              BFGS is a numerical algorithm and is based on a “hill-climbing” strategy. It starts 

from an initial value and then search for the maxima in the likelihood function, or choose 

the value of the parameter at which value of likelihood function is maximized. This search 

for maxima done in a specific line (one-dimensional) that is why it is called a line search 

method. Therefore, it is essential to initialize the algorithm with a consistent starting point. 

According to Fiorentini et al., (1996), the unconditional expectation can be employed as 

an estimate of the initial value. Mathematically: 
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ℎ𝑡 =  𝑦𝑡
2  =  

1

𝑇
∑ 𝑦𝑠

2𝑇
𝑠=1    9  

              where 𝑦𝑠 is the return series.6 ℎ𝑡  is used in Eq. 8, and derivative of a log-likelihood 

function is computed. These derivative values are used as initial values of the algorithm. 

This Eq. 8 permits the recursive calculation for the derivatives.  

              This procedure is valid only if the likelihood function of the GARCH model is 

unimodal. However, empirically has been shown that the likelihood function of the 

GARCH model is multimodal (see section 1). When the likelihood function is multimodal, 

the sensitivity in the choice of starting value increases, i.e., the choice of starting value, 

and the direction of the algorithm in which search for maxima. Therefore, BFGS might not 

converge to global maxima. Contrary, there is a strategy, i.e., DE, which use multiple 

starting values with parallel chains method. This procedure is based on four steps. First, 

different mods are identified in the likelihood function using the Expectation-

Maximization algorithm. Second, treat each observation as a regime of Markov chain, 

using a Viterbi algorithm (Viterbi, 1967). Stack all these Markov chains in K vectors, one 

for each regime. Third, estimate volatility model via Quasi-Maximum Likelihood for each 

vector. Finally, estimate the shape parameter of conditional distribution via the Maximum 

Likelihood method. During these steps, positivity and covariance-stationarity constraints 

are guaranteed through specific parameter-mapping functions. 

                                                 
6 In case of present study, this is return series, because the model is GARCH (1, 1). However, if the model is 

ARMA-GARCH, then estimate ARMA model by using OLS at first step, and then use consistent estimated 

residual (휀𝑠 =  𝑦𝑠 − 𝑥𝑠
′�̂�) instead of return series, for detail see Fiorentini et al. (1996).  
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              For the comparison purpose, this study used both of these algorithms, i.e., BFGS 

and DE, to estimate the GARCH (1, 1) model. The performance of these algorithms was 

evaluated by comparing the estimates and the true parameter values in repeated simulations 

3.2.2. Bayesian Approach 

               Unlike the Frequentist approach to estimation, the Bayesian approach assumes a 

vector of 𝑦 = (𝑦1, … , 𝑦𝑇)′ of observations defined through a probability density𝑝(𝑦|𝜃). 

The parameter 𝜃 serves as an index of the family of the possible distribution for the 

observations. The significant difference between the Frequentist and Bayesian approach is 

the interpretation of 𝜃. Frequentist approach assumes that there exists a true value of 

parameter𝜃, while in the Bayesian approach, it is assumed as a random variable. A prior 

density denoted by 𝑝(𝜃) characterizes this random variable. Classical Bayesian approaches 

rely on natural conjugate priors which were too restrictive for applications. More recent 

work uses much more flexible priors, using the technological device of hyper-parameter7, 

to be discussed in greater detail later. 

Moreover, depending on the researcher’s prior information, this density can be 

more or less informative. By combining the likelihood function of the model and parameter 

with the prior density, can construct probability density using Bayes’ rule to get the 

posterior density 𝑝(𝜃|𝑦).8 This posterior density is quantitative; a probabilistic description 

of the knowledge about the parameter 𝜃 after observing the data.  

                                                 
7In Bayesian statistics, a hyper-parameter is a parameter of a prior distribution; the term is used to distinguish 

them from parameters of the model for the underlying system under analysis. 
8 For basic understanding, see Kennedy (2008), pp 213-217. 
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                It is often convenient to choose a prior density which is conjugate to the 

likelihood, i.e., the same distribution of prior and likelihood. In effect, conjugate priors 

permit posterior densities to emerge without numerical integration. However, easy 

calculations of this specification come with the restrictions they impose in the form of the 

prior. In many cases, it is unlikely that the conjugate prior is an adequate representation of 

the prior state of knowledge. If a conjugate prior is replaced by more flexible priors which 

allow the adequate representation of prior information, then the evaluation of posterior 

density formula is analytically intractable. Therefore, asymptotic approximation or Monte 

Carlo methods are required. Deterministic techniques can provide excellent results for low 

dimensional models. However, when the dimension of the model becomes large, 

simulation is the only way to approximate the posterior density.  

Metropolis et al., (1953)first introduced the idea of Monte Carlo Markov Chain 

sampling., and was consequently generalized by Hastings (1970). This study will focus on 

Bayesian inference. A general and detailed statistical theory of Monte Carlo Markov Chain 

methods can be found in Tierney [1994]. 

The idea of the technique is straightforward and is explained in Zaman (1996). Let 

𝜃 =  (𝜃1, . . . , 𝜃𝑝) be the parameters to be estimated. In order to use the usual Bayesian 

technique, the posterior density of θ given the data y is computed. Most of the methods 

known as “samplers” bypass numerical integrations required to compute the posterior, 

obtaining a sample or a random vector instead �̃�  =  ( �̃�1, �̃�2, … , �̃�𝑝) from the posterior 

distribution of  𝜃 | 𝑦. The estimate of the posterior density can be obtained through 

extensive sampling of the posterior distribution. Usually, the full posterior density is not 

needed; the posterior mean and covariance suffice. These are also easily estimated based 
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on a random sample from the posterior density. However, due to the increase in 

computational power, the posterior density can be easily be obtained at a low cost 

nowadays. The distribution of the posterior density helps to study either the distribution is 

symmetric or asymmetric, because the Frequentist approach assumes a normal distribution, 

which is not true in the case of Bayesian (Ardia, 2008). The well-known Monte Carlo 

Markov Chain methods in the literature are Gibbs sampler and MH. Sometime situation 

gets complicated and cannot be easily handled by the Gibbs sampler, such as; when it is 

not easy to breakdown the joint density into the full conditional densities are of unknown 

form or when the joint density is of nonstandard form. Metropolis-Hastings algorithm is a 

simulation scheme which allows generating draws form any density of interest whose 

normalizing constant is unknown. 

             One algorithm is MH. This algorithm with independence chain is often used with 

normal and student t distribution, for the estimation of the GARCH models. Practically, 

Ardia (2008) and Ardia et al., (2009) used MH with independence chain for the estimation 

of the GARCH model. On the other hand, there is RAM, developed by Vihola (2012), 

which worked well as compared to other Adaptive chains, for the student t distribution.9 

For the comparison purpose, the present study used both of these algorithms to estimate 

the GARCH model.  

3.3. Evaluation of Algorithms and Approaches: Monte Carlo Simulation 

               For the comparison purpose, this study has selected four algorithms for the 

estimation of the GARCH type models. Two of them are from the Frequentist approach, 

                                                 
9Andreas (2012) develop package for RAM, with the name of “adapt MCMC” in R language, URL 

https://cran.r-project.org/package=adaptMCMC. 
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i.e., BFGS and DE, and two are from the Bayesian approach, i.e., MH and RAM. The 

assessment is comprised of two steps. In the first step, algorithms will be compared within 

an approach, and in the second step, the comparison will be made across approaches. 

Hence, either of these algorithms will be generalized for estimation of the GARCH-type 

models. 

Furthermore, for generalization, two things are imperative. First, which algorithm 

is best suited for the estimation of the GARCH type models. Monte Carlo simulation is a 

technique through which can generate many series with known parameters. It is assumed 

that the data generating process is unknown, and then estimation is conducted with selected 

algorithms. The algorithm that closely estimates the true data generating process is selected 

as the best algorithm. Second, in the real world, the data generating process is unknown. 

In the real world, econometrician and statistician are not interested in the mechanism 

through which the series is generated; instead, they are interested in appropriate 

approximation. It is, therefore, this study will generate data with different distributions, 

and then estimated through selected algorithms. The algorithm that remains consistent 

across different data generating process is selected as preferable for the estimation of the 

GARCH type models (James et al., 2013). 

              The Monte Carlo Simulation technique has been used for the selection of a robust 

algorithm for the estimation of the GARCH-type models. The present study has also 

analyzed the robustness of this algorithm along the whole surface. The methodology of 

evaluating the estimation power of each algorithm consists of the following steps to 

compare the surface of different algorithms: 
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1. In the first step, the GARCH (1, 1) is generated by setting 𝛼0 = 0.01, 𝛼1 =

0.1, 𝛽1 = 0.1. with a normal distribution.  

𝑦𝑡 = 휀𝑡ℎ𝑡
1/2

 

휀𝑡~ 𝑖. 𝑖. 𝑑 𝒩(0,1) 

ℎ𝑡 = 𝛼0 + 𝛼1𝑦𝑡−1
2 + 𝛽1ℎ𝑡−1   10  

A total of 1500 observations were generated, out of which initial 500 were 

discarded to control for the initial value effect. “Rugarch” package is used to 

generate the simulated sample. It is available in R. 

2. Estimate the volatility of simulated samples obtained in step 1 with the GARCH (1, 

1) model. For the estimation of this GARCH model, Maximum Likelihood 

estimation method is used. To search for the maximum point in the likelihood 

function, this study used the following four different algorithms separately: 

a. First, the BFGS algorithm was used to search for the parameters at which 

the value of the likelihood function is maximized. BFGS algorithm is built-

in and available in Ox-Metrix package for the estimation of the GARCH 

type models. This study used the same package for the estimation, and then 

noted the value of the estimated parameters. 

b.  GARCH (1, 1) model was estimated with the Metropolis-Hasting 

algorithm. The same variable was used for an estimation, which was 

obtained in step 1. This algorithm is available in “bayesGARCH” package 

in R-languages. The estimated parameters were then noted. 

c. Similarly, DE and RAM algorithms were used to search for the parameters 

at which the value of likelihood function is maximized for the GARCH (1, 
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1) model. The estimated parameters were then noted, respectively. Both of 

these algorithms are available in “MSGARCH” package of R-Language. 

3. Calculate the bias, i.e., calculate the absolute difference between the estimated 

parameters in step 2 and the true parameters in step 1, respectively. Note this bias 

for each algorithm, separately. 

4. One time estimation of the true data generating process could be misleading. To 

overcome this bias, the experiment of simulation is repeated the process from step 

1 to step 3, 1000 times.  

5. Calculate the variance of these 1000 points obtained in step 4, for each parameter 

separately. Also, note this variance separately according to each algorithm. 

6. From step 1 to step 5, the value of true parameter was the same. Next, this study 

then executed the surface analysis, and the values are presented in Table 3.1. This 

table gives information about the whole surface of each algorithm separately. The 

values assume the shape of a triangle because, for all other values of the table, the 

assumption of covariance stationary does not hold.10 

Table 3.1: 𝜶𝟏 and 𝜷𝟏 Value Changes 

                                                 
10 Intercept is fixed throughout the experiment, because in real-world problem, it is possible that relevant 

variable are omitted from the econometric model, creating bias. This bias can be lessened (but not eliminated) 

by including an intercept term. On the other hand, no bias is created by including an unnecessary intercept 

(for detail see, Kennedy 2008, pp 109-110). 

 𝜷𝟏 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

𝜶
𝟏

 

0.1 (0.1, 0.1) (0.1, 0.2) (0.1, 0.3) (0.1, 0.4) (0.1, 0.5) (0.1, 0.6) (0.1, 0.7) (0.1, 0.8) 

0.2 (0.2, 0.1) (0.2, 0.2) (0.2, 0.3) (0.2, 0.4) (0.2, 0.5) (0.2, 0.6) (0.2, 0.7) 

0.3 (0.3, 0.1) (0.3, 0.2) (0.3, 0.3) (0.3, 0.4) (0.3, 0.5) (0.3, 0.6) 

0.4 (0.4, 0.1) (0.4, 0.2) (0.4, 0.3) (0.4, 0.4) (0.4, 0.5) 

0.5 (0.5, 0.1) (0.5, 0.2) (0.5, 0.3) (0.5, 0.4) 

0.6 (0.6, 0.1) (0.6, 0.2) (0.6, 0.3) 

0.7 (0.7, 0.1) (0.7, 0.2) 

0.8 (0.8, 0.1) 
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7. Table 3.1 represents the table of values for which Alpha and Beta changes. For 36 

combinations, the estimation will be valid. The table seems triangle because if the value of 

the parameter increased in either direction, it violates the assumption of covariance 

stationary condition. Therefore, the table is half surface. To analyze the bias and 

variance along the whole surface, this study used the contour plots. These contour 

plots are constructed after completing the table of values. These contour plots show 

abrupt changes along the surface. This is because the small sample size of the 

simulation leads to high random errors of estimation in the bias and variance. 

Smoothing to create a response surface is a crucial way to avoid this problem and 

get a better global picture of results from simulations carried out at a small number 

of points. Exponential smoothing procedure is done to construct the surface of the 

contour plot smooth surface, and then the procedure “Akima’s Polynomial 

Method” (Akima, 1969) is used to construct a contour plot.  

8. The main objective of the study is to compare the different algorithms within the 

Frequentist and Bayesian approach. To keep the analysis simple, present study 

subtracted the surface of bias of DE from BFGS, from step 6. Then for this 

difference surface, the contour plot is constructed. This contour plot has a direct 

and straightforward interpretation, i.e., if the surface is positive, then it implies that 

the bias of BFGS is higher than DE and vice versa.  

9. Repeat step 8 for the variance. 

10. Repeat step 8 and 9 for MH and RAM by subtracting the RAM from MH.  

11. A normal distribution of the true data generating process was assumed. The analysis 

based on the normal distribution gives a clue about the first step of generalization, 

i.e., which algorithm accurately estimates the true data generating process — now 
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repeat the same procedure from step 1 to 10 by assuming student t distribution for 

the error term. Again, it will give a clue about the performance of the different 

algorithm with a different distribution. By combining the results of both the steps 

based on the normal and student t distribution, will give a broader picture of the 

performance of different algorithms furthermore, as it is already explained that for 

the generalization of the algorithm, it is essential to test performance against 

different data generating processes. Hence, it will give evidence either any one of 

them is consistent across different data generating processes or not.  
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3.4. Application with Monte Carlo Simulation, for GARCH (1, 1) 

 

“The more adequately a model fit whatever it stands for 

without being needlessly complex, and the easier it is for 

the intended audience to interpret it correctly, the better it 

will be.” 

Alberto Cairo (2016) 

 

            Any visualization is a model (Cairo, 2016) and is a powerful technique to 

summarize a large amount of data. Visualization not only minimizes the time to understand 

the information but an excellent way to present information more effectively. The same 

technique is used to summarize the empirical results of the Monte Carlo Simulation 

technique. It is not only an effective way of communication but also minimizes the time to 

understand the enormous difference between the different estimation methods. Moreover, 

contour plots are a more appropriate way to represent the response surface methodology 

and are used in the present study. 

             Fig. 3.1 represents a contour plot11 for bias (upper plot) and variance (lower plot) 

around the true parameter of BFGS. This plot is construed by taking the difference of each 

estimated value of BFGS from the true parameter, for GARCH (1, 1) model. After taking 

the difference of the entire surface of BFGS from the true parameter. If the resultant of 

difference is positive, then the layer of contour plot will be positive, vice versa. The layers 

in each plot represent the variation along the surface, i.e., the minimum value for the layer 

is 0.56 and increase slightly increase toward the origin of plot, and reach to the maximum 

                                                 
11 How to read or interpet contour plots, a short description for understanding is mention at the following 

link; https://www.youtube.com/watch?v=WsZj5Rb6do8&t=128s 

https://www.youtube.com/watch?v=WsZj5Rb6do8&t=128s
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level of 69. It can be interpreted as if the model moves from high persistence to low 

persistence region in the surface plot the level of bias increase. 

Furthermore, there is, on an average 56 percent difference between BFGS and true data 

generating process, which reaches to the maximum level of 69 percent. It can also be 

interpreted as BFGS estimation method approximately 56 will overestimate the true 

parameters. A specific value represents each layer. Similarly, in case of variance around 

the true parameter is entirely positive, implies the difference remains positive through the 

entire surface of the contour plot. 
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Figure 3.1: Contour plots represent the level of biases for the parameters of the GARCH (1, 1) model 

(Normal Distribution). The x-axis represents the change in the value of the Alpha parameter, from 

0.1 to 0.9, while the y-axis represents the change in the value of the Beta parameter. The upper plot 

represents the level of bias for BFGS, while the lower plot represents the variance of the BFGS. The 

arrow points from low to high. 
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3.5. Comparison of Estimation Method within the Frequentist Approach 

              One objective of this study is to compare the BFGS with DE, in the Frequentist 

approach. For comparison purpose, the difference is calculated between BFGS and DE. 

Contour plots are then constructed for these difference values, the after smoothing the 

surface the resented in the upper plot of Fig. 3.2. The surface of the contour plot is entirely 

positive, and these values vary from 40 percent to 49 percent on average. It implies that 

BFGS has 40 percent more bias and therefore overestimate the GARCH (1, 1) model as 

compare to DE. 

Similarly, the lower plot of Fig. 3.2 shows the difference in the variance of BFGS 

and DE. Layers for this contour plot are positive as well. By combining both bias and 

variance around the true parameter implies that the estimation power of BFGS estimation 

method is weaker than the DE. 

               In reality, most of the financial time series does not follow the normal 

distribution. Therefore, in the next stage of the experiment of the Monte Carlo simulation, 

the same step is repeated by assuming student t distribution for the data generating process. 

Results are presented in Fig. 3.3. The layers of the contour plots are positive; it implies that 

the BFGS estimation method has more bias as compared to the DE. Moreover, These 

results are consistent with normal distribution data generating process. 

Furthermore, the level of difference increases if the contour plots are compared 

with the across normal and student t distribution. In the case of student t distribution, the 

minimum difference is about 57 percent on average, which increases to the maximum level 

of 64 percent. It implies, BFGS estimation method on average gives biased results about 

57 percent of the times, as compared to DE estimation method.  
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Figure 3.2:  The difference in bias (upper graph) and variance (lower graph), for BFGS and DE, 

along with the surface. In this case, the data generating process in a normal distribution. 
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Figure 3.3: The difference in bias (upper graph) and variance (lower graph), for BFGS and DE, 

along with the surface. In this case, the data generating process in student-t distribution. 
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3.6. Comparison of the Estimation Methods within the Bayesian approach 

             A similar experiment is applied to the Bayesian approach as in the frequentist 

approach, i.e., repetition of experiment with normal and student t distribution, for the entire 

surface. In the case of the Bayesian approach, two estimation methods are selected, which 

are MH, and RAM. First, the contour plot is constructed by taking the difference of MH 

and RAM for the normal distribution, and results are presented in Fig. 3.4. The entire 

surface is positive with the minimum value of 0.28 and reaches to the maximum value of 

0.33. At first, it implies that the surface is positive, i.e., MH has a higher level of bias 

around the true parameter as compared to the RAM. Second, it implies that on average, 

MH will give bias estimates about 28 percent, if the model is high persistence and the level 

of bias increase as the move from high persistence to the low persistent region of the 

contour plot. Similarly, in case of difference in variance around the true shown in the lower 

plot of Fig. 3.4.  

 Furthermore, if the data generating process changes from normal to the student t 

distribution two things are inferred, i.e., the MH is weaker estimation method as compared 

to the RAM and the level of difference has increased. Hence, it can be concluded that RAM 

estimation method is the more appropriate choice of estimation of the GARCH (1, 1) model 

as compared to the MH. 
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Figure 3.4: The difference in bias (upper graph) and variance (lower graph), for MH and RAM, 

along with the surface. In this case, the data generating process in a normal distribution. 
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Figure 3.5: The difference in bias (upper graph) and variance (lower graph), for MH and RAM, 

along with the surface. In this case, the data generating process in student-t distribution. 
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3.7. Chapter Summary 

             The fundamental objective of the study is to compare the Frequentist and Bayesian 

approaches. To evaluate the estimation power of each algorithm around the true parameter, 

this study is used following steps; (𝑖) true data generating process, (𝑖𝑖) true data generating 

process with different distributions, (𝑖𝑖𝑖) surface comparison. However, before comparing 

approaches, it is essential to compare algorithms within each approach. Simulation is used 

to evaluate the performance of each algorithm around the true data generating process. The 

experimental result of simulation implies that there is on average, about 40 percent 

difference between BFGS and DE across the surface. Moreover, the level of difference 

increase if the movement is done towards the low persistence region of the surface plot. 

The main reasons for this difference between BFGS and DE are just because of the 

multimodality in the likelihood function.  

Similarly, the level of variance around the true parameter is on average, about 7 

percent higher in case of BFGS as compare to DE. by combining both the bias and the 

variation implies that Mean Square Error of BFGS is higher than DE, hence, BFGS is 

inconsistent estimation method as compare to DE, for the estimation of GARCH type 

models. 

Furthermore, BFGS use single starting value with hill climbing strategy, due to 

which it often converge to local maxima. Hence, due to converging at local maxima, the 

estimated parameters will be different from global maxima. On the other hand, DE uses 

multiple starting values with various chains, which automatically avoid local maxima, and 

converge to global maxima. Therefore, BFGS has a higher level of bias as compared to DE 

for the estimation of GARCH type models.  
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Contrary, in the Bayesian approach, the level of bias is, on average, about 28 

percent, between MH and RAM. This is because MH estimation method uses the method 

independent MCMC, where the current draw of the posterior distribution does not take any 

information from the previous draw. While RAM uses the technique of Adaptive MCMC, 

where it receives data from the earlier draws of the posterior distribution, and ultimately 

converge to a stationary point. Therefore, RAM has a lower level of bias as compared to 

the MH estimation method.  

To accomplish the second objective of the study, the same experiment of Monte 

Carlo simulation is repeated with a different distribution. In the real world problem, the 

value of the true data generating process is unknown, therefore to increase the reliability 

of experimental results, the present study repeats the same experiment with the student t 

distribution. Fortunately, the experimental results not only remain consistent but also, the 

level of bias and variance increase between BFGS – DE, and MH – RAM. 
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CHAPTER 4 

REAL WORLD PROBLEM AND AN APPLICATION 

“We refer here to emphasize the construction of 

approximations, not the mechanism by which they are 

constructed.” 

M.W. Trosset 

 

               The comparison of two algorithms in the frequentist approach has started in the 

previous chapter, i.e., BFGS and Difference Evolution. These algorithms have a different 

mechanism to choose the starting value. BFGS initiates with a single staring value, while 

the DE initiates with multiple starting values along with multiple chains. Hence there is a 

built-in safeguard that avoids local maxima and converges to global maxima. Because of 

this difference, BFGS often converges to local maxima while the DE converges to global 

maxima. By comparing on simulated sample data, it is proved that DE is preferable for the 

estimation of GARCH (1, 1) model as compared to BFGS. The estimation power of DE is 

valid for the whole surface, i.e., either the GARCH (1, 1) model is low, moderate, or of 

high persistence. Moreover, the estimation power of DE is consistent across different 

distributions as well, i.e., normal and student t distribution. Similarly, in the Bayesian 

approach, RAM and MH have been used to compare the estimation power for GARCH (1, 

1) model, and it is also confirmed that the estimation power of RAM is better than MH.  

              In the case of simulation, the value of true parameters as well as the distribution 

is known. The problem arises when working with real data sets; where the value of the true 

parameter and distribution is unknown. In a real-world problem, statisticians construct 
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approximates based on properties of data set in hand. Furthermore, if BFGS and MH are 

not working correctly in case of true data generating process, as compared to others, then 

they will also not work well in a real-world problem. Due to these issues, the Metropolis-

Hasting and BFGS will not be discussed further.  

            In this chapter, the window of PSX is used as a real-world application to compare 

the estimation power of the Frequentist and the Bayesian approach for GARCH (1, 1) 

model. This comparison consists of two steps. First, empirical results will be compared, 

and in the second step, sensitivity about the choice of prior and residual testing will be 

analyzed to assess the misspecifications. Furthermore, this chapter is divided into two 

sections according to the distribution assumed for the GARCH (1, 1) model, i.e., normal 

and student t distribution. Finally, the present study illustrated some exciting aspects of the 

Bayesian approach through a probabilistic statement based on the parameters.  

4.1. Estimations of GARCH (1, 1) – Normal distribution 

            Conventional econometrics assumes constant variance of time series data. 

However, financial time series violates this assumption such that the time series exhibit 

spans of unusually high and low volatility, i.e., volatility clustering. Therefore, in such 

cases, it is clear that the assumption of constant variance is very restrictive, and may lead 

to misleading inference and prediction. For an illustration purpose, consider an individual 

who is planning to invest in an asset at time 𝑡 and sell at time  𝑡 + 1. For this investor, the 

forecast of the rate of return on this asset alone will not be enough. The investor would be 

interested in what the variance of the return over the holding period would be. Hence, the 

unconditional variance is of no use either. The investor would want to examine the behavior 
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of the conditional variance of the series to estimate the risk associated with the asset at a 

specified period. 

4.2. Methodology 

  4.2.1. Frequentist Approach 

             Suppose that values of 휀𝑡 is normally distributed, with mean zero and constant 

variance, 𝜎2.  To write the ML function for 휀𝑡 as described in Standard distribution theory;  

𝐿𝑡 = (
1

√2𝜋𝜎2) exp (− 𝑡
2

2𝜎2)    4.1   

              where 𝐿𝑡 is the likelihood for 휀𝑡. Assume that each 휀𝑡 is independent of other 휀𝑡−𝑖, 

then the joint likelihood is just a product of each realization, 휀1, 휀2, …, 휀𝑇. Also, assume 

the homoscedasticity for these realizations, and then the joint likelihood of realization is as 

follows; 

𝐿𝑡 = ∏ (
1

√2𝜋𝜎2) exp (− 𝑡
2

2𝜎2)𝑇
𝑡=1    4.2  

              By using natural log, the product can be converted to the sum or difference, which 

makes the system to handle the process easily; 

𝑙𝑛𝐿 = −
𝑇

2
ln(2𝜋) −

𝑇

2
ln(𝜎2) −

1

2𝜎2
∑ (휀𝑡

𝑇
𝑡=1 )2  4.3  

               ML estimation method maximizes the likelihood or probability of drawing the 

observed sample. In the classical approach, the expected value of 휀𝑡 is zero, with constant 

variance (𝜎2) having no serial correlation. In the case of the GARCH model, since the first 

order equation is nonlinear, the solution, therefore, requires a search algorithm. The 

simplest way to illustrate the issue is to introduce a GARCH (1, 1) error process into the 
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regression model. Where the error term 휀𝑡 has a non-constant conditional variance. Since 

each realization of 휀𝑡 has the conditional variance ℎ𝑡 , the joint likelihood of realization 휀𝑡 

through 휀𝑇 is: 

𝐿𝑡 = ∏ (
1

√2𝜋ℎ𝑡
) exp (− 𝑡

2

2ℎ𝑡
)𝑇

𝑡=1    4.4  

So, the log-likelihood function is: 

𝑙𝑛𝐿 = −
𝑇

2
ln(2𝜋) − 0.5 ∑ ln (ℎ𝑡

𝑇
𝑡=1 ) − 0.5 ∑ ( 𝑡

2

ℎ𝑡

𝑇
𝑡=1 )  4.5  

Now substituting the value of ℎ𝑡 , that is GARCH (1, 1): 

𝑙𝑛𝐿 = −
𝑇−1

2
ln(2𝜋) − 0.5 ∑ ln (𝛼0 + 𝛼1𝑦𝑡−1

2 + 𝛽1ℎ𝑡−1
𝑇
𝑡=2 ) − 0.5 ∑ (𝑇

𝑡=2
𝑡
2

𝛼0+𝛼1𝑦𝑡−1
2 +𝛽1ℎ𝑡−1

) 

        4.6 

                By the introduction of휀𝑡−1
2 , the initial observation will be lost for 휀0 (outside of 

the sample). Now, it is possible to maximize 𝑙𝑛𝐿 for all parameters. 

               It can also be written as Eq. 4.6 in matrix form by defining the vectors 𝒚 =

(𝑦1 … 𝑦𝑡)′ and𝜶 = (𝛼0 + 𝛼1)′. Model parameters can be regrouped as 𝛹 = (𝜶 + 𝛽) for 

simplification purposes. In turn, the diagonal matrix is 𝑇 × 𝑇:  

∑ =  ∑(𝛹) = 𝑑𝑖𝑎𝑔((ℎ𝑡(𝛹))𝑡=1
𝑇 )   4.7  

Where; 

ℎ𝑡(𝛹) =  𝛼0 + 𝛼1𝑦𝑡−1
2 + 𝛽1ℎ𝑡−1(𝛹)   4.8  

The ML function for 𝛹is stated as follows: 
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𝑙𝑛𝐿(𝛹 | y) ∝ (𝑑𝑒𝑡∑)−
1

2exp [−
1

2
𝑦′∑𝑦]  4.9  

              It is very time-consuming to find out the solution for first-order conditions to the 

maximum. It is required for an analytical solution, but the numerical solution is 

straightforward.  

4.2.2. Bayesian Approach 

            The methodology was explained by Ardia (2008). The likelihood function in Eq. 

10 estimates the parameters where the probability is high, while in the case of the Bayesian 

approach in the first step, it needs priors. Thus, appropriate priors for parameters can be 

estimated from the following models: 

𝑝(𝜶) ∝ 𝒩2(𝜶|𝝁𝜶 , ∑𝛼 ) ∥(𝜶>0) 

𝑝(𝜷) ∝ 𝒩(𝜷|𝝁𝜷 , ∑𝜷 ) ∥(𝜷>0)   4.10  

             Where 𝝁 and ∑ are hyperparameters, ∥ is an indicator function for the confirmation 

of covariance stationary condition, with a normal distribution, 𝒩. Also, all parameter are 

independent of each other, hence implies  𝑝(𝛹) = 𝑝(𝜶)𝑝(𝛽). By applying the Bayes’ rule, 

it can be obtained posterior joint density as follows: 

𝑝(𝛹|𝑦) ∝ 𝑙𝑛𝐿(𝛹|𝑦)𝑝(𝛹)   4.11  

             Using this posterior density, it can be simulated the parameter and obtain the 

density of the estimated parameters.  
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4.3. Empirical Analysis 

    4.3.1. Basic statistics – PSX 

                 Daily PSX is used as a real-world application to compare the DE (from the 

Frequentist approach) with RAM (from the Bayesian approach). The sample period is from 

March 20, 2002, to January 11, 2005, with 696 number of observations excluding 

weekdays and holidays. The data span covers three financial years and is suitable to apply 

the Maximum Likelihood Estimation method. Hence, the present study has a reliable 

comparison among different approaches for estimation of the GARCH (1, 1) model. The 

nominal returns are expressed in percent similar to Bollerslev and Ghysels (1996). Daily 

log-return of PSX is plotted in the upper plot of Fig. 4.1. The present study examines 

statistically, the existence of autocorrelation in the series of PSX and applied joint nullity 

of the autoregressive coefficient. The regression is estimated with the autoregressive 

coefficient up to 20th lag. The p-value of the Wald statistics is 0.17, which does not support 

the presence of autocorrelation in the series of PSX. However, the upper plot of Fig. 4.1 

depicts clusters of high and low volatility, i.e., volatility clustering. It is evident in the lower 

plot of the Fig. where the sample auto-correlogram of square observation is shown. This 

auto-correlogram supports the effect of volatility clustering in the log-return series. In this 

case, the autocorrelation is significant (bars are outside the bands), implying the GARCH 

effect in the series. 

Moreover, the value of the ARCH statistic is 12.23 (P-value > 0.000), directly 

implying that the autoregressive part of PSX is conditional on heteroskedastic 

observations. The value of the Wald statistics is 207.274 (P-value >0.000), firmly rejecting 

the null hypothesis of no autocorrelation up to 20th lag. 
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Furthermore, the P-value of the RUNS statistics is 0.22, which implies that there is 

no predictability in the series. ADF statistic is applied to test the stationarity of the log-

return series of PSX. The null hypothesis of non-stationary is rejected, with calculated ADF 

-14.9087 at 1% significance level. From this essential testing, it is concluded that the log-

return series of PSX is stationary with no evidence of autocorrelation. While the presence 

of ARCH and GARCH effect is suspected in the series. 

 

 

Figure 4.1: PSX daily log-returns (upper graph) and sample auto-correlogram of the squared log 

returns (lower graph) 
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4.3.2. Empirical results based on GARCH (1, 1)-Normal Distribution 

              The log return series of PSX is estimated with the parsimonious GARCH (1, 1), 

by assuming the normal distribution for the error term. As a prior density for the Bayesian 

estimation truncated, the normal distribution is chosen with zero mean vectors and diagonal 

covariance matrices. Finally, the joint prior is constructed by assuming that there is prior 

independence between parameters of the GARCH (1, 1) model. One chain is executed with 

the length of 5000 passes. The length of the chain is set long because of the adaptive 

behavior, i.e., it time some time to converge to a stationary point. 

               After estimation in the Bayesian approach, the first important step is to check the 

convergence of the chain, which is an indication of the reliability and accuracy of the 

estimated parameter. If the chain is not converging to a stationary point, then it explicitly 

implies that the estimated model is not a useful approximation data generating process. 

One way to achieve good approximation is to increase the length of the chain. An informal 

approach is to analyze the convergence of the chain by plotting the running mean of the 

chain.  Fig. 4.2 represents the running means for the parameters of the GARCH (1, 1) 

model. For all parameter, the chain converges to a stationary point. Formal testing for 

convergence of chain has been introduced by Gelman and Rubin (1992). This is a formal 

approach based on the analysis of variance through which it is analyzed whether the path 

of chains should remain the same after convergence. Considering the 𝑚number of chains 

for each parameter in the model and is the real function of  𝜉 = 𝜉(𝜓). Each chain has length 

𝐽 given by {𝜉𝑖
[𝑗]

}
𝑗=1

𝐽

, 𝑖 = 1, … , 𝑚. The variance within the chain, 𝑊 is: 

𝑊 =
1

𝑚(𝐽−1)
∑ ∑ (𝜉𝑖

[𝑗]
− 𝜉�̅�)

2
𝐽
𝑗=1

𝑚
𝑖=1    4.12  
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Figure 4.2: Running mean of the chain over 5,000 iterations. The acceptance rate is 0.98, and it seems 

that value converges to the stationary point after 2500 observation.  
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             Where  �̅�𝑖 is the average of observations of the 𝑖𝑡ℎ chain, and 𝜉̅ is the average of 

these averages. After convergence, all these 𝑚𝐽 values for 𝜉𝑖 are drawn from the posterior 

distribution, and 𝛿𝜉
2, the variance of𝜉, can be consistently estimated by the variance within 

and between chains. The variance between chains 𝐵 is (if chains are more than one): 

𝐵 =
1

𝑚(𝐽−1)
∑ (𝜉�̅� − 𝜉̅)

2𝑚
𝑖=1    4.13  

 𝛿𝜉 
2 is the following weighted average:  

𝛿𝜉
2 = (

𝐽−1

𝐽
) 𝑊 +

1

𝐽
𝐵    4.14  

             If the initial value is still influencing the trajectories, then the chain will not 

converge. In this case 𝛿𝜉
2 will be overestimated due to the overdispersion. The 

overestimation of 𝛿𝜉
2 can only be controlled by increasing the length of the chain and 

ultimately will converge. Before convergence, 𝑊 tends to underestimate 𝛿𝜉
2 because each 

chain will not have adequately traversed the entire state space. To handle this issue, Gelman 

and Rubin (1992) constructed a gauge for convergence. This indicator is an estimator of 

“potential reduction factor” given by: 

�̂� =
�̂�𝜉

2

𝑊
     4.15  

              If the iteration of chain converges, then the value of potential reduction factor 

approaches to one. Theoretically, if the value is below 1.2, it implies the convergence. 

Subsequently, asymptotic confidence intervals can be calculated because this indicator is 

subject to estimation error. For this purpose, the 97.5th percentile is used as a conservative 

point estimate. 
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              In the context of the present study, it is executed one chain for each parameter. 

The element of 𝐵 has not been studied in this case. It will be examined the convergence of 

chains by using the following functions: 

𝜉(𝜓) =  𝛼0, 𝜉(𝜓) =  𝛼1, 𝜉(𝜓) =  𝛽   4.16  

              According to the procedure Gelman and Rubin (1992) to test the convergence of 

chains, it does not lead to the rejection of the convergence if the value of �̂� is equal to 

0.9998. The 97.5th percentile values of �̂� belong to the interval [0.997, 1.002]. Therefore, 

it was possible to draw parameters from the joint posterior distribution.12 

               The estimated results of posterior statistics (RAM) and the point estimates (DE) 

are presented in Table 4.1. These estimated results by different approaches are 

approximately the same. However, there is a difference in the estimated value of the 

GARCH term. It is because the ML estimation method is point estimate, and DE is an 

algorithm that estimates the value of the parameter at the global maxima and has a built-in 

safeguard to avoid being trapped in local maxima. On the other hand, the Bayesian 

approach takes the average of multiple peaks, i.e., takes information from all maxima in 

the likelihood function. Therefore, there is a difference in the estimated value of the 

parameter of the GARCH (1, 1) model. Also, AIC and BIC values are approximately the 

same, implying the same level of goodness of fit for both models. Economically the sum 

of alpha and beta (0.538) is less than one, implying moderate persistence in PSX. 

                ML estimation method assumes asymptotic normality for the estimated 

parameters; this assumption is valid under regularity conditions, which do not hold for the 

                                                 
12 This procedure of Gelman and Rubin (1992), is computed in MS Excel. 
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GARCH model with boundary constraints. Also, if the confidence interval is constructed 

for these parameters, they will be symmetric by definition. However, if the actual 

distribution of the estimated parameter is skewed in either direction; ML estimation method 

either over or under-estimates the actual parameters. To analyze this issue, Kernel density 

plots are constructed by using the chains of RAM, as shown in Fig. 4.3. These plots explain 

the reason why the assumption of asymptotically normal distribution does not hold for the 

estimated parameters. The Bayesian approach does not suffer from this deficiency since 

the posterior distribution is directly estimated and can be symmetric or otherwise. Kernel 

density estimate of the posterior show that there is no normality for 𝛼0 and 𝛽. However, 

for 𝛼1 there is normality. Statistically, the values of skewness for these parameters are 1.99, 

0.37 and 2.69, respectively. These skewness statistics are statistically significant at 1% 

significance level. Therefore, the ML estimation method has a propensity to undervalue 

the right boundary of the 95% confidence interval of these parameters. Hence, these results 

indicate that the assumption of normality does not hold for the estimated parameters 

through ML estimation method, even in case of a large set of observations, i.e. 696. 

 

Table 4.1: Empirical results of GARCH (1, 1) with a normal distribution, for the series of PSX 

 ML Bayesian   
Differential 

Evolution 

 

 

(Point Estimate) 

Robust Adaptive 

Metropolis 

 

 

(Posterior Mean) 

Corrected 

Robust Adaptive 

Metropolis 

 

(Posterior Mode) 

𝜶𝟎 0.0001*** 0.0001 0.0001 

𝜶𝟏 0.3970** 0.3974 0.3950 

𝜷 0.1413** 0.1286 0.1242     

AIC -4095.53 -4093.52 
 

BIC -4081.90 -4079.88 
 

⁎⁎⁎, ⁎⁎, and ⁎ indicate the significances at 1%, 5%, and 10% levels, respectively. 
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Figure 4.3:  Kernel density function is constructed for the parameter of GARCH (1, 1) model, by 

using the chains of RAM  
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              The posterior mean statistics are presented in Table 4.1 by using the chains of 

RAM. When the distribution is not symmetric, then the mean statistics could be misleading. 

One of the reasons can be illustrated in Fig. 4.2. It shows the chains are converging to a 

stationary point, after many iterations. Mean statistics of the posterior as a point estimate 

is valid if the distribution of the chain is normal. As the chain is adaptive, i.e., the current 

draw of the chain takes information from the previous draws, due to which it takes time to 

converge at a certain level. It is also possible that if an inconsistent value of prior draw is 

chosen, even then it might take some steps to converge. This type of convergence in the 

chain from one step to the other could make the distribution skewed or multimodal, as 

shown in Fig. 4.3. Therefore, the mean statistic of the posterior distribution could lead to 

misleading inferences, and hence, implications.  

             To avoid these issues by constructing the kernel densities of chains, as shown in 

Fig. 4.3, and by choosing the point with maximum frequency or mode as posterior 

statistics. These mode statistics of the posterior density are presented in the last column of 

Table 4.1. Moreover, it is named as Corrected RAM.13 Apparently, in this case, there is no 

significant difference between the mean and mode statistic of posterior, but in later 

chapters, it will become apparent. For example, in the case of student-t distribution, there 

is a significant difference in estimated parameters and Corrected RAM.  

  

                                                 
13 Histogram could be used, to pick the point with maximum frequency. However, there are number of issue 

with histogram: bin size, couple of bins with same frequency etc. For detail, to analyze issues in histogram, 

and how they are resolve in kernel density see, 

https://sites.google.com/site/introstats4muslims/textbook/density 

https://sites.google.com/site/introstats4muslims/textbook/density
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4.4. Estimation of GARCH (1, 1) – Student-t distribution 

 

“This development (i.e., the student-t distribution) permits a 

distinction between conditional heteroscedasticity and conditional 

leptokurtic distribution, either of which could account for the 

observed unconditional kurtosis in the data.” 

                                                                                                        -Tim Bollerslev 

              The theory of finance is based on the individual behavior of assessment of risk. 

To measure risk, variance and covariance are calculated. However, depending upon the 

distribution of the return series, the variance is not valid statistics. The distributional 

properties are essential to get accurate results and have many significant implications for 

several financial models.  Mandelbert (1963) discussed the idea of leptokurtic and heavy-

tailed empirical distribution for stock prices.  The distribution of stock prices is unimodal 

but more peaked than the normal distribution, and there is a  possibility of outliers in the 

return series of stock prices, which make the tails of the distribution extraordinary long 

relative to the normal distribution. Also, the return series are uncorrelated, but they are not 

independent, i.e., volatility clustering. Later on, Fama (1965) discussed this idea in detail. 

Statistically, the variance of the return series is not constant because of the volatility 

clustering, whereas many standard statistical techniques are based on the assumption of 

constant variance. Engle (1982) introduced the ARCH model with a normal distribution. 

This simple model of ARCH has been generalized by Bollerslev (1986) who replaced 

normal distribution with student-t distribution by Bollerslev (1987). 
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4.5. Methodology 

   4.5.1. Frequentist GARCH (1, 1) – Student-t distribution 

𝑦𝑡 = 휀𝑡ℎ𝑡
1/2

 

휀𝑡~ 𝑖. 𝑖. 𝑑 𝒩(0,1) 

ℎ𝑡
1/2

 ~ 𝑡 (0 , 1 , 𝑣) 

ℎ𝑡 = 𝛼0 + 𝛼1𝑦𝑡−1
2 + 𝛽1ℎ𝑡−1    4.17  

              Where 𝑣 is the degree of freedom for student-t distribution. In the case of student-

t distribution, Geweke (1993) formulated a model via data argument. Under this model, the 

likelihood function can be defined as a vector 𝑦 = (𝑦1, … , 𝑦𝑇)′, 𝑤 = (𝑤1, … , 𝑤𝑇)′ 

and 𝜶 = (𝛼0, 𝛼1)′. This study is regrouped the model parameters into the vector  𝜓 =

(𝜶, 𝛽, 𝑣). Then, upon defining the 𝑇 × 𝑇 diagonal matrix 

∑ = ∑( 𝜓, 𝑤) = 𝑑𝑖𝑎𝑔 ({𝑤𝑡
𝑣−2

𝑣
ℎ𝑡(𝜶, 𝛽)}

𝑡=1

𝑇

),  4.18  

Where,  

ℎ𝑡(𝜶, 𝛽) = 𝛼0 +  𝛼1𝑦𝑡−1
2 + 𝛽ℎ𝑡−1(𝜶, 𝛽)   4.19  

It can be expressed the likelihood function of (𝜓, 𝑤) as: 

𝑙𝑛𝐿(𝜓, 𝑤| y) ∝ (𝑑𝑒𝑡∑)−
1

2exp [−
1

2
𝑦′∑𝑦]   4.20  

4.5.2. Bayesian GARCH (1, 1) – Student-t distribution 

              The Bayesian approach considers parameters as a random variable which is 

characterized by a prior density denoted by  𝑝(𝜓, 𝑤). Hyperparameters are used to quantify 
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the prior and are initially assumed to be known and constant. Then, by using the Bayes 

rule, the likelihood is coupled with prior density to get the posterior density  𝑝(𝜓, 𝑤 |𝑦) as 

follows: 

𝑝(𝜓, 𝑤 |𝑦) =
ℒ(𝜓,𝑤 |𝑦)𝑝(𝜓,𝑤)

∫ ℒ(𝜓,𝑤 |𝑦)𝑝(𝜓,𝑤)𝑑𝜓𝑑𝑤
   4.21  

             This posterior is a numerical and probabilistic description of the knowledge about 

the model parameters after observing the data. This study used normal priors on the 

GARCH parameters 𝜶 and 𝛽 

𝑝(𝜶) ∝ ∅ 𝑁2(𝜶|𝑢𝜶 , Σ𝜶) 1{𝜶 𝜖 𝑅+
2 } 

𝑝(𝛽) ∝ ∅ 𝑁1(𝛽|𝑢𝛽 , Σ𝛽) 1{𝛽𝜖 𝑅+
2 }   4.22  

             Where 𝑢∙ and Σ. are the hyperparameters. 1{. } is the indicator function and ∅ 𝑁𝑑 is 

the d-dimensional normal density. 

                The prior distribution of vector  𝑤 conditional on 𝑣 is found by noting the 

components. 𝑤𝑡 are independent and identically distributed from the inverted gamma 

density, which yields: 

𝑝(𝑤|𝑣) = (
𝑣

2
)

𝑇𝑣

2
[𝛾

𝑣

2
]

−𝑇
(∏ 𝑤𝑡

𝑇
𝑡=1 )−

𝑣

2
−1𝑒𝑥𝑝 [−

1

2
∑

𝑣

𝑤𝑡

𝑇
𝑖=1 ]  4.23  

4.6. Empirical Analysis 

   4.6.1. Empirical Results Based on GARCH (1, 1) – Student-t Distribution 

               It is estimated the log-return series of PSX with the parsimonious GARCH (1, 1). 

In this section, it has been assumed that error follows the student-t distribution. The joint 
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prior is constructed by assuming that the parameters of the model are independent of each 

other. One chain is executed with a length of 10000 passes. In this section, student-t 

distribution is assumed instead of the normal distribution, while all other criteria remain 

the same for comparison.  

              After the estimation of the posterior statistics, the first important step is to test the 

convergence of chains. An informal approach to analyze the convergence of chains is to 

construct the running mean plot, as presented in Fig. 4.4. Plots of running means are 

showing slow convergence for all parameters. According to the formal testing procedure 

defined by Gelman and Rubin (1992) to test the convergence of chain, it does not lead to 

the rejection of the convergence, with the value of �̂�  equal to 0.9999. The 97.5th percentile 

values of �̂�  belong to the interval [0.95, 1.05]. Therefore, it was possible to draw 

parameters from the joint posterior distribution.  

              Table 4.2 presents the empirical results of PSX by assuming a student-t 

distribution for the GARCH (1, 1) model. The point estimates of the ML estimation method 

and mean of the posterior statistics are approximately similar, except 𝛼1. First, the ML 

estimation method assumes the symmetric distribution around the point estimate. It is not 

true in the case of the Bayesian approach. Fig. 4.5 presents the kernel densities function for 

each parameter. These kernel densities are constructed by using the chains. Each of these 

plots implies skewed distribution for each parameter.  Statistically, the values of skewness 

are 2.05, 0.40, 0.51, and 1.17, respectively. All the skewness statistics are significant at 1% 

significance level. Hence, the ML estimation method has a propensity to undervalue the 

right boundary of the 95% confidence interval of these parameters. Therefore, these results 

indicate that the assumption of asymptotic normality does not hold, even in case of a large 

set of observations.  
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Figure 4.4: The running mean of chains for 10000 iterations, showing convergence to the stationary point 
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Table 4.2:  Empirical results of GARCH (1, 1) with student-t distribution, for the series of PSX 

⁎⁎⁎, ⁎⁎, and ⁎ indicate the significances at 1%, 5%, and 10% levels, respectively. 

               The chains, along with the distribution of these chains, are presented in Fig. 4.5. 

The trace plots show that plot chains are converging to a new level after about 1000 

iterations. Because of this convergence, the distribution of these parameters shows multi-

modality. Therefore, in this case, the mean statistics of the posterior statistics are not useful 

and hence can lead to misleading inferences. To avoid this issue, the kernel densities are 

constructed, as shown in Fig. 4.6. The bins were chosen on the bases of modal frequency. 

These values are presented in Table 4.2 under the heading of Corrected RAM. These 

statistics are significantly different from other listed models. 

In the comparison of empirical results of a normal distribution with student-t 

distribution, a significant difference is found the empirical results across these 

distributions. First, on the basics of model significance, i.e., AIC and SBC, a model with 

student-t distribution is better. Second, in the case of student-t distribution, the 

convergences of chains need a longer length. 

 

 

 

ML Bayesian 

 
Differential 

Evolution 

 

 

(Point Estimates) 

Robust Adaptive 

Metropolis 

 

 

(Posterior Mean) 

Corrected Robust 

Adaptive 

Metropolis 

 

(Posterior Mode) 

𝜶𝟎 0.0001*** 0.0001 0.0001 

𝜶𝟏 0.4640** 0.4795 0.4650 

𝜷 0.1889** 0.1818 0.1334 

𝒗 3.6787** 4.1591 3.4700  
 

  

AIC -4166.05 -4159.52 
 

BIC -4147.87 -4141.34 
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Figure 4.5:  Kernel density function, which is constructed by using the chains of the RAM. On the x-axis points, there are different points. Each 

point contains relative frequency on y-axis. These kernel density function help to know about the skewness of parameter, and at the point with 

the highest frequency.
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4.7. Chapter Summary 

            PSX is used as a real-world application to analyze the significance of the difference 

in inference and prediction, in the presence of multimodality. The estimates of the DE are 

significantly different from BFGS. It is because of multimodality in the likelihood function 

of PSX, and BFGS often trap into the local maxima, due to the single starting value. While 

DE uses multiple starting values with various chains, that automatically avoid local 

maxima and converge to global maxima.  

 Furthermore, the fundamental objective of the GARCH type model is to forecast. 

The accuracy of the forecast depends upon the standard error of the estimated parameters. 

The empirical results of PSX imply that the standard error is quite precise in the case of 

DE. Therefore the forecasting based on these estimated parameters will be more accurate, 

as compared to BFGS. 

 Based on the frequentist approach, estimated parameters are point estimates, and 

the distribution of these estimated parameters is hypothetically assumed to be normally 

distributed. While the posterior distribution in a Bayesian approach implies that the 

distribution of the estimated parameter is skewed. If the distribution of the estimated 

parameter is skewed, then the frequentist approach either over/underestimate the estimated 

parameters. Therefore, the estimated parameter could be biased in either direction, hence 

inference and predictions.  
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CHAPTER 5 

Asymmetric GARCH Type Models and Forecasting 

                Simple GARCH model assumes the symmetric effect of past information on the 

current volatility, i.e., good and bad news in the financial market effect current volatility 

with the same magnitude. However, in the case of an assets price, it has been observed that 

the bad news appears to have a more intensive effect of volatility than good news (Francq 

et al., 2019). For many stocks, there is a strong negative correlation between the current 

return and future volatility. In the financial markets, this phenomenon is known as leverage 

or asymmetric effect. The idea of the leverage effect is captured in Fig.. 5.1. The dashed 

line represents the effect of information on the volatility is symmetric, i.e., the same 

magnitude on both sides around the volatility. Conversely, the solid line represents the 

effect of information on volatility is asymmetric; i.e., the magnitude of volatility on the 

negative side is higher than the positive side.  

 

 
 

 

 

 

 

 

Figure 5.1: News impact curves for symmetric (dash line) and asymmetric (solid line) GARCH type 

models. The x-axis represents information, and the y-axis represents volatility. 
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                Mathematically, the symmetric GARCH model assumes that there is no 

covariance between the current value of volatility and past information, i.e. 

𝑐𝑜𝑣(𝜎𝑡 , 휀𝑡−𝑖) = 0     5.1.1  

Where 𝑖 > 0, because of the current value of 𝜎𝑡 volatility is a function of 휀𝑡−𝑖. By dividing 

the random shocks, 휀𝑡 into positive and negative shocks,  

휀𝑡
+ = max(휀𝑡, 0) , 휀𝑡

− = min (휀𝑡, 0)   5.1.2  

It can easily be understood that symmetric assumption only holds, when 

𝑐𝑜𝑣(휀𝑡
+ , 휀𝑡−𝑖) = 𝑐𝑜𝑣(휀𝑡

− , 휀𝑡−𝑖) = 0    5.1.3  

This assumption of symmetric autocovariance can easily be tested empirically. In the case 

of financial time series, this assumption of autocovariance is violated most of the time. 

𝑐𝑜𝑣(휀𝑡
+ , 휀𝑡−𝑖) < 𝑐𝑜𝑣(휀𝑡

− , 휀𝑡−𝑖)   5.1.4  

It can also be written as: 

𝑐𝑜𝑣(𝜎𝑡 , 휀𝑡−𝑖
+ ) < 𝑐𝑜𝑣(𝜎𝑡 , 휀𝑡−𝑖

− )   5.1.5  

               This last equation can be interpreted as there is a high impact on the decrease in 

past prices on the current volatility as compared to the increase in recent prices. In the field 

of finance, this phenomenon is known as the leverage effect. Volatility tends to increase 

dramatically following the bad news and increase moderately following the good news. 

              The purpose of this chapter is to test the leverage effect for the same window of 

PSX and then extend the empirical model in the presence of the asymmetric model. The 
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last section concluded and confirmed the choice of algorithms in the presence of 

multimodality in the likelihood function. Therefore in this chapter, the selected algorithm 

will be used for the estimation of asymmetric GARCH type models.  

 This chapter is divided into two sections; the first section of the chapter is based on 

the selection of asymmetric GARCH model, after testing the presence of leverage effect 

for the window of PSX statistically. The second section of the chapter extends the selected 

asymmetric GARCH model with the skewed student t distribution. Then finally, this 

section is based on the fundamental aim of the GARCH type modelling, i.e., forecasting. 

Forecasting analysis is based on Value at Risk, Expected Short Fall, and Predictive density.  

 

5.1. ASYMMETRIC MODELS 

 In literature, there are three asymmetric GARCH type models. These are as follow; 

5.1.1. Exponential GARCH 

Let 휀𝑡 is an i.i.d sequence, such that 𝐸(휀𝑡) = 0 and 𝑣𝑎𝑟 (휀𝑡) = 1, then 휀𝑡 is said to be 

exponential GARCH (EGARCH), if it satisfies an equation of the form: 

log ℎ𝑡
2 = 𝜔 + ∑ 𝛼𝑖 𝑔(휀𝑡−𝑖)

𝑞
𝑖=1 + ∑ 𝛽𝑗  𝑙𝑜𝑔𝑝

𝑗=1 ℎ𝑡−𝑗
2   5.1.6  

where, 

𝑔(휀𝑡−𝑖) = 𝜃휀𝑡−𝑖 + 𝜍(|휀𝑡−𝑖| − 𝐸|휀𝑡−𝑖|)  5.1.7  

where 𝜔, 𝛼𝑖,𝛽𝑖, 𝜃 𝑎𝑛𝑑 𝜍 are real numbers. 

Following are the features of the EGARCH model: 
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1. The standard GARCH model imposes a necessary condition of positivity on the 

estimated parameter, which is not a requisition under these specifications. 

2. Innovations of the large modulus should increase volatility. This entail constraint 

on the coefficients: for instance, if 𝑙𝑜𝑔𝜎𝑡
2 = 𝜔 + 𝜃ℎ𝑡−1 + 𝜍(|ℎ𝑡−1| − 𝐸|ℎ𝑡−1|), 

𝜎𝑡
2 increases with |ℎ𝑡−1|, the sign of ℎ𝑡−1 being fixed, if and only if −𝜍 < 𝜃 < 𝜍. 

In the general case it suffices to impose: 

−𝜍 < 𝜃 < 𝜍 , 𝛼𝑖 > 0 , 𝛽𝑗 > 0   5.1.8  

3. The asymmetry property is taken into account through the coefficient 𝜃. For 

instance, let 𝜃 < 0  and 𝑙𝑜𝑔𝜎𝑡
2 = 𝜔 + 𝜃: if ℎ𝑡−1 < 0, the variable 𝑙𝑜𝑔𝜎𝑡

2 will be 

larger than its mean 𝜔, and it will be smaller if 휀𝑡−1 > 0. Thus, obtain the 

common asymmetry property of financial time series. 

5.1.2. Threshold GARCH models 

                A natural way to introduce asymmetry is to specify the conditional variance as a 

function of the positive and negative parts of the past innovations.  

휀𝑡
+ = max(휀𝑡, 0) , 휀𝑡

− = min (휀𝑡, 0)   5.1.9  

and 휀𝑡 = 휀𝑡
+ + 휀𝑡

−. The threshold GARCH (TGARCH) class of model introduces a 

threshold effect into the volatility. 

Let ℎ𝑡 is an i.i.d series of random variables, such that 𝐸(ℎ𝑡) = 0 and 𝑣𝑎𝑟 (ℎ𝑡) = 1, then 

휀𝑡 is said to be TGARCH (𝑝, 𝑞) if it satisfies the equation of the form: 

𝜎𝑡 = 𝜔 + ∑ (𝛼𝑖,+휀𝑡
+𝑞

𝑖=1 − 𝛼𝑖,−휀𝑡
−) + ∑ 𝛽𝑗𝜎𝑡−1

𝑝
𝑗=1   5.1.10  
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Where 𝜔,𝛼𝑖,+, 𝛼𝑖,− 𝑎𝑛𝑑 𝛽𝑖 are real numbers. Moreover, the following are the constraints 

on these parameters: 

𝜔 > 0, 𝛼𝑖,+  ≥ 0 , 𝛼𝑖,− ≥ 0, 𝛽𝑖 ≥ 0   5.1.11  

                  The variable 𝜎𝑡 is strictly positive and represents the conditional standard 

deviation of 휀𝑡. In general, the conditional standard deviation of the 휀𝑡is |𝜎𝑡|: imposing the 

positivity of 𝜎𝑡 is not required. 

5.1.3. Glosten, Jagannathan, and Runkle – GARCH 

             Glosten, Jagannathan, and Runkle (1993) showed how to allow good and bad news 

to have different effects on volatility. In a sense, 휀𝑡−1 = 0 is a threshold such that shocks 

greater than the threshold have different effects than shocks below the threshold. Consider 

the threshold GARCH process as: 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖,휀𝑡−1

2 +
𝑞
𝑖=1 𝛾𝑖 𝑑𝑡−1휀𝑡−1

2 + ∑ 𝛽𝑗𝜎𝑡−1
𝑝
𝑗=1  5.1.12  

              Where  𝑑𝑡−1 is a dummy variable that is equal to one if 휀𝑡−1 < 0 and is equal to 

zero if  휀𝑡−1 ≥ 0. Then intuition behind the TARCH model is that positive values of  휀𝑡−1 

are associated with a zero value of 𝑑𝑡−1. Hence, if 휀𝑡−1 ≥ 0, the effect of an  휀𝑡−1 shock on 

 ℎ𝑡 is (𝛼1 + 𝛾1)휀𝑡−1
2 . If  𝛾1 > 0, adverse shocks will have a more significant effect on 

volatility than positive shocks. The dummy variable 𝑑𝑡 moreover, the 

product  𝑑𝑡−1휀𝑡−1
2  can easily be created. If the coefficient 𝛾1 is statistically different from 

zero; it can be concluded that the data contains a threshold effect. 

                 The primary difference between E-GARCH and T-GARCH is simple to 

understand. In the case of the GJR model, if 𝑑𝑡−1 = 0, then model reduces to ℎ𝑡 = 𝜔 +
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𝛼1휀𝑡−1
2 + 𝛽1ℎ𝑡−1. This implies that if past information has a positive impact then the value 

of ℎ𝑡 depends upon 𝜔, 𝛼1, 𝛽1. However, if 𝑑𝑡−1 = 1, thenℎ𝑡 = 𝜔 + (𝛼1 +  𝛾1 )휀𝑡−1
2 +

𝛽1ℎ𝑡−1. In this case, past information has a negative impact and the value of ℎ𝑡 depends 

upon an additional parameter 𝛾1. Also, the value of 𝛾1is also be positive which ultimately 

creates a jump in the variable ℎ𝑡. In an expression of EGARCH is a log-linear form, which 

increases or decreases exponentially as the dashed line shown in Fig. 5.1. Therefore, before 

applying the proper methodology, it is necessary to check either the leverage effect is of 

threshold or exponential nature. 

5.1.4. Diagnostics for Leverage Effects 

1. A specific diagnostic test to determine whether there are any leverage effects in 

residuals. 

a. Estimate ARCH or GARCH model, calculate standardized residual as: 

𝑠𝑡 =
̂𝑡

ℎ̂𝑡

1
2

     5.1.13  

b. Estimate the following regression: 

𝑠𝑡
2 = 𝛼0 + 𝛼1𝑠𝑡−1 + 𝛼2𝑠𝑡−2 + 𝛼3𝑠𝑡−3 + ⋯  5.1.14  

c. If there is no leverage effect the standardized residual, the squared residual 

should be uncorrelated. By applying F statistics with the null 

hypothesis 𝛼1 = 𝛼2 = 𝛼3 = ⋯ , if the null is significantly rejected,  it 

implies that there is evidence for leverage effect. 

2. Another test was developed by Engle and Ng (1993).  

a. Let 𝑑𝑡−1 is a dummy variable, 
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𝑑𝑡−1 = 1, 𝑖𝑓   휀�̂�−1 < 0   5.1.15  

𝑑𝑡−1 = 0, 𝑖𝑓   휀�̂�−1 > 0   5.1.16  

b. The test is to determine whether the estimated squared residuals can be 

predicted using the dummy sequence. 

𝑠𝑡
2 = 𝛼0 + 𝛼1𝑑𝑡−1 + 휀1𝑡   5.1.17  

c. If 𝛼1 is statistically significant, then the current period shock helps predict 

the conditional volatility. 

d. General regression can be estimated as:  

𝑠𝑡
2 = 𝛼0 + 𝛼1𝑑𝑡−1 + 𝛼2𝑑𝑡−1𝑠𝑡−1 + 𝛼3(1 − 𝑑𝑡−1)𝑠𝑡−1 + 휀1𝑡 5.1.18  

e. The presence of 𝑑𝑡−1𝑠𝑡−1 moreover, (1 − 𝑑𝑡−1)𝑠𝑡−1 is designed to 

determine whether the effects of positive and negative shocks also depend 

on their size. F statistic is used to test the significance level for the null 

hypothesis 𝛼1 = 𝛼2 = 𝛼3 = 0. After the confirmation of the leverage effect 

in series, apply asymmetric GARCH type models. 

5.1.5. Confirmation of Leverage Effect 

Before testing the empirical asymmetric model, the first step is to test the existence 

of leverage effect. For this purpose, this study applied the following tests. First, a simple 

test is applied based on Eq. 5.1.3. Empirically it is found that the  

−8.7𝐸 − 06 < 1.35𝐸 − 05, which can be interpreted as a high impact on the of the 

decrease in past prices on the current volatility as compared to the increase in recent prices. 

In other words, this test confirms the presence of leverage effect for the window of PSX.  

Two formal tests are also applied for the identification of leverage effect. The first 

formal method is based on Eq. 5.1.14. Empirically, two lags of residual are introduced into 
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this model. Empirical results are presented in Table 5.1. First lags of the standardized 

residual are statistically significant and different from zero, while the second lag is 

statistically insignificant. The null hypothesis 𝛼1 =  𝛼2 = 0 is used to test the significance 

of both lags jointly. The calculated F value is statistically significant at the 5% significance 

level. It confirms the existence of the leverage in the return series of PSX.  

Finally, this study also applied the procedure of Engle and Ng (1993). Empirical 

results of Eq. 5.1.18 are presented in Table 5.2. The estimated parameters are statistically 

significant at the 5% significance level, except 𝛼3. The null hypothesis 𝛼1 =  𝛼2 = 𝛼3 =

0 is used to test the joint significance. The null hypothesis of joint significance is also 

rejected in this case. It implies the existence of a leverage effect for the window of PSX. 

Three types of test are used to check the presence of leverage effect, and all these statistics 

confirm the presence of leverage effect in the series. 

 

Table 5.1: Leverage effect is tested by regressing the squared standardized residual on the lag of the 

residual. A probability value of F statistic is less than 5%, which indicate the presence leverage effect 

in PSX series 

⁎⁎⁎, ⁎⁎, and ⁎ indicate the significances at 1%, 5%, and 10% levels, respectively. 

 

 

 

 
Coefficient SE t-value P-value 

𝜶𝟎 1.04695*** 0.08552 12.2 0.0000 

𝜶𝟏 -0.23112*** 0.08534 -2.71 0.0069 

𝜶𝟐 -0.10532 0.08537 -1.23 0.2177 
     

F(2,690) 4.6198** 
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Table 5.2: by using Engle and Ng (1993) procedure, to test the presence of leverage effect in the 

series. A probability value of F statistic is less than 5%, which indicate the presence leverage effect in 

PSX series 

 
Coefficient SE t-value P-value 

𝜶𝟎 0.9020*** 0.1090 8.28 0.0000 

𝜶𝟏 0.2950* 0.1719 1.72 0.0866 

𝜶𝟐 -22.9386** 9.0460 -2.54 0.0114 

𝜶𝟑 -10.0526 8.3380 -1.21 0.2284      

F(3,689) 3.5517** 
   

⁎⁎⁎, ⁎⁎, and ⁎ indicate the significances at 1%, 5%, and 10% levels, respectively. 

 

5.1.6. Empirical Results for Asymmetric Models 

              In chapter 4, it was concluded that student t distribution is more appropriate for 

the estimation of the GARCH (1, 1) model as compared to the normal distribution. 

Therefore, in this chapter, the student t distribution is assumed of the prior density. Also, 

prior independence between the model’s parameters is assumed and executed one chain 

with the length of 10,000 passes. Lastly, the model is estimated through the ML estimation 

method for comparison between the Bayesian and the frequentist approach. 

                 Estimated results for asymmetric models are presented in Table 5.3. At first, the 

empirical results are compared with each other, on the bases of AIC and BIC. On the 

comparison, it is found that the absolute value of AIC and BIC are higher for the EGARCH 

model, as compare to GJR and TGARCH, in case of DE estimation method. However, 

based on AIC and BIC apparently, it seems that the TGARCH in case of Bayesian is also 

a good approximation. However, this point is not consistent. Because, in the case of the 

Bayesian approach, the Acceptance rate and the procedure of Gelman and Rubin (1992) 

implies that the EGARCH is a good approximation for the window of PSX. Hence, the 
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Bayesian and the frequentist approach, both implies that the EGARCH model is a 

preferable model, as compared to other asymmetric models.  

Now at the second stage, the empirical results of this chapter are compared with the 

previous chapter on the bases of AIC and BIC in case of DE, and in cases of Bayesian 

approach, it is compared on the bases of acceptance rate and confidence interval of Gelman 

and Rubin (1992) procedure. The value of AIC and BIC in the previous chapter is -4166.05 

and -4147.87 with is quite low as compared to the 4199 and 4177 in this chapter, 

respectively. Similarly, in the case of the Bayesian approach, it implies that the EGARCH 

model is a good approximation for the window of PSX, as compared to simple GARCH.  

According to the formal procedure of Gelman and Rubin (1992), �̂� is 0.99 for EGARCH 

models that do not lead to the rejection of the chain. The 97.5th percentile values of �̂�  

belong to different confidence intervals. The confidence intervals are precise for 

EGARCH, while in other cases, the upper value is closer to 1.2; consequently, it indicates 

weak convergence. The Acceptance Rate is higher than other models, and the intervals are 

more consistent in comparison to other models as well. Running means plots are presented 

in appendix B. Running means are showing slow convergence, especially for the GJR 

parameters. Also, kernel densities are also skewed for the GJR. 
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Table 5.3: Results for the asymmetric model based on three different econometric models  

 
EGARCH GJR TGARCH  

Differential 

Evolution 

Robust 

Adaptive 

Metropolis 

Corrected 

Robust 

Adaptive 

Metropolis 

Differential 

Evolution 

Robust 

Adaptive 

Metropolis 

Corrected 

Robust 

Adaptive 

Metropolis 

Differential 

Evolution 

Robust 

Adaptive 

Metropolis 

Corrected 

Robust 

Adaptive 

Metropolis 

𝜶𝟎 -1.094*** -1.355 -1.240 0.000*** 0.000 0.000 0.002*** 0.002 0.002 

𝜶𝟏 0.382** 0.411 0.400 0.000 0.164 0.157 0.000 0.131 0.124 

𝜶𝟐 -0.145** -0.160 -0.155 0.954 0.654 0.741 0.354* 0.394 0.375 

𝜷 0.873* 0.843 0.855 0.339 0.201 0.171 0.675* 0.641 0.658 

𝒗 5.196** 6.534 5.100 3.313** 5.494 3.470 5.111** 6.571 5.278           

AIC -4199 -4197 
 

-4174 -4163 
 

-4191 -4199 
 

BIC -4177 -4175 
 

-4151 -4140 
 

-4168 -4176 
 

Acceptance 

Rate 
 0.992   0.971   0.989  

Gelman and 

Rubin (1992) 
 [0.89, 

1.11] 

  [0.86, 

1.14] 

  [0.87, 

1.13] 

 

⁎⁎⁎, ⁎⁎, and ⁎ indicate the significances at 1%, 5%, and 10% levels, respectively. 
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5.2. SKEWED Student-t DISTRIBUTION EGARCH 

               It is a well-known fact that returns from financial variables follow the non-normal 

distribution. The empirical distribution of such returns is leptokurtic and has more massive 

tails than the normal distribution. This implies that considerable changes in return occur 

with a higher frequency than under normality. Moreover, it is often skewed having one 

heavy and one semi-heavy or more Gaussian-like tail. This phenomenon of a skewed 

distribution is explained by prospect theory (Barberis et al., 2016). One set of distributions 

for modelling skewed and heavy-tailed data is the skew Student’s t-distribution (Aas & 

Haff, 2006; Adcock et al., 2015). Hansen (1994) was the first to propose a skewed 

extension to the Student’s t-distribution for modelling financial returns. The choice of 

distribution for the empirical models is essential because it helps to fulfil the criteria of 

parsimonious and reliable inference and prediction as well. 

                    In the first section of chapter 5, the asymmetric model is selected for the 

window of PSX, i.e., EGARCH. In this section, the selected model, i.e., EGARCH will be 

extended with skewed student t distribution, and then forecasting will be analyzed based 

on the final selected model. While all other models will be not considered in this section, 

because if they are not estimating well the data generating process of PSX, ultimately the 

forecast will be biased on the bases of biased estimates. Furthermore, the empirical results 

of the previous chapter show that the convergence of the chains is quite slow. In the current 

section, extend the EGARCH model with the skewed student-t distribution. For forecasting 

purpose, three different measure will be used, i.e., Value at Risk, Expected Shortfall and 

Predictive density. 
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5.2.1. Methodology 

Consider the simple EGARCH model, 

𝑦𝑡 = 휀𝑡ℎ𝑡
1/2

 

휀𝑡~ 𝑖. 𝑖. 𝑑 𝒩(0,1) 

ℎ𝑡~ 𝑓𝑟(𝑡) =
2

𝑟+
1

𝑟

{𝑓 (
𝑡

𝑟
) 1[0,∞)(𝑡) + 𝑓(𝑟𝑡)1(−∞,0)(𝑡)}  5.2.1  

                   Here 𝑓𝑟 is symmetric student-t distribution if 𝑟 = 1, and the same model is 

approached, which has already been explained at the start of the chapter. 𝑓𝑟  is skewed 

student-t distribution towards left if 𝑟 < 1, otherwise it is right skewed (see Klar et al., 

2012). Let 휀𝑡 is an iid sequence, such that 𝐸(휀𝑡) = 0 and 𝑣𝑎𝑟 (휀𝑡) = 1, then 휀𝑡 is said to 

be exponential GARCH (EGARCH), if it satisfies the equation of the form: 

log ℎ𝑡
2 = 𝜔 + ∑ 𝛼𝑖 𝑔(휀𝑡−𝑖)

𝑞
𝑖=1 + ∑ 𝛽𝑗  𝑙𝑜𝑔𝑝

𝑗=1 ℎ𝑡−𝑗
2    5.2.2  

where, 

𝑔(휀𝑡−𝑖) = 𝜃휀𝑡−𝑖 + 𝜍(|휀𝑡−𝑖| − 𝐸|휀𝑡−𝑖|)   5.2.3  

where, 𝜔, 𝛼𝑖, 𝛽𝑖, 𝜃 𝑎𝑛𝑑 𝜍 are real numbers. 

 

5.2.2. Empirical Results Based on Skewed Student-t Distribution 

                   The empirical result of EGARCH with skewed student t distribution is 

presented in Table 5.2.1. In comparison with the empirical results of the previous section, 

it is found that these results are more consistent. For the model comparison, AIC and BIC 
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are used. The absolute value of AIC and BIC are higher in the present section as compare 

to the previous section. In the previous section, the value of AIC and BIC are 4199 and 

4177, are lower as compare the value 4226.35 and 4199.08 of the current section. 

Furthermore, all the parameters are significant. It implies a relatively good 

approximation for the window of PSX. Moreover, there is somehow a difference in the 

value of estimated parameters, across Bayesian and frequentist approach. It is because of 

the DE estimation method estimate value of the parameter at the global maxima while the 

Bayesian approach takes an average of all the peak in the likelihood function.  

Running means are presented in Appendix C. Running means showed fast 

convergence to the steady state point after about 2000 points. This convergence of the 

parameter is relatively faster as compared to the previous models because of the use of the 

most appropriate estimated model along with the choice of distribution. According to the 

formal procedure of Gelman and Rubin (1992) for the convergence of chains, it does not 

lead to the rejection of the chain when the value of �̂� is 0.9999.  The confidence interval 

with 97.5th percentile values of �̂�  belong to the interval [0.98, 1.01]. These confidence 

intervals are much precise as compared to all other previous models. Also, the chain for 

the student-t distribution is converging to the stable point, and the issue is solved as 

compared to the previous model.       
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Table 5.4: Empirical Results of EGARCH Model by Assuming Skewed Student-t Distribution   
Differential 

Evolution 

 

 

(ML) 

Robust Adaptive 

Metropolis 

 

 

(Posterior Mean) 

Corrected Robust 

Adaptive 

Metropolis 

 

(Posterior Mode) 

𝝎 -1.085*** -1.363 -1.270 

𝜶𝟏 0.411** 0.451 0.435 

𝜶𝟐 -0.135** -0.155 -0.148 

𝜷𝟏 0.869** 0.836 0.850 

  𝜽  4.064** 4.212 4.100 

𝝇 0.764** 0.772 0.768     

AIC: -4226.35 -4225.54 
 

BIC: -4199.08 -4198.27 
 

⁎⁎⁎, ⁎⁎, and ⁎ indicate the significances at 1%, 5%, and 10% levels, respectively. 

5.2.3. Value at Risk and Decision Theory 

 

“Density forecasting is fast becoming an important tool 

for decision makers in situations where loss functions are 

asymmetric, and forecast errors follow non-Gaussian 

distributions.” 

Allan Timmermann  

 

              Value at risk (VaR) is an essential tool in risk management to allocate capital for 

a particular asset. VaR is easy to implement and understand. It is a measure of expected 

loss for an asset. It gives information, (𝑖) For a given period and (𝑖𝑖) for a given confidence 

level, 𝑝. The expected loss which increases with the probability 𝑝𝑒 = (1 − 𝑝). From a 

statistical point of view, it is the percentile of the profit and loss distribution over a fixed 

horizon. In the real world application, if the distribution of profit and loss is unknown, VaR 

can only be estimated from sample data. In case of the normal distribution, VaR is 
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interpreted as one day ahead forecast; VaR is a given percentile of the standard normal 

distribution scaled by the conditional standard deviation.14 

                VaR density varies from model to model.15 Therefore, the EGARCH model with 

the skewed student-t distribution, which is verified at the start of this section. VaR is 

presented in Fig. 5.2.1, for frequentist (upper plot) and Bayesian approach (low plot). In 

both approaches, the VaR density seems alike because the estimated parameters of 

EGARCH models are approximately the same. Furthermore, one day ahead forecast value 

of VaR is presented in Table 5.2.2. Following two points is infer from these results; (𝑖) 

one day ahead forecast value is higher for DE than RAM (in absolute term), which implies 

there is a higher level of risk in DE. (𝑖𝑖) Also, if the level of risk is increased from 95% to 

99%, the value of DE increases (in absolute term) as compared to the RAM. 

 

5.2.4. The Expected Short Fall Risk Measure 

The VaR is a standard tool to measure the risk in the field of financial risk 

management. However, VaR has been criticized in the literature for majorly two reasons, 

in particular: 

a. The VaR does not provide information  about the potential size of the loss that 

exceeds its level, and as a result, it is flawed; 

b. The VaR is not a comprehensible measure of risk. In particular, it lacks the property 

of sub-additivity. 

                                                 
14 For detail, see Ardia (2008). 
15 For detail, see Guidolin and Timmermann (2006). 
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Figure 5.2: Value at risk (VaR) estimated by using DE (upper part), and VaR estimated by using 

RAM (lower part). 
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The concept of Expected Shortfall (ES) has been introduced To overcome the issues 

mentioned above. The ES risk measure is the expectation of the profit and loss below the 

VaR level. Estimated ES is presented in Table 5.5. In comparison with the results of VaR, 

the estimated parameters for ES are lower than VaR, as expected. Furthermore, the 

estimated parameters for ES in the Bayesian approach are lower than the frequentist 

approach, which implies that the Bayesian approach has a higher chance to minimize the 

risk of profit and loss. 

Table 5.5:  Estimated value at risk (VaR) and expected shortfall (ES) 

 
Value at Risk Expected Short Fall 

 
0.95 0.99 0.95 0.99 

Differential 

Evolution 

-0.0228 -0.0426 -0.0359 -0.0606 

Robust Adaptive 

Metropolis 

-0.0203 -0.0377 -0.0434 -0.0772 

 

5.2.5. Predictive Density 

One of the essential tools to evaluate consistency is predictive distribution. The 

density of predictive distribution is similar to the prior density except that the prior is 

replaced by the posterior. If the time series experiment is repeated, it will yield the 

predictive density for the outcome of the repeated experiment.16 The purpose of this 

predictive testing is not about rejection and non-rejection of models; instead, it just gives 

information about the new model (Box, 1980).  

                                                 
16 For detail, see J. Geweke and Whiteman. (2006). 
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The predictive density of DE and RAM, respectively, is presented in Fig. 5.2.5. 

Both predictive densities are left-skewed. These left-skewed distributions give information 

about the new model for PSX that it is an uncertain choice. According to prospect theory, 

if the probability of the occurrence at the left tail is low, it would lead the investor to the 

worst situation. In short, in terms of investment choice, PSX is a risky asset. 

On the other hand, this predictive density would not give information about the 

rejection or non-rejection of the model, because both predictive densities are the same.  

There is a significant difference in the left tail. Left tail of RAM is more massive than the 

left tail of DE. It implies that the predictive density in case of RAM gives more weight to 

the unlikely events. Offering more probability to the unlikely events will ultimately 

minimize the risk of the loss. These results are consistent with VaR and ES.  

  



 
 

82  
 

 

Figure 5.3: predictive densities for DE (upper graph), and robust adaptive metropolis (lower graph). 

Both predictive densities are left-skewed. In case of the RAM, the left tail is more massive than DE.   
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5.3. Chapter Summary 

              The primary purpose of this chapter is to study the issue of forecasting. Therefore, 

in the first section of this chapter, this study has estimated three asymmetric models for 

series of PSX, and then these estimated models are compared with each other to select the 

best model from three.  The essential purpose of this comparison to select that appropriate 

model, which help in forecasting because a biased selected model will give an explicitly 

biased forecast. Moreover, then in the second chapter, this empirical model is extended 

with the skewed student t distribution. This finally selected empirical model is then used 

for forecasting purpose.  

 It is the essential requirement of the asymmetric GARCH type models, to test 

leverage effect statistically. Empirically, it is found that the series of PSX follow the E-

GARCH model, i.e., which implies that the stock market is not perfect and leads to 

exponential change into the mean level of PSX. Furthermore, in the case of any negative 

shock in the stock market, will smoothly converge to the new level rather any sudden shift. 

 The final section of this chapter is about forecasting, which is the primary purpose 

of GARCH type modeling. For this purpose, Value at Risk, Expected Shortfall, and 

Predictive density is measured. Empirically it is found that the decision made on the bases 

of the Bayesian approach is more precise as compared to the frequentist approach. Hence, 

the Bayesian approach is more valuable to avoid risk, and also the preferable choice of 

estimation for the risk-averse investor. 
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CHAPTER 6 

CONCLUSION 

             The fundamental objective of the study is to compare the Frequentist and Bayesian 

approaches in the presence of multimodality in the likelihood function of GARCH models. 

For this purpose, the present study has selected two estimation method from each approach. 

To evaluate the estimation power of each algorithm around the true parameter, this study 

is employed used following steps; (𝑖) true data generating process, (𝑖𝑖) true data generating 

process with different distributions, (𝑖𝑖𝑖) surface analysis comparison. However, before 

comparing approaches, it is essential to compare algorithms within each approach. 

Simulation is used as a standard to evaluate the performance of each algorithm around the 

true data generating process. The experimental result of simulation implies that DE is 

preferable estimation method as compared to BFGS, across different data generating 

process and along the entire surface of the contour plot. The main reasons for this difference 

between BFGS and DE estimation methods are just because of the multimodality in the 

likelihood function, and choice of single starting value and multiple starting values in each 

estimation method, respectively. 

Contrary, in the Bayesian approach, RAM is the preferable choice of estimation for 

GARCH type model, as compared to the MH estimation methods. This preference is 

consistent not only across different data generating process but also consistent along the 

entire surface of the contour plot. Because MH estimation method uses the method 

independent MCMC, where the current draw of the posterior distribution does not take any 

information from the previous draw, therefore it might not converge to a single point. 

While RAM uses the technique of Adaptive MCMC, where it receives data from the earlier 
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draws of the posterior distribution, and ultimately converge to a stationary point. Therefore, 

RAM has a lower level of bias as compared to the MH estimation method.  

            PSX is used as a real-world application to analyze the significance of the difference 

in inference and prediction, in the presence of multimodality in the likelihood function of 

the GARCH model. The estimates of the DE are significantly different from BFGS. It is 

because of multimodality in the likelihood function of PSX, and BFGS often trap into the 

local maxima, due to the single starting value. While DE uses multiple starting values with 

various chains, that automatically avoid local maxima and converge to global maxima. 

 Furthermore, the fundamental objective of the GARCH type model is to forecast. 

The accuracy of the forecast depends upon the standard error of the estimated parameters. 

The empirical results of PSX imply that the standard error is quite precise in the case of 

DE as compare to BFGS. Therefore the forecasting based on the estimated parameters of 

DE will be more accurate, as compared to BFGS. 

 Based on the frequentist approach, estimated parameters are point estimates, and 

the distribution of these estimated parameters is hypothetically assumed to be normally 

distributed while the posterior distribution in a Bayesian approach implies that the 

distribution of the estimated parameter is skewed. If the distribution of the estimated 

parameter is skewed, then the frequentist approach either over or underestimate the 

estimated parameters. Therefore, the estimated parameter could be biased in either 

direction, hence inference and predictions. 

Empirically, often the Bayesian approach uses “means” of the posterior distribution 

as a measure of the point estimate. Mean is an appropriate measure if the distribution is 
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normal. However, if the distribution is non-standard, then the mean is not a good 

approximation. By constructing kernel density, and then selecting the model frequency for 

the posterior distribution can resolve this issue. It is analyzed that there is a significant 

difference in the value of the estimated parameters from RAM and selecting the model 

frequency point. Hence, it is concluded that Corrected-RAM is preferable in comparison 

to RAM algorithms.  

              As already mentioned that the main objective of GARCH type modeling is 

forecasting. Therefore, at first step asymmetric model is selected for the window of PSX. 

Empirically, it is found that the series of PSX follow the E-GARCH model, i.e., which 

implies that the stock market is not perfect and leads to exponential change into the mean 

level of PSX. Furthermore, in the case of any negative shock in the stock market, will 

smoothly converge to the new level rather any sudden shift. 

 Finally, the forecasting is done, by applied using; Value at Risk, Expected Shortfall, 

and Predictive density is measured. Empirically it is found that the decision made on the 

bases of the Bayesian approach is more precise as compared to the frequentist approach. 

Hence, the Bayesian approach is more valuable to avoid risk, and also the preferable choice 

of estimation for the risk-averse investor. 

 Hence, the Bayesian approach has the following advantage over the frequentist 

approach; (i) completed the distribution of the estimated parameter is obtained at the low 

cost of simulation. (ii) Through this distribution of the estimated parameter, the properties 

of the estimated parameters can easily be discussed. (iii) Therefore, in the case of the 

frequentist approach, it either over or underestimated the actual value of parameters. (iv) 

Forecasting based on a Bayesian approach is preferable than the frequentist approach. 
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RECOMMENDATIONS 

This study sets a new base for GARCH type modeling, in the presence of 

multimodality in the likelihood function. Furthermore, it is proved that literature has this 

issue as well, so, the complete literature based on financial econometrics can be revised in 

light of the present study. Moreover, it can be used to analyze the level of significant 

difference in empirical results of literature and the results based on the methodology of this 

study.  
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APPENDIX A 

A.1. Normal Distribution: 

 

 

Figure A.1. Contour plots represent the level of bias (left plots) and variance (right plots) for DE, 

MH, and RAM, for the parameters of GARCH (1, 1) model, respectively. The x-axis represents the 

change in the value of the Alpha parameter, from 0.1 to 0.9, while the y-axis represents the change in 

the value of Beta.  
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A.2. Student-t Distribution: 

 
Figure A.2. Contour plots represent the level of bias (left plots) and variance (right plots) for BFGS, 

DE, MH, and RAM, for the parameters of GARCH (1, 1) model, respectively. The x-axis represents 

the change in the value of the Alpha parameter, from 0.1 to 0.9, while, the y-axis represents the 

change in the value of Beta. 
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                 Empirically it has been found that the likelihood function of the GARCH model 

is multimodel. Due to this numerical algorithm trap into local maxima like BFGS (for 

details, see chapter 3). Whereas DE has built-in safeguards to avoid local maxima and 

converge to global maxima. Because of this, the level of bias and variance from the true 

parameter is lower for DE as compared to BFGS. Moreover, this difference becomes more 

prominent when the distribution of data changes for normal to student-t distribution. 

Similarly, in the case of the Bayesian approach, RAM was found to be more prominent 

over MH. Hence, in the case of the Frequentist approach, DE is relatively better to estimate 

the GARCH model, and in the Bayesian approach, RAM is relatively better than MH. 
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APPENDIX B 

1. E-GARCH 
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Figure B.1. Running means along with the distribution of each parameter is constructed by using 

chains of RAM. Running means for each chain are converging to a stationary point. Also, the 

distribution for each parameter is approximately asymmetric. 
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2. GJR 
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Figure B.2. Running means along with the distribution of each parameter is constructed by using 

chains of RAM. Running means for each chain is approximately not converging to a stationary point. 

Also, the distribution for each parameter is approximately asymmetric.   
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3. TGARCH 
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Figure B.3. Running means along with the distribution of each parameter is constructed by using 

chains of RAM. Running means for each chain is approximately converging to a stationary point. 

Also, the distribution for each parameter is approximately asymmetric. 
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APPENDIX C 
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Figure C.3. Running means along with the distribution of each parameter is constructed by using 

chains of RAM. These chains are obtained by estimating the EGARCH model, by assuming skewed 

student-t distribution. Running means for each chain is approximately converging to a stationary 

point. Also, the distribution for each parameter is approximately asymmetric. 
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