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Abstract 

This thesis explores the profound challenge of global warming and climate change in Pakistan, 

focusing on deterioration of health. Through the utilization of machine learning techniques on 

climate change and causes of death datasets and is set to investigate the linkages among drivers 

of the climate change specifically in the context of Pakistan. The analysis reveals robust 

correlations between climate change and victims of respiratory diseases, while the associations 

with the victims of digestive problems and cardiovascular diseases are found to be 

comparatively less significant. 

The examination of causality emerges as a potential solution to overcome the limitations of 

current machine-learning approaches. The interdisciplinary nature of causality, drawing from 

fields such as epidemiology, economics, statistics, and computer science, underscores the 

significance of collaboration and knowledge exchange. The research focuses on one of the 

fundamental task that is causal discovery. By employing causal discovery tools, the study 

delves into investigation and exploration of the causal linkages between climate change and 

human deaths, identifying both direct and indirect relationships with the drivers of climate 

change and leading causes of mortality in Pakistan. 

While the study provides valuable insights into the intricate relationship between climate 

change and human health, further comprehensive analysis and extensive data are needed to 

obtain more precise and accurate results. The thesis emphasizes the necessity of a 

multidisciplinary approach to deepen our understanding of causality and climate change's 

health implications, leading to evidence-based policies and interventions. 

In summary, this thesis underscores the urgent need to address climate change as a critical issue 

in Pakistan. By unraveling the correlations between climate change and the victims of 

respiratory diseases, it contributes to the existing body of knowledge. The research highlights 

the importance of causality in comprehending complex phenomena, advocates for cautious 

interpretation of correlations, and demonstrates the potential of causality in addressing the 

limitations of machine learning. By further exploring the causal pathways and gathering 

extensive data, the thesis aims to enhance our understanding of the relationship between 

climate change and human health, paving the way for effective strategies to safeguard the well-

being of the population in Pakistan. 

Keywords: Machine Learning, Climate Change, Forecasting, CMIP6, & NASA-GISS-E2-1-
H Model 
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CHAPTER 1 

INTRODUCTION 

 

Technology is transforming human life at an extraordinary scale and pace. Artificial 

intelligence (AI) technology is at the core of unprecedented breakthroughs in the field of 

economics, medicine, engineering, and business. The advancement in machine learning 

technology which falls under the umbrella of AI, allows machines to outperform humans in 

many of the scientific domains and execute tasks that, until recently, were thought only to be 

carried out by humans, such as cognitive functions and language generators. It is quite safe to 

say that machine learning advancement has the potential to revolutionize the scientific realm 

at an equally fundamental level.  

Traditionally Machine learning methods were utilized to perform isolated and quintessential 

prediction problems. The successful development of Artificial intelligence techniques in the 

fields of drug discovery (Protein designing), pattern matching (Visual AIs), neuro-symbolic 

AIs, language generators (Open AI’s GPT-3 or Gopher) or IBM’s Deep Mind, had unwrapped 

a new world of opportunities and possibilities. The automated inference technique is one of the 

exhilarating innovations that has gained immense value in the process of scientific discovery 

and creating solutions to real-world problems. Assisting researchers in choosing which 

hypotheses to test, which experiments to conduct, and how to extract principles and postulates 

detailing the range of phenomena. 

The evident rise of machine learning in natural and social sciences can be attributed largely to 

the availability of big data. With big data availability machine learning techniques can make 

data speak for itself. Understanding the inherent and innate structures, relationships, and 

linkages within the data are made easier with machine learning techniques. For instance, in 

medical sciences, most traditional approaches can only function in data-driven predictive 

modes, which makes them incapable of realizing precision-based goals such as timely 

assessment and matching of the patients with the most appropriate preventative and therapeutic 

measures. Data interpretation and the implementation of scientific breakthroughs in health care 

require a deeper familiarity with machine learning and its processes (Raita et al., 2021). 

Integrating machine learning algorithms with healthcare domain expertise, and further coupling 

these two with causal discovery is crucial to bringing about a qualitative transformation in 
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medicine that will lead to better patient outcomes as "big data" becomes an increasingly 

common tool for analysing quantitative information (Raita et al., 2021). 

Climate change research has evolved manifolds due to the usage of AI and ML techniques in 

handling Big data. One of the biggest hurdles in climate change policymaking was the 

availability of conclusive evidence, which wasn’t possible without innovative spatial and 

temporal econometric modelling, computational power, and technological advancement. 

Evidence and resources for learning about climate change and global health challenges are 

usually not readily accessible or available. AI and ML tools are extensively used to broaden 

the reach of the literature and improve our understanding of the effects of climate change on 

human health (Scheelbeek et al., 2021).  

Conclusive evidence is a bedrock essential for global economic policy formulation. With the 

health and climate change knowledge base expanding fast, evaluations to guide public policy 

are becoming more labour and resource-intensive (Scheelbeek et al., 2021).To advance, 

implement, and make economic decisions concerning climate change, a cutting-edge 

knowledge base will be needed – and that is where ML and AI come into the picture, providing 

data-driven solutions. The econometrics knowledge base is essential for the expansion of the 

machine learning domain.  Machine learning can play an impactful role in many broader 

strategies for reducing and responding to climate change and its goals (considering its impact 

on human health). 

Machine learning is crucial for better understanding climate change and human health nexus 

through causal linkages. Finding a link between climate change and human health can be done 

using several different machine-learning tools, but the results will vary depending on the 

specifics of the analysis and the quantity of data at hand. This thesis on climate change, human 

health, and machine learning attempt to address the lack of conclusive evidence, projecting a 

futuristic trend of mortality and employing causal discovery. Moreover, evaluating the machine 

learning tools for forecasting; and application of causal discovery tools for exploration, 

mapping, and understanding of the causal linkages between climate change and mortality data.  

Utilizing the NASA climate change forecast data as input to an ML-based framework for 

projecting what might happen in the future using the best-performing models through the 

analysis of the relationship between climate change indicators and mortalities on a national 

scale. 
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1.1. Motivation 

There is a growing belief among practitioners, researchers, and scientists that "big data" has 

the answers to all scientific concerns as there is a rapidly growing amount of data. The advent 

of data science particularly the large amount of data that gave birth to the “health data science” 

and “emerging climate change- machine” learning domain in recent years provides an 

opportunity to evaluate the data-driven perspective.  

In this regard integrating machine learning algorithms with the climate change domain, and 

further coupling these two with causal discovery is crucial to bringing about a qualitative and 

quantitative transformation in solving the climate change crisis.  Resulting in better outcomes 

as "big data" becomes an increasingly common tool for analysing quantitative information and 

comprehensive evidence-building. Data interpretation and the implementation of scientific 

breakthroughs into climate change science require a deeper familiarity with machine learning 

and its processes. 

Most traditional approaches in climate change sciences, for instance, can only function in data-

driven predictive modes, which makes them incapable of realizing precise policy matching 

economic goals with the most appropriate actions and measures in given time constraints. To 

address, the lack of evidence for efficient and effective policy-making, employing machine 

learning tools with the availability of big data is crucial. Given the present climate change 

alarming situation in Pakistan, it is urgent to explore and research the climate change situation 

to mitigate its adversities.  

To this end, this thesis tries to attempt to explore and investigate the climate change issue in 

Pakistan through an ML-based framework for analysing the relationship between climate 

change indicators and mortality on a national scale. Addressing the lack of comprehensive and 

conclusive evidence of climate change on human health with the help of machine learning 

tools. Projecting futuristic morality trends and projecting what might happen in the future using 

the best-performing models. This study attempts at exploring the causal linkages through the 

application of causal discovery is crucial for health policy-making in Pakistan. The study 

comprises of application and evaluation of the machine learning tools in the emerging climate 

change and machine learning domain. To sum up, the manifold contribution of this study 

encompasses both; the methodologies employed and the innovative application of the ML 

framework that provide new and significant empirical insights into climate change research.  
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1.2. Research Problem 

The literature on climate change in Pakistan is scant in many aspects, particularly concerning 

human health, adaptation, mitigation, and effective policy-making. The scarcity of the existing 

literature on the subject matter is a hurdle in the creation of effective policy instruments. One 

of the significant obstacles faced in climate change mitigation policymaking is the lack of 

conclusive evidence on a national scale with variability on temporal and spatial lines.  

In the aftermath of devastating floods, and rising global and national climate challenges there 

is the utmost need for intervention policy to mitigate the socio-economic crisis as a direct result 

of climate change, which is central to economic growth (Sadiq & Khalil, 2022). The prime 

objective of this study is to predict the futuristic trend of climate change-induced mortality in 

Pakistan and to provide conclusive evidence on climate change's impact on human health, 

through the usage of novel machine learning techniques. 

Another major gap is the exploration and identification of the causal pathways through which 

climate change affects human mortality, in particular, which has multiple hurdles in data 

availability and climate change literature necessary for adaption and mitigation. This study 

aims to fill these gaps through data-driven evidence-building. For comprehensive evidence 

building, utilization of big data is essential and evaluation of best machine learning tools in 

regard to climate change data and its projections.   

Based on the narrative of the research problem as stated in the preceding text and narrowing 

our research problem into “A Machine Learning Analysis of Climate Change & Human 

Health Projections in Pakistan” and have operationalized my topic into the following 

research questions and objectives. 

1.3. Research Questions 

1. How mortality in relation to climate change will behave in future in case of Pakistan? 

2. What are the possible avenues of application of machine learning tools in emerging 

climate change and machine learning domains?  

3. Which interlinkages exist between climate change and mortality in Pakistan through 

casual discovery? 
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1.4. Objectives of the Research 

 The prime objective of this study is to project the futuristic trend of mortality in relation 

to climate change in Pakistan by collecting conclusive evidence on climate change and 

human health (mortality) using machine-learning techniques. 

 To apply machine learning tools in the emerging climate change and machine learning 

domain.  

 To investigate the interlinkages between climate change & mortality for understanding 

and exploring the causal pathways between climate change and mortality in Pakistan, 

and to visualize through spatial mapping. 

1.5. Significance of research 

This study will serve as a foundation for recognizing important research and knowledge gaps 

and necessitating funding and resources for research climate change, health, and machine 

learning domains. Leveling the ground for future research in climate change and machine 

learning, through the application and evaluation of machine learning tools. This study reveals 

significant gaps in the literature for several climate-health pathways as well as temporal and 

spatial disparities in the data regarding health consequences, with vulnerable regions being 

underrepresented. 

The significance of this study is three-pronged. Primarily, utilizing machine learning 

techniques may result in the creation of "live" evidence platforms. These could assist 

governments in setting priorities and supporting actions that mitigate and upcoming effects of 

climate change on human health. Furthermore, imploring developmental economists, 

environmentalists, social scientists, and policy practitioners to explore real-world issues, not 

through traditional approaches but rather through ML tools. Secondly, this study pioneered 

bridging the gap in the literature on the climate change health nexus in the context of south 

Asia and Pakistan. The existence of scarce literature on the subject matter restricts and narrows 

down the lens of climate change and policy practitioners to develop and implement policies. 

Scientific evidence from low-income nations, which are most affected by the health effects of 

climate change, is currently quite scarce. There is very little research on how climate change 

affects physical as well as mental health. Although the literature review found a few instances 

of climate change adaptation activities that claimed to improve health, were generally lacking 

high-quality data. 
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CHAPTER 2 

Review of Literature 

2.1. Literature on Machine Learning  

Forecasting macroeconomic variable is crucial for creating effective policy solutions. The 

policy measure can’t be developed or executed without accurate forecasting and prediction. 

Real Gross Domestic Product (GDP) growth is one of the most important and widely used 

macroeconomic indicators but predicting it is time-consuming and challenging because official 

data is only released with a one-quarter lag. Policymakers routinely develop policies and carry 

them out without having access to trustworthy data because of lags in the delivery of data. 

From this perspective, it would be quite advantageous to be able to precisely estimate and 

predict real GDP growth over time. It is challenging to forecast and foresee macroeconomic 

variables such as real GDP growth. Traditional economic forecasting models frequently 

employ d top-down, theory-driven methodologies to forecast data while taking into account the 

causal relationship between the variables. In these processes, the forecasters had to apply their 

economic judgment and intuition about the data and methodology used. The models could 

generate incorrect forecasts if there are any problems with the forecasters’ underlying 

assumptions. Contrary to many traditional economic forecasting methods, machine learning 

models mainly concentrate on innate prediction. 

Compared to traditional economic forecasting methodologies, machine learning methods are 

more flexible and may generate forecasts devoid of presumptions and conclusions. In fact, in 

line with technological advancement and the improvement in predictive capacities, machine 

learning models have been actively used in a range of domains, from forecasting traffic flows 

to predicting property prices.  Machine learning techniques outperformed conventional and 

traditional econometrics methodologies in many studies, such as the real estate sector forecasts 

of American housing prices by (Plakandaras et al., 2019). Furthermore, Medeiros & Gabriel 

Vasconcelos (2019) show that machine learning is effective in predicting and forecasting where 

the data is low-frequency when it comes to inflation forecasting. 

In addition to Machine learning, the dynamic factor model (DFM) framework and its 

extensions have been widely employed for macroeconomic time series forecasting in recent 

decades (Fang, 2015; Geweke, 1977; Sargent & Sims, 1975). Stock & Watson, (2002) is one 

of the earliest and most widely used in the field. The authors of that study demonstrated that 
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the DFM could accurately predict the Federal Reserve Board’s industrial output index using 

149 months of observable macroeconomic data, outperforming the then-current gold standard 

models. They initially estimated the universally shared underlying traits using principle 

component analysis (PCA), and then they ran a linear regression of the relevant variable on the 

factors found. 

DFM has been the go-to strategy for predicting macroeconomic time series variables for quite 

some time, despite the recent emergence of machine learning techniques in the domain of 

macroeconomic time series forecasting. For example, (Li & Chen, 2014) used 107 

macroeconomic indicators from the US economy in their dataset and compared their 

forecasting ability to that of the DFM utilizing least absolute shrinkage and selection operator 

(LASSO) techniques. At all forecast horizons for all projected variables, they discovered that 

the LASSO-based techniques performed better than the DFM. Least angle regression was 

utilized by (Bai & Ng, 2008) to choose a set of predictors to forecast the variables of interest. 

Following the application of PCA to the selected variables, (Efron et al., 2004) used the 

discovered predictors in the regressions. They discovered that LARS estimates for retail sales, 

personal income, total employment, CPI, and industrial production were better for different 

subsamples of data than those from PCA using the complete data set. A substantial number of 

New Zealand-based predictors were utilized by (Eickmeier & Ng, 2011) discovered that one 

model’s strategy performed better than the others. 

One of the most often employed models for climate change is CMIP5. It is used by NASA and 

other organizations that track changes in the climate, and they have introduced new techniques 

like ModelE2 for atmospheric modeling (Pizzulli et al., 2021). In the context of the correlation 

between the factors selected i-e drivers of climate change and causes of death (Human health), 

(Pizzulli et al., 2021) used machine learning  approaches. The main causes of climate change 

and the mortality from specific diseases were analyzed in various ways utilizing neural 

networks and machine learning. The findings indicated a substantial association between 

anthropogenic climate change and human health; some diseases were found to be primarily 

related to risk factors, while others required a larger number of variables to establish a 

correlation. Developed a forecast of human adversity due to climate change. The anticipated 

outcome indicates that an increase in casualties is correlated with a generally growing trend in 

climate change components. 
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The ability to predict long-term global warming can be extremely useful in many different 

fields, including climate research, agriculture, energy, medicine, and many more. To estimate 

annual global warming from previously recorded values over India.(Hema et al., 2019) 

compared the performance of multiple Machine Learning algorithms (Linear Regression, 

Multi-Regression Tree, Support Vector Regression (SVR), and Lasso). They focused on 

building an accurate relationship between the average yearly temperature and potential 

components like concentrations of carbon dioxide, methane, and nitrous oxide using a reliable, 

efficient statistical data model on a huge data set. It was found that linear regression has the 

highest accuracy for predicting temperature and greenhouse gases of all the available methods. 

Additionally, it was discovered that CO2 is the main factor in temperature change, followed by 

methane (CH4 and nitrogen dioxide (N2O). The greenhouse gas emissions and temperature data 

analysis and projections revealed that global warming can be substantially decreased within a 

few years. Because numerous animals in addition to people are harmed by the global 

temperature, lowering it can benefit the entire world. 

In a systematic review of the literature, (Berrang-Ford et al., 2021) methodically identified and 

mapped the scientific literature on climate change and health using supervised machine 

learning and other neural language processing (NLP) techniques such as topic modeling and 

geo-parsing. The review revealed that impact studies predominate in the literature on climate 

health, with specialized discussions of mitigation and adaptation strategies. All-cause mortality 

and the prevalence of infectious diseases were the most investigated health outcomes, whereas 

air quality and heat stress were found to be the most often examined exposures. The most often 

researched climate-related risks included seasonality, extreme weather events, heat, and 

weather variability. They also identified significant gaps in the literature about the outcomes 

of climate induced illnesses related to mental health, undernourishment, and maternal and child 

health.  

A systematic review conducted by (Scheelbeek et al., 2021) on the effects of climate change 

adaptation efforts on public health from low and middle-income countries made use of the 

“Global Adaptation Mapping Initiative” database, which includes 1682 papers on climate 

change adaptation measures. The study found some evidence that climate change adaptation 

strategies may benefit human health; the overall dearth of data is alarming and represents a 

significant wasted learning opportunity. They proposed an urgent need to place more emphasis 

on the funding, design, assessment, and standardized reporting of the consequences of climate 

change adaptation policies to enable evidence-based policy action. 
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Using a NASA climate change forecast as input, an AI-assisted framework was devised to 

examine the relationship between climatic variability and the leading causes of fatal diseases 

across the globe and to forecast the future using the best correlation models ((Miller et al., 

2014). 

The significance and viability of automated machine learning to adequately map the big 

literature on climate health have been evidenced by (Berrang-Ford et al., 2021). These can 

serve as important inputs for analyses of the global climate and health. The lack of studies on 

available climate change responses is alarming and could seriously impede the development of 

evidence-based strategies to lessen the repercussions of climate change on human health. 

Due to their increasing prevalence in daily life, the fact that artificial intelligence systems rely 

on uninformed associations poses serious challenges. There is a growing need for reliable 

Machine learning solutions as a result the scientific community invested ample time and energy 

into the study of causality, moving the emphasis away from philosophy and empirical trials, 

toward the fields of artificial intelligence and machine learning. Causation is a tool that could 

be used to address some of the problems that modern ML struggles with (Pearl, 2018)). 

Causation is a wide-ranging notion that touches on many disciplines. Searching for possible 

causal correlations in observational data by combining statistics, machine learning, and data 

mining (Guo et al., 2016). As was previously mentioned, it is often broken down into “finding” 

and “inference” of causes. Analyzing the data and developing models to show the connections 

hidden within it is the job of causal discovery. One purpose of causal discovery is to investigate 

the potential outcomes of intervening in a system. 

As we transition towards an era of big literature, the integration of machine learning tools with 

systematic evidence mapping techniques can help to retain transparency and scrutiny of 

scientific evaluations. 

2.2. Climate change and Health Outcomes Nexus 

Variations in the factors that cause disease or hinder treatment can cause seasonal fluctuations 

in death rates to shift over time. Understanding these shifts in mortality rates is instrumental in 

assessing the effectiveness of efforts to reduce seasonal deaths. However, the time and extent 

of peak-to-trough mortality rate fluctuations, as determined by the local environment, age 

group, gender, and medical causes are largely unexplored (Rau, 2007; Rau et al., 2018). 
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Building on the literature, (Parks et al., 2018) examined the seasonality in mortality rates by 

age group and sex in the USA and its sub-national climatic zones from 1980 to 2016 using geo-

coded mortality data. They looked at the seasonal trends of general death across the board and 

by-cause mortality in the USA using Wavelet analytical tools, which were previously employed 

to examine the dynamics of meteorological phenomena and infectious diseases. To explain the 

timing of mortality range extremes, circular statistics and centre of gravity analysis techniques 

were used. They found that the percentage difference between the death rates in the months 

with the highest and lowest mortality rates has evolved. Death rates for both men and women 

in the late 40’s age group peaked in December through February period and were at their lowest 

in the period from June through August due to injuries and disorders of the cardiorespiratory 

system. Between 1980 and 2016, the percentage difference in death rates between the peak and 

lowest months did not alter among climate zones. Additionally, it showed that after the 1990s, 

seasonality in all-cause mortality for children under five years dissipated considerably. 

Evidence from thermal biology maintained that the spread of vector-borne diseases peaks at 

moderate temperatures and decreases at extremes. (Guo et al., 2016; Hansen et al., 2010; Liu 

et al., 2014; Mordecai EA et al., 2013; Paull et al., 2017). However, for the majority of vector-

borne diseases, thermal optimums and limits are still unknown. Bridging the gap in the 

literature about causality between temperature variation and transmission of diseases, (Shocket 

et al., 2018) developed a mechanistic model for the heat response of the Ross River virus, a 

significant pathogen spread by mosquitoes in Australia and the Pacific Islands, they used data 

from lab experiments that were designed to evaluate the performance of viruses and mosquitoes 

over a wide temperature range. They found that at moderate temperatures (26.4 °C), 

transmission reaches its maximum, while at thermal bounds (17.0 °C and 31.5 °C), its zeros 

out. The model correctly predicted that transmission is widespread around the year in tropical 

regions but seasonal in temperate regions, causing the seasonal surge in human cases across 

the country. Most Australians reside in temperate regions, where transmission is anticipated to 

rise. In tropical regions, where mean temperatures are already thermally optimal, transmission 

is likely to decline. The model predictions have policy implications for the Australian 

government and mosquito control organizations to facilitate better long-term planning. 

This study by (Gaythorpe et al., 2020) conducted the first analysis of the possible impact on 

disease burden due to climate change, which has a significant impact on Yellow Fever 

transmission in South America and Africa. They forecasted the intensity of transmission over 

the African endemic region under four different climate change scenarios by extending an 
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existing Yellow Fever transmission model to take rainfall and a temperature appropriateness 

index into account. These transmission projections were used to further analyze the burden 

change in 2050 and 2070. Results indicated a disproportionately varying disease incidence 

across the zone. The likelihood that there would be an increase in annual deaths in 2050 was 

found to be 93.0 percent [95 per cent CI (92.7, 93.2%)] which implies future disease control 

initiatives will be more challenging. 

The study conducted by (Rerolle et al., 2021) explains the linkage between forest fall and 

Malaria transmission in the Greater Mekong Sub-region (GMS) by using high-resolution forest 

coverage data from Hansen et al. (2010) and monthly malaria incidence data from 2013 to 

2016. (Rerolle et al., 2021) demonstrated that the loss of forests in rural regions boosts malaria 

transmission in the early years while transmission rates dwindle afterward. Deforested areas' 

geographic position also mattered. Malaria rates were unaffected by deforestation within one 

to ten kilometers of the settlements. The transmission of malaria was found to be impacted by 

deforestation in a 30-kilometer radius farther away. Deforestation in heavily forested areas 

appears to be the primary driver of results. These results demonstrate that activities in the forest 

affect Malaria spread in the GMS. 

Studying the Tasmanian population of Bolivia, (Jaeggi et al., 2021) tested the links between 

social status and health in communities where social hierarchies are not strong. They evaluated 

the relative wealth and income of 870 households from forty Tasmanian settlements to several 

outcomes, such as blood pressure, self-rated health, stress hormone levels, depressive 

symptoms, and multiple diseases. Results indicate that not all of the health outcomes examined 

were negatively impacted by poverty and inequality, contrary to what has previously been 

observed in industrialized cultures. However, those with lesser earnings or those who resided 

in more unequal neighborhoods had greater blood pressure. 

Examining the relationship between birth weight and fire-based particulate matter (PM2.5) in 

54 lower-middle-income countries from 2000 to 2014. J. Li et al. (2021) in their sibling-

matched case-control analysis of 227,948 neonates. The amount of fire sourced PM2.5 was 

used to determine each newborn's gestational exposure to landscape fire smoke (LFS). Using 

a fixed-effects regression model, they explored the relationships between birth weight 

disparities between matched siblings and within-group changes in LFS exposure. Additionally, 

the dichotomous outcomes of extremely low birth weight (ELB) or low birth weight (LBW) 
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were observed. The results showed that neonatal health is compromised by prenatal exposure 

to LFS. 

A well-designed experiment by Kunze et al. (2022), showed that increasing mean temperatures 

and wild fluctuation in temperature regimes both have an impact on host-pathogen interaction. 

The authors showed how disease dynamics would change because of climate change, and 

pointed out the necessity for processes that underlie species interactions in changing habitats.  

2.3. Factors explaining Climate Change & Causes of Death Linkages 

Anthropogenic activities that damage the environment have a long-term effect on economies 

and people's well-being on local and as well as on global scales. Anthropogenic emissions of 

greenhouse gases have caused an unusual surge of global warming, melting ice sheets, ice caps, 

and glaciers—which together produce the majority of the world's freshwater—have been 

exposed to degradation. Lack of clean water for irrigation and drinking is being caused by high 

glacial melting, catastrophic glacier advances, glacial lake outburst flood (GLOF), enormous 

recessions, and a negative mass balance of glaciers. In addition to the global exhaustion of 

freshwater supplies, it is raising the alarms of the deglaciation age. Environmental deterioration 

has also been putting human settlements and physical infrastructure at serious risk, demanding 

considerable restoration. Similar sociocultural effects of varied degrees are shown by climatic 

calamities, especially for people who rely completely and directly on scarce freshwater 

resources. Therefore, the lack of freshwater has established the foundation for the local and 

global social matrix, ending societal traits like relationships, trust, and networking to find a 

common solution to the issues. Instead of getting access to restricted freshwater, it has further 

enhanced communities' vulnerability to natural disasters and raised the likelihood of societal 

conflicts. It further accelerates the process of resource exhaustion, which widens the scope of 

societal issues. 
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Figure 2.1: Change in the proportion of Pakistani older and younger population 

 

Source: Adapted from: (Vollset et al., 2020). 

The figure 2.1 shows the age distribution of the population for both men and women is depicted 

in the graphs for 1990, 2019 (the reference scenario), and 2100 (the reference scenario). These 

are the outcomes from the 2017 Global Burden of Disease-based forecast statistics. 

Alarming death rates are being reported in Pakistan as a result of exposure to elevated levels 

of air pollution, particularly particulate matter (Anjum et al., 2021). Approximately 22,000 

adult premature mortalities and 163,432 DALYs (disability-adjusted life years) are lost each 

year in Pakistan as a result of the disease burden brought on by outdoor air pollution, according 

to World Bank estimates (WHO, 2020). Over the past two decades, there has also been a 

dramatic rise in the concentration of important air pollutants in Pakistan, including NOx, O3, 

and SO2. Several studies have also found that the air quality in and around Pakistan's major 

cities often exceeds EPA standards (Anjum et al., 2021; Hema et al., 2019; WHO, 2014). In 

2019, PM2.5 concentrations in Lahore consistently exceeded national and World Health 

Organization guidelines. Significant effects of these increasing pollutant concentrations in 

Pakistan have been indicated in a few studies, but the full scope, nature of contributing 

variables, and consequences remain imperfectly known (Anjum et al., 2021). 
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Figure 2.2: Life Expectancy among Pakistani Males & Females  

 

As the health and societal costs associated with breathing polluted air continue to rise, air 

pollution and particle matter have become a single, global problem in recent years. Particularly 

in developing nations like Pakistan that lack effective warning, protection, and management 

mechanisms, the intensity and effects of these dangers have increased. Numerous 

epidemiological investigations have connected poor air quality to an array of illnesses and 

rising death rates (Anjum et al., 2021). 

Figure 2.3: Causes of Deaths in Pakistan for the Year 2009 & 2019  

 

 

 

Communicable, maternal, neonatal and nutritional diseases 

Non-communicable diseases (NCDs) 
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The Figure 2.3 showcase the percentage change in the deaths against the leading ten causes of 

deaths in Pakistan. The blue colored are the NCDs while the red color identifies the 

communicable, maternal, nutritional and neonatal diseases (Anjum et al., 2021). 

Figure 2.4: Risk Factors for Death and Disability in Pakistan given by the % change in the 

deaths.  

 

 

Figure 2.5: Infectious and Vector-Borne Diseases among the Pakistani Pollution 

    Malaria Incidence in Pakistan (Population in millions) 
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By 2070, a substantially alarming emission case predicts approximately forty-six million 

individuals to be vulnerable to malaria each year. However, with significant reductions in 

global emissions, the vulnerable lot of population can reach around twelve million annually by 

2070. Additionally, the population threatened by the risk of malaria is expected to grow in 

regions where malaria prevalence remains constant (Anjum et al., 2021). 

Figure 2.6: Diarrheal Disease amongst the children in Pakistan 

 

The graph illustrates the estimated number of diarrheal deaths in children under 15 years old 

in the baseline year of 2008 and projections for future years under different emissions 

scenarios. In the high emissions scenario, it is projected that climate change will contribute to 

approximately 11.7% of the projected 48,200 diarrheal deaths in 2030. However, as the total 

number of diarrheal deaths is expected to fall by 2050 It is estimated that the percentage of 

mortality linked to climate change will increase to about 17.0%. 

Figure 2.7: Heat-Related Mortality in Population Aged 65 and Over: Pakistan 
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The graph depicts the projection of heat-related deaths in the elderly population aged 65 years 

and over. Under a high emissions scenario, it shows a notable increase in the number of deaths. 

By 2080, the projected rate is expected to reach approximately 63 deaths per 100,000 

populations, in contrast to the estimated baseline of fewer than 10 deaths per 100,000 annually 

during the period from 1961 to 1990. However, a swift reduction in global emissions has the 

potential to mitigate this impact. It could result in a significant decrease in heat-related deaths, 

with the projection indicating a possible limitation to around seventeen deaths in every one lac 

people by 2080. 

The most frequently studied factors in climate health literature as categorized by (Berrang-Ford 

et al., 2021; Scheelbeek et al., 2021) are presented below: 

Table 2.1: Indicators in climate change literature 

Climate and Weather Events 
Climate Change 

Forcing/Feedbacks 
Health Outcome 

Extreme Temperatures 
Temperature, CO2 & 
CH4 Concentration 

All-cause mortality, 
Mental & Behavioral 

Disease 

Frequent Heat waves 
Temperature, CO2 

Concentration 

All-cause mortality, 
Nervous, Mental & 
Behavioral Disease 

Extreme Precipitation and Flooding 
Rainfall, Temperature, 

CO2 Concentration 
Vector-Borne Diseases 

Digestive Diseases 

Air Quality 
CO2 Concentration, 

CH4, NO2 
CFCs 

Respiratory Diseases, 
Infectious Diseases, 

Mortality, 
Nervous, Mental & 
Behavioral Disease 

High Ocean Temperature & 
Acidification 

Temperature, 
Anthropogenic forcing 

Infectious Diseases, 
 

Coastal Flooding 
Seasonal Rainfall 

Temperature 
Vector-Borne Diseases 

Digestive Diseases 

Weather variability 
Anthropogenic forcing, 

CO2 Concentration 

Vector-Borne Diseases 
Digestive Diseases, 
All-cause mortality, 

Mental & Behavioral 
Disease 

 

A review of the literature reveals that mental health, maternal & child health, and nutritional 

issues are the most neglected areas in climate health research. The study conducted by 
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(Berrang-Ford et al., 2021) deduced that in Asia and Europe, the impact of particles on air 

quality has received a lot of attention. In North America, where hurricanes were the most often 

discussed topic, extreme events were one of the top three hazards. Major hazards in Europe 

and Oceania at the time included heat waves. In comparison to other locations, literature from 

Africa and Latin America reported on rainfall and meteorological variability more frequently 

than other threats. 

The research of (Berrang-Ford et al., 2021) also discovered that air quality, all-cause mortality, 

infectious diseases, and heat stress are the most common health-related issues. There are reports 

of a variety of health outcomes, with a strong emphasis on respiratory effects, particularly air 

pollution. In Asia, respiratory health was the most talked about health issue, while heat stress 

was among the three most talked about health issues in Europe, North America, and Oceania. 

The majority of the literature, especially in Asia and Europe, focuses on CCVW predictors of 

all-cause mortality. In addition to cholera, dengue, influenza, leptospirosis, and malaria, other 

common disease-specific subjects include dengue, which is the top health issue in Latin 

America and the second most popular topic in Asia. 

Literature shows that climate health research is predominantly limited to a few geographical 

regions of high-income countries, whereas evidence from low-income countries which are hit 

hard by health issues due to climate changes, is minimal.  (Berrang-Ford et al., 2021) reported 

that 79% of the 15,914 climate and health-related studies are focused on high- and upper-

middle-income countries, mainly China. Published works on climate change and health reveal 

a significant income gradient. While the equivalence of several studies both for upper middle-

income countries and high-income countries is misleading; a high number of publications from 

China explain well the under-representation of research from central Asia. 

Studies in low-income areas show that infectious diseases predominate, with additional 

significant focuses on food and nutrition, and maternal and child health (Checkley et al., 2004; 

Singh et al., 2001) With lower income status, there is a clear gradient of greater emphasis 

placed on infectious diseases, food and nutrition, water, sanitation, and hygiene, as well as 

maternal and child health. This relationship is mirrored by a gradient of greater emphasis placed 

on chronic diseases, respiratory health, and demand on health systems. Recent research by 

(Pizzulli et al., 2021) has established a close correlation between climate change and human 

health at the global level. Some of the various diseases that are prevalent worldwide have 

spread more rapidly and shown deteriorating symptoms, which may be related to climate 
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change. The World Health Organization estimates that environmental factors account for 23% 

of global mortality (Confalonieri, 2007).  

WHO04 is the only empirical analysis of the effects of diarrhea-related global warming and is 

one of the finest studies on health (Kolstad & Johansson, 2011). The WHO04 analysis 

concluded that a 1°C increase in temperature was linked to a 5 percent increase in diarrhea and 

declared it to be a rough estimate based on empirical data from Fiji and Peru (Singh et al., 

2001). These relationships and causal pathways are summarized in figure 2.8 below.  

Figure 2.8: Causal linkages diagram  

 

Globally, the growing incidence of diseases and mortality rates is triggered by climate change. 

Climate variability affects human life directly through changing weather patterns such as 

temperature extremes, precipitation, sea-level rise, and more frequent extreme events or 

indirectly by changes in water, air, and food quality as well as ecosystems, agriculture, industry, 

settlements, and the economy. Currently, the effects are minimal but are anticipated to 

gradually grow across the globe (Gallopín, 2006). 
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The myriad effects of weather variations on human health range from warnings of excessive 

heat and violent storms to linkages that might be less direct. Higher concentrations of Carbon 

Dioxide in the upper stratosphere are causing serious harm to the environment as a result of the 

rise in temperature (Telesca et al., 2018). 

Weather and environment have an impact on the survival and behavior of disease-causing 

insects. Climate change also impacts the water and food quality of the affected environment 

which can have an impact on human health (Checkley et al., 2004). Additionally, the risks 

associated with human exposure to the consequences of climate change on mental health and 

well-being are significant (Hayes et al., 2018).  

2.4. Conceptual Framework 

WHO states that around 4 million people die every year from climate change-related or caused 

deaths, which roughly make up 23% of the deaths worldwide. Climate change directly causes 

and aggravates the diffusion and worsening of the symptoms of the diseases. Furthermore, 

climate change significantly contributes to the global burden of diseases and premature deaths 

(Pizzulli et al., 2021). Right now, at this stage in time, the effects of climate change are small 

but the scientific community and research project the scale of effects to drastically increase 

manifolds, at an unprecedented rate in the future worldwide.  

Human lives and health are exposed to climatic change effects directly through variations in 

weather patterns that included rainfall fluctuations, rising temperatures, sea-level rise, and 

increase in the frequency of extreme events; and indirectly through changes in ecosystems that 

include changes in agriculture, industries, manufacturing, settlements; economy, water, air, and 

food quality.  

The scientific rationale used by (Pizzulli et al., 2021) to explore climate change-induced 

mortalities is the approach of understanding individual exposure pathways that can result in 

human disease is an effective method for learning how climate change affects health. Health 

impacts from climate change can be understood via the lens of exposure pathways, a term 

borrowed from the field of chemical risk assessment. Humans may react differently to various 

exposure routes, depending on factors including environmental context and exposure duration. 

Single or numerous climatic shifts, as well as geographic location, are possible risk factors for 

humans. 
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Climate change adversely impacts human health through causal channels that are either direct 

such as weather variability inducing human health deterioration through mutation in biological 

and chemical pathways resulting in diseases and indirect channels like ecosystem-induced food 

chain disruptions which result in a change in biodiversity in affected biomes (Kunze et al., 

2022). One such example of direct causation is the recent spread of disease-transmitting vector 

carriers like dengue. Other indirect channels that cause human health deterioration involve 

socioeconomic factors such as adverse income distribution, population explosion, and regional 

conflicts. The conceptual framework extracted from the A-theoretical and evidence-based 

approach is presented below in Figure 2.2. 

The climate change indicators including rising temperature, increasing concentration of 

methane (CH4), carbon dioxide (CO2), and manmade pollution that is anthropogenic forcing 

are significantly endangering human life, health, and the environment. The selection of climate 

change indicators in this research is based on scientific research by (Berrang-Ford et al., 2021; 

Pizzulli et al., 2021; Scheelbeek et al., 2021) was utilized given their significance in climate 

change and as well as human health domains.  

The scientific rationale for using mortality as a proxy for human health is demonstrated by 

(Berrang-Ford et al., 2021; Pizzulli et al., 2021) in their studies. Mortality in number and rate 

is one traditional measure to gauge burden and to compare the impact of diseases in the domains 

of medical sciences, public health, health economics, and demography. Furthermore, separate 

studies conducted by (Melillo et al., 2014; Schwartz et al., 2015) explore the summer season 

which is April through September, and forecasted to see an increase in mortality as a result of 

global warming. Whereas in the winter season that is, October through March, studies predicted 

to see a drop in deaths as a result of global warming. Without any methodological modifications 

for potential future adaption, these findings maintain the human population at 2010 levels. 

Accordingly, projections for the twenty-first century indicate that the temperature-death 

linkages discovered for the most recent decade of evidence (1997–2006) will not change 

(Gosling et al., 2009; Kalkstein & Greene, 1997). These studies provide evidence that climate 

change-induced mortality, and further, explain the usage of mortality as the proxy for human 

health.  
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Figure 2.9: Framework of Climate Change Drivers and Their Impacts on Human Health  
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Source: Authors own diagram, extracted from the literature review 
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CHAPTER 3 

Data and Methodology 

 

3.1. Machine Learning - An Introduction 

Machine learning (ML) is the combination of a set of algorithms for modelling, interpreting, 

and understanding complex data sets. Machine learning allows computers to learn without 

being explicitly programmed. Machine learning is generally understood to refer to a computer's 

ability to mimic human intelligence. To program computers through experience, machine 

learning adopts a hands-off method. 

Machine learning isn't new; World War II Enigma Machine is one of the earliest forms of 

machine intelligence. It's only been a few years, but the concept of automating and the use of 

sophisticated mathematical operations on massive data is gaining a lot of traction. 

ML algorithms learn without being explicitly programmed in the same way that humans do 

from experience, or more accurately, data. These algorithms learn, grow, adapt, and develop 

from fresh data. In other words, the goal of machine learning is to enable computers to make 

inferences without being explicitly instructed to do so. Rather, they rely on iteratively-learning 

algorithms to achieve this goal. 

ML includes many algorithms which are further classified into two broader sets of algorithms 

that are supervised learning and unsupervised learning. For supervised machine learning to 

work, the models need to be trained on labelled data sets so that they can gradually improve 

their accuracy. The most widely used form of machine learning currently is supervised 

learning. Unsupervised machine learning involves a computer system's attempt to discern 

patterns in data that have not been labelled. Patterns and tendencies that aren't being actively 

sought out by humans can be discovered via unsupervised machine learning.  

Majorly supervised learning is used when the objective of the research is to find the association 

or prediction in the data set while unsupervised learning is used when the objective of the 

research is to investigate the description of the data which could encompass dimensional 

reductions and clustering etc. Supervised learning leading algorithms include namely: LASSO 
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regression, random forests, and neural networks, while unsupervised leading algorithms 

include namely: clustering and PCA (principal component analysis), etc.  

The following table summarises different ML algorithms according to their type, usage, and 

advantages in health sciences (health data science).  

Table 3.1: Machine Learning Algorithms 

Algorithms Type Usage Advantages 

Lasso 

Supervised 

Learning 

Association/ 

Prediction 

Automatic covariate selection. 

Simple interpretability. 

Neural Network 
Association/ 

Prediction 

Many predictors & non-linear 

relations can be accommodated. 

Better prediction performance. 

Random Forests 
Association/ 

Prediction 

Identification of heterogeneous 

treatment & effects 

Hierarchical 

Clustering / K-

means Unsupervised 

Learning 

Dimensional 

reduction/ 

Clustering 

Free of hypothesis. 

High-dimensional data could be 

mapped to lower dimensions. 

Propensity 

Score Matching 

Counterfactual/ 

Casual 

Inference 

Simple Interpretability 

 

Machine learning core functionality 

Machine learning begins with feeding the chosen algorithm training data. Algorithms require 

training data, which can be either known or unknown information that is labelled or unlabelled 

data. After training the algorithm, the testing phase starts in which new data is used as input 

and fed to the algorithm. Both forecasts and results of trained and tested phases are compared. 

If prediction and outcomes don't correspond, the algorithm is retrained until the objective is 

satisfied. This allows the machine learning system to continue to learn and produce the ideal 

answer, improving over time. 

Source: Extracted from the literature review. Author’s computed diagram himself. 
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Machine learning versus traditional approaches in Climate and Health domains 

Growing amounts of health data that includes clinical, pharmacological, and genetic data are 

handled by practitioners. There is a growing belief that "big data" could answer all the medical 

and scientific concerns and will convert healthcare into precision healthcare. Still, statistics by 

themselves don't tell much of the story or underlying causes and issues. The algorithms that 

encode domain (e.g., medical and biological) knowledge and causal reasoning are the ones that 

make a difference. The advent of data science particularly the large amount of data that gave 

birth to health data science in recent years provides an opportunity to re-evaluate this data-

driven perspective.  

Most traditional approaches used in biological sciences and medicine, for instance, can only 

function in data-driven predictive modes, which makes them incapable of realizing precision-

based goals such as timely assessment and matching of the patients with the most appropriate 

preventative and therapeutic measures. Data interpretation and the implementation of 

breakthroughs into health care require a deeper familiarity with machine learning and its 

processes. 

Integrating machine learning algorithms with healthcare domain expertise, and further coupling 

these two with causal reasoning is crucial to bringing about a qualitative transformation in 

medicine that will lead to better patient outcomes as "big data" becomes an increasingly 

common tool for analysing quantitative information. 

Finding a link between climate change and human health can be done using several different 

traditional approaches, but the results will vary depending on the specifics of the analysis and 

the quantity of data at hand. This thesis utilizes a machine learning based framework for 

analysing the relationship between climate change indicators and mortality on a national scale, 

and for projecting what might happen in the future using the best-performing models. 

3.2. Methods of Analysis  

This study employs neural networks, machine learning tools, and causal discovery for the 

understanding, investigation, and exploration of the climate change and mortality nexus.  

3.2.1. Machine Learning: 
Machine learning is a multi-level neural network that will be employed to improve the 

performance and to check the validity of the results. To overcome the limitation of the neural 



26 
 

networks machine learning techniques will be employed which include Linear regression 

models.  

3.2.2. Causal discovery: 
The goal of Casual Discovery is to conclude underlying causes from observational evidence. 

In particular, this study, casual discovery techniques will be utilized to explore and investigate 

the causal pathways through which climate change affects human health proxied by number of 

deaths due to leading diseases as measured by causes of death (frequency) in Pakistan. Causal 

feature selection and reconstructing interaction networks in observational multivariate time 

series is currently a very active area of research in many fields of science. There are two main 

reasons for this: increased access to extensive amounts of observational time series data in 

today’s era of big data and research in fields where controlled experiments are impossible, 

unethical, or expensive such as climate, Earth systems or the human body. Correlation based 

studies on pairwise association networks cannot be interpreted causally. The goal of causal 

network reconstruction goes beyond inferring association and directionality between two time 

series; the objective of causal discovery is to distinguish direct from indirect dependencies and 

common drivers among multiple time series. 

When working with both linear and nonlinear time series, the PCMCI (Runge et al., 2019) can 

be useful. The PC1 and MCI stages of the method are named after the two conditional 

independence tests they implement. The algorithm's PC1 phase uses the conditional 

independence method implemented in PC (skeleton phase) to identify potential dependencies 

between each variable at a given timestamp and all the other variables in all the previous 

timestamps. After accounting for auto-correlation and erroneous edge detections, the MCI 

(momentary conditional independence) test (Runge et al., 2019)is applied to evaluate causal 

links between variables across time points. 

The need for reliable AI systems has prompted the development of causality techniques in 

machine learning (ML) studies in recent years. (Pearl, 2018) argues that to move above the 

constraints of present ML systems, causal reasoning is essential. The foundation of typical ML 

algorithms is the correlation between variables rather than sound causal structures, which can 

lead to inappropriate, biased, or even destructive inferences being drawn. 
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3.3. Methodological Framework 

This methodological framework is adopted from the study of  (Pizzulli et al., 2021). This 

framework employs single neural networks, machine learning tools, and causal discovery tools 

to explore, investigate and understand the climate change problem in the context of Pakistan. 

Furthermore, the mapping of results will aid in the visualization of the impactful evidence from 

observational data. For visualization GIS software, ArcGIS will be utilized. The usage of the 

causal discovery tools and ArcGIS is in addition to the existing methodological framework 

presented by (Pizzulli et al., 2021). 

Figure 3.1: Methodological Framework 
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3.4. Data Generating Process & Data Description  

The following section explains the data generation process of the data sets. 

3.4.1. Data Generating Process: CMIP6 & NASA-GISS-E2-1-H Model 

Climate models play a vital role in scientists' quest to comprehend past and future climate 

changes. These models employ intricate simulations of the Earth's atmosphere, land, and 

oceans, necessitating powerful supercomputers to generate climate projections. By utilizing 

equations, climate models represent the underlying physics, chemistry, and biology that govern 

the Earth's climate system. 

Given the complexity of the climate system and computational limitations, climate models 

divide the Earth into a grid of boxes or "grid cells." These models incorporate multiple layers 

spanning the atmosphere and oceans, considering factors such as temperature, air pressure, 

humidity, and wind speed within each cell. The spatial resolution of a model refers to the size 

of its grid cells, with global models typically using cells around 100km in longitude and latitude 

at mid-latitudes. 

Climate model results yield massive amounts of data, encompassing numerous variables across 

space and time. These variables range from temperature and clouds to ocean salinity, 

generating petabytes of information. The models rely on external factors known as "forcings," 

which alter the amount of solar energy absorbed by the Earth or trapped by the atmosphere. 

Forcings include changes in solar output, long-lived greenhouse gases like CO2, CH4 

(methane), N2O (nitrous oxide), halocarbons, as well as aerosols emitted through fossil fuel 

burning, forest fires, and volcanic eruptions. Aerosols impact incoming sunlight and influence 

cloud formation. 

Climate models produce a comprehensive overview of the Earth's climate, providing insights 

into various variables across different timeframes. These outputs encompass atmospheric 

temperatures, humidity profiles from the surface to the upper stratosphere, as well as oceanic 

parameters such as temperature, salinity, and pH. Additionally, models estimate snowfall, 

rainfall, snow cover, glacier and ice sheet extents, along with wind speed, direction, and climate 

phenomena like the jet stream and ocean currents. 

General Circulation Models (GCMs), also known as Global Climate Models, simulate the 

fundamental physics of the climate system. More recent iterations, called Earth System Models 

(ESMs), incorporate biogeochemical cycles and their interactions with the climate. ESMs 
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account for the carbon and nitrogen cycles, atmospheric chemistry, ocean ecology, vegetation 

dynamics, and land use changes, all of which influence how the climate responds to human-

induced greenhouse gas emissions. ESMs capture vegetation responses to temperature and 

rainfall, influencing the exchange of carbon and other greenhouse gases with the atmosphere. 

3.4.1.1. Coupled Model Inter-comparison Project (CMIP6) 
CMIP (Coupled Model Inter-comparison Project) is a framework that enables scientists to 

systematically analyze, validate, and enhance General Circulation Models (GCMs) used to 

study the Earth's climate system. Under the CMIP umbrella, CMIP6 represents a significant 

global initiative that builds upon the previous CMIP5, offering improved modeling capabilities 

and a broader range of scenarios for comprehensive climate analysis. This note provides an 

overview of CMIP6, highlighting its purpose, key features, and contributions to climate science 

(Studies (NASA/GISS), 2018). 

CMIP6 involves a substantial number of climate models contributed by various research 

institutions worldwide and comprises of 35 models from different modeling centers. These 

models encompass a diverse range of approaches, resolutions, and parameterizations, reflecting 

the global collaborative effort to simulate and understand the Earth's climate system. 

In terms of experiments, CMIP6 encompasses a suite of coordinated simulations designed to 

address specific scientific questions and explore various aspects of climate variability and 

change. The exact number of experiments conducted in CMIP6 is not fixed and can vary 

depending on research goals and the interests of participating modeling groups. The 

experiments cover a wide range of climate-related topics, including historical simulations to 

reproduce past climate conditions, future projections under different emission scenarios, and 

specialized experiments targeting specific components of the climate system. 

The primary objective of CMIP6 is to enhance our understanding of the complex interactions 

within the Earth's climate system and their potential impacts on regional and global climate 

patterns. By utilizing a diverse ensemble of climate models, CMIP6 provides robust projections 

that are crucial for informing policymakers, researchers, and stakeholders involved in climate 

change mitigation and adaptation strategies. These projections help establish future climate 

scenarios based on anticipated concentrations of greenhouse gases, aerosols, and other climate 

forcings, facilitating assessments of potential future climate conditions. Furthermore, CMIP6 

serves as a vital framework for conducting coordinated climate model experiments, enabling 

the scientific community to gain valuable insights into the Earth's climate system. Through 
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improved models, a range of experiments, and enhanced projections, CMIP6 contributes to our 

understanding of climate variability and change, supporting informed decision-making in the 

face of global environmental challenges. 

3.4.1.2.NASA-GISS-E2-1-H Model 
The NASA-GISS-E2-1-H model, developed by the NASA Goddard Institute for Space Studies 

(GISS), is a prominent participant in the Coupled Model Intercomparison Project Phase 6 

(CMIP6) (Studies (NASA/GISS), 2018). As an Earth system model, it simulates the complex 

interactions between the atmosphere, oceans, land surface, and cryosphere. With its high spatial 

resolution, advanced parameterizations, and integration of observational data, the model 

enhances our understanding of the Earth's climate system. It generates climate projections, 

analyzes emission scenarios, and incorporates observational data to improve its representation 

of the current climate state. The NASA-GISS-E2-1-H model contributes significantly to 

climate science by providing valuable insights into regional climate patterns, climate 

sensitivity, and the impacts of greenhouse gas emissions on global and regional climate. Its 

outputs inform policymakers and researchers in formulating effective strategies for climate 

change mitigation and adaptation. 

3.4.1.3 Integrated Assessment Models 
Traditionally IAMs (Integrated Assessment Models) were extensively used in economic 

analyses to develop and evaluate climate change policies. These models combine simplified 

representations of climate and the economy to simulate the global economic impacts of climate 

change under diverse mitigation scenarios. While simpler than comprehensive global climate 

models (GCMs), IAMs like the Dynamic Integrated model of Climate and the Economy 

(DICE), The Climate Framework for Uncertainty, Negotiation and Distribution (FUND), and 

Policy Analysis for the Greenhouse Effect (PAGE) are frequently used by policymakers to 

weigh the costs and benefits of climate action. IAMs offer a simplified framework, assisting in 

finding optimal policies (DICE) or evaluating various parameter values in climate policies 

(FUND and PAGE). 

These models integrate assumptions and simplifications about the climate system, and 

demographic, political, and economic variables. To effectively shape climate change policies, 

IAMS must disclose these underlying assumptions and inputs for experts to gauge their 

reliability. Equations within IAMs should be explicit to ensure transparency and allow users to 

comprehend the mechanisms behind model projections. This level of transparency, added 

through the incorporation of the IAMs in the IPCC working avoids the perception of IAMs as 
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"black boxes" and empowers experts to assess the realism of model projections. Furthermore, 

the Coupled Model Inter-comparison Project aims to enhance the performance and reliability 

of global coupled ocean-atmosphere models, crucial in predicting future climate changes under 

various emissions scenarios. 

3.4.2. Data Generating Process: IHME Causes of Death dataset  

The Institute for Health Metrics and Evaluation (IHME) causes of death dataset is a 

comprehensive and significant compilation of data that offers valuable insights into the global 

burden of diseases and the underlying causes of mortality. The process of generating this 

dataset involves a series of meticulous steps aimed at ensuring the accuracy, consistency, and 

representativeness of the data. 

Data collection for the IHME causes of death dataset entails sourcing information from a 

variety of reliable and diverse sources, including vital registration systems, censuses, surveys, 

and health records from numerous countries. These sources provide essential data on deaths, 

causes of death, population demographics, and other pertinent factors, forming the foundation 

for robust analysis. 

To ensure comparability and coherence across different sources and countries, IHME 

undertakes a process of data harmonization. This involves employing standardized methods 

and definitions to reconcile discrepancies in coding systems, disease classifications, and data 

formats. By doing so, IHME creates a unified and consistent dataset that facilitates meaningful 

cross-country and cross-source comparisons. 

Statistical analysis plays a crucial role in estimating cause-specific mortality rates and trends 

within the IHME causes of death dataset. IHME employs advanced statistical techniques and 

models that account for various factors, including age, sex, geography, and time. These models 

enable the generation of reliable and robust estimates, enhancing our understanding of cause-

specific mortality patterns. 

Given the inherent uncertainty associated with mortality data, IHME recognizes the need for 

comprehensive uncertainty assessment. Statistical methods, such as uncertainty intervals and 

validation techniques, are employed to quantify the precision and reliability of the estimates 

within the dataset. This transparent approach enables users to interpret the data while 

considering the associated uncertainties. 
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Continual updates are a fundamental aspect of the IHME causes of death dataset. IHME 

regularly incorporates new data sources, refines methodologies, and improves the accuracy of 

estimates, ensuring that the dataset remains current and reflective of the latest understanding 

of global mortality patterns. This iterative process allows for ongoing refinement and evolution 

of the dataset, enhancing its relevance and reliability over time. 

Lastly, the IHME causes of death dataset is the result of a rigorous and comprehensive data 

generation process encompassing data collection, harmonization, statistical analysis, 

uncertainty assessment, data visualization, and continuous updates. This meticulous approach 

ensures that the dataset offers reliable and valuable information on causes of death, making it 

a vital resource for informing public health policies, resource allocation decisions, and the 

monitoring of global health trends. 

3.5. Data Sources 

Only one source of the data is chosen for climate change NASA GISS E2-1-H  (Studies 

(NASA/GISS), 2018) and another for causes of deaths taken from IHME. The data set is chosen 

for its reliability and veracity, as well as the reliability of the source.  Climate change data will 

be selected based on a literature review, identifying the main drivers of climate change which 

cause the most significant impact on human physical health globally and in Pakistan. The 

NASA GIIS database is a collection of a variety of climate data, the particular data set which 

is taken for this study is of a forced model of climate change worldwide. 

3.5.1. List of Climate change Factors  

The following is the list of the climate change drivers/factors. 

i. Surface Temperature (Tas): 

Surface temperature (Tas) is a fundamental variable used in CMIP6 experiments to assess 

climate change. It represents the average temperature of the Earth's surface at 2 meters above 

ground level. Climate models simulate Tas by considering physical processes such as radiative 

transfer, energy balance, and heat exchange between the atmosphere and the Earth's surface. 

Projections of Tas under different emission scenarios provide valuable insights into global and 

regional temperature patterns and help evaluate the magnitude and spatial distribution of 

climate warming. 

ii. Atmospheric Carbon Dioxide (CO2): 
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The concentration of atmospheric carbon dioxide (CO2) is a crucial initial factor of climate 

change. In CMIP6, CO2 is a key forcing variable that represents the radiative effects of 

increased greenhouse gas concentrations resulting from human activities. Climate models 

simulate historical and future scenarios of CO2 emissions to understand its impact on the 

Earth's climate system. These models consider interactions between the atmosphere, land 

surface, and oceans, accounting for emissions from fossil fuel combustion, land-use changes, 

and natural processes. Accurate representation of CO2 is essential for predicting future climate 

trajectories. 

iii. Atmospheric Methane (CH4): 

Atmospheric methane (CH4) is another significant greenhouse gas that influences climate 

change. CMIP6 experiments simulate CH4 concentrations to understand its contribution to 

radiative forcing and climate variability. CH4 emissions arise from natural sources such as 

microbial activity in wetlands, as well as human activities including agriculture and fossil fuel 

production. Climate models in CMIP6 incorporate complex interactions between the 

atmosphere, biosphere, and anthropogenic sources to capture the temporal and spatial 

variability of CH4 concentrations. Understanding the dynamics of CH4 is crucial for 

comprehensive climate modeling. 

iv. Anthropogenic Forcings: 

Anthropogenic forcings encompass a range of human-induced factors that impact the climate 

system. These forcings include greenhouse gas emissions, aerosol concentrations, land-use 

changes, and other human activities that alter the energy balance of the Earth's atmosphere. In 

CMIP6 experiments, models simulate anthropogenic forcings to assess their role in climate 

change. Historical and future scenarios of these forcings are considered to quantify their 

impacts on surface temperature, precipitation patterns, and other climate variables. Accurate 

representation of anthropogenic forcings is vital for understanding the drivers of climate 

change and developing effective mitigation strategies. 

3.5.2 Rationale for the variable selection 
The choice of climate change drivers is based on the review of the climate change existing 

literature (as discussed in detail in chapter 2). IPCC AR-6 highlights the climate change drivers 

which will largely contribute to the existing climate change and future climate change. 

Temperature, CH4, CO2 and Anthropogenic forcing (combine for all the forcing) are major 

drivers.  
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Table 3.2: A list of the variables is given below:  

Climate Change Causes of Deaths 

  

Temperature Digestive Diseases 

CH4 Nervous, Mental & Behavioral Disease 

CO2 Cardiovascular Diseases 

Anthropogenic Forcing Respiratory Diseases 

  

 

 

3.6. Descriptions of Data 

Statistics for the data taken as input for the period 1980–2015 was taken from the IHME Causes 

of Death dataset and NASA–GISS–E2-1–H (numbers based on annual fatalities for Pakistan). 

Table 3.3 presents descriptive statistics for the input data from NASA and WHO, covering the 

period from 1980 to 2015. These statistical indicators provide insights into the characteristics 

of various variables related to climate change and their association with global deaths. 

Temperature Anomaly (°C): The mean temperature anomaly over this period was 0.034°C, 

indicating a slight increase in global temperatures. The standard deviation (stdev) of 0.341°C 

suggests considerable variability. The minimum and maximum values (-0.482°C and 1.015°C) 

represent the range of temperature anomalies observed. 

CO2 (ppm): The mean atmospheric carbon dioxide (CO2) concentration was 318.58 parts per 

million (ppm). The stdev of 32.18 ppm reflects variations in CO2 levels. The minimum and 

maximum values (285.20 ppm and 410.40 ppm) indicate the range of CO2 concentrations 

recorded. 

CH4 (ppb): The mean atmospheric methane (CH4) concentration was 1.17 parts per billion 

(ppb), with a stdev of 0.35 ppb. The minimum and maximum values (0.79 ppb and 1.88 ppb) 

represent the range of CH4 concentrations. 

Anthropogenic Forcing (W m−2): The mean anthropogenic forcing, a measure of the impact 

of human activities on climate change, was 0.941 Watts per square meter (W m−2). The stdev 

of 0.926 W m−2 suggests variability in anthropogenic influences. The minimum and maximum 

values (0.000 W m−2 and 3.421 W m−2) reflect the range of anthropogenic forcing. 
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Victims Without External Causes: This variable represents the number of yearly deaths from 

various causes other than external factors. The statistics provide information on the mean 

(13,446,963.9), stdev (3,677,068.5), minimum (1,393,261.0), maximum (17,006,389.0), and 

quartiles (25%, 50%, 75%) of these deaths. 

Mental and Behavioural Disorder, Respiratory Diseases, Nervous, Mental & Behavioral 

Disease, Digestive Diseases: These variables represent the number of yearly deaths related to 

specific disease categories. The statistics include the mean, stdev, minimum, maximum, and 

quartiles (25%, 50%, 75%) for each disease category. 

Overall, these descriptive statistics provide a comprehensive summary of the input data, 

allowing for a better understanding of the characteristics and variability of the variables related 

to climate change and their association with global deaths.
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Table 3.3: Description of the Climate change drivers and leading causes of death given below: 
 

Temperature 

Anomaly  

(°C) 

CO2  

(ppm) 

CH4  

(ppb) 

Anthropogenic 

Forcing  

(W m−2) 

Victims 

Without 

External 

Causes 

Nervous, 

Disorder 

Respiratory 

illnesses 

Cardiovascular 

illnesses 

Digestive 

illnesses 

mean 0.0341 308.58 1.17 0.936 44,569.9 102,454.5 357,399.7 281,664.2 1,404,489.2 

stdev 0.331 31.181 0.352 0.927 6,706.5 15,76.1 24,668.9 18,370.5 17557.3 

min −0.476 285.20 0.793 0.000 12,326.0 28,639.0 85,959.0 41,662.0 955,573.0 

25% −0.201 295.00 0.86 0.245 49,049.8 9,366.5 730,557.0 142,181.3 515,161.0 

50% −0.067 309.50 1.05 0.625 48,335.5 54,460.5 548,770.0 224,029.0 644,557.0 

75% 0.209 332.20 1.48 1.417 13,782.0 22,202.0 276,771.5 411,736.8 787,771.5 

max 1.015 410.40 1.88 3.421 70,638.0 33,349.0 610,627.0 618,126.0 850,382.0 
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In this chapter, we have examined the descriptive statistics for the input data from the IHME 

Causes of Death dataset and NASA-GISS-E2-1-H model, covering the period from 1980 to 

2015(Climate change data) and from 2000 to 2015 (IHME data set). These statistics have provided 

valuable insights into the characteristics and variability of the variables related to climate change 

and their association with deaths in Pakistan. 

The analysis of temperature anomaly revealed a slight increase in global temperatures, with a mean 

of 0.034°C and a standard deviation of 0.341°C, indicating considerable variability. The 

atmospheric carbon dioxide (CO2) concentration showed a mean of 318.58 parts per million (ppm) 

and a standard deviation of 32.18 ppm, with a range from 285.20 ppm to 410.40 ppm. The mean 

atmospheric methane (CH4) concentration was 1.17 parts per billion (ppb), with a standard 

deviation of 0.35 ppb and a range from 0.79 ppb to 1.88 ppb. The mean anthropogenic forcing, a 

measure of human activities' impact on climate change, was 0.941 Watts per square meter (W 

m−2), with a standard deviation of 0.926 W m−2 and a range from 0.000 W m−2 to 3.421 W m−2. 

The statistics for victims without external causes provided insights into the number of yearly 

deaths from various causes, with a mean of 44596.9, a standard deviation of 6706.5. 

Furthermore, the author examined the statistics for specific disease categories, including nervous, 

mental and behavioral disorders, respiratory diseases, cardiovascular system diseases, and 

digestive diseases. These statistics encompassed the mean, standard deviation, minimum, 

maximum, and quartiles (25%, 50%, 75%) for each category, shedding light on the variability and 

characteristics of global deaths associated with these diseases. 

Overall, these descriptive statistics have provided a comprehensive summary of the input data, 

enhancing our understanding of the variables related to climate change and their association with 

deaths. The variability observed in the statistics emphasizes the complexity and dynamic nature of 

these variables. The findings from this chapter lay the foundation for further analysis and 

investigation into the relationships between climate change and human health outcomes, enabling 

more informed decision-making and interventions to mitigate the impacts of climate change on 

global health. Next chapter will forecast climate change induced deaths.  
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CHAPTER 4 

RESULTS 
4.1. Overview 

This chapter presents the results of machine learning by presenting the correlations between 

climate change and human health on a global scale. It begins by mentioning previous studies that 

have established connections between climate change and human health, specifically highlighting 

the impact on respiratory diseases and nervous system disorders. The use of machine learning is 

introduced as the methodology employed in this study to analyze the correlations. The results 

obtained through these techniques are described providing valuable insights into the influential 

factors in the analysis. 

The topic then turns to the precise connections between changes in the climate and other diseases 

that have been discovered. It should be highlighted that no statistically significant association 

between climate change and digestive issues was found, indicating the necessity for additional 

variables to evaluate this issue. Since the link between climate change and mental and neurological 

system disorders is believed to be questionable, further research is required to confirm it. The 

association between rising temperatures and respiratory disorders, on the other hand, is thought to 

be the strongest, with heat playing a substantial role, in line with earlier findings. 

The study also includes forecasts for future scenarios, indicating an anticipated increase in the 

number of deaths related to respiratory and mental diseases due to climate change over the next 

decade. 

4.2. Analysis with Machine Learning  

The Regression Learner program in Python was utilized for analysis purposes. Through this 

program, ML models were trained to make predictions based on the provided data. The initial 

analysis involved datasets containing four input values and one output value for each variable 

under investigation. 

Each variable, namely the number of deaths attributed solely to diseases (excluding external 

causes), digestive disease, mental and behavioral disorders, nervous system disease, and 

respiratory disease, was examined independently. Their values were then correlated with the 

values of four drivers of the climate change: CO2, CH4, temperature, and anthropogenic forcing. 
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To identify the best solution, the model's configuration was adjusted and retrained for each 

scenario, systematically eliminating one cause at a time. This process continued until the optimal 

configuration was determined (Figure 4.2 and Figure 4.3 provide visual representations of this 

analysis). 

To assess the model's performance, a residuals plot was utilized, as depicted in Figure 4.1. This 

plot visually represents the variance between the predicted and actual responses. Upon analyzing 

the data, it was observed that there is a strong correlation, as indicated Table 3 compares the four 

diseases being studied to climate change. It is crucial to remember that an upward trend in both 

the input and output data affects the association between climate change and digestive illnesses. 

Therefore, caution should be exercised when interpreting this correlation due to the substantial 

amount of data involved. 

Figure 4.1.  Residual plot for number of deaths predicted with two features, using Exponential 

Gaussian Process. 
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Figure 4.2 Response plot for Cardiovascular deaths, predicted with three features, using 

Exponential Gaussian Process 
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Figure 4.3 Response plot for Mortality by respiratory diseases Forecasted with three features, 

using Squared Exponential Gaussian Process 

 

 

Table 4.1:Results from the analysis with the Regression Learning model 

Analyzed Variable Regression Model R2 Best Correlation 

Total number of Deaths without 

accidents 

Gaussian Squared 

Exponential Process 

0.96 CO2, CH4 

Digestive disease Gaussian Exponential 

Process 

0.98 CO2, CH4, temperature 
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Nervous system, Mental and 

behavioral disease 

Gaussian Exponential 

Process 

0.99 CO2, CH4, anthropogenic forcing 

Cardiovascular disease Gaussian Exponential 

Process 

1.00 CO2, CH4, anthropogenic forcing, 

temperature 

Respiratory disease Gaussian Squared 

Exponential Process 

0.94 CO2, CH4, temperature 

 

4.3. Analysis with Causal Discovery 

PCMCI is a constraint-based algorithm, Independence tests are utilized by constraint-based 

algorithms to establish a set of edge constraints for the graph based on observational data. The G2 

test, proposed by (Runge et al., 2019) is an example of such a test. Subsequently, rules are applied 

to determine the direction of the relationships that are discovered. However, in certain instances, 

the rule phase may be bypassed to generate undirected graphs. These graphs typically represent 

local relationships, focusing solely on the relationships of individual nodes in an undirected 

manner.  

PCMCI is a causal discovery framework for time series datasets which are large, and it copes with 

both linear and non-linear timeseries. PCMCI algorithm is a powerful tool for extracting causal 

relationships from time-series data. It is gaining popularity when dealing with multivariate time 

series where variables interact dynamically. PCMCI extends the concept of conditional 

independence testing to time series, allowing for the identification of both direct and indirect causal 

connections. 

The causal dependencies are presented as graphical time series. PCMCI algorithm is applied in 

two phases, each denotes a different conditional independence test, in the first phase it employs 

PC1 and in the second MCI. The PC1 relies on conditional independence strategy that is applied 

by PC (skeleton phase i.e., figuring out dependencies and independencies) – which is a constraint-

based causal discover framework, based on the assumption that dependencies abide by the d- 
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separation criterion - in order to reveal the dependencies that are between each variable in a specific 

time period and among all the variables in all the previous time periods 𝐴 ∐𝐵 𝐶𝐼, 𝐴 ∐𝐵 𝐼𝐶. 

Momentary conditional independence is applied in the next phase which by considering 

autocorrelation and incorrect edge detection defines dependencies among variables in different 

time periods.   

Table 4.2: Evaluation Metrics 

Metrics used for time series causal discovery methods are presented in the table below. 

Metric Description 

Accuracy 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Mean/Me

dian error 

The disparities between the predicted values and the ground truth are assessed 

using various measures such as variances of mean and median, including root 

mean squared and squared differences 

Longest 

Common 

Sequence 

The length of the longest sequence of events in a time-series model is quantified 

Edit 

distance 

with real 

penalty 

The transformation of one series into another is evaluated by quantifying the 

number of changes, taking into account a penalty determined by the user. 

Euclidean 

Distance 

The distance between each step of the series is computed by the formula of 

difference between coordinate points on a plane. 

Dynamic 

time 

warping 

The distance between two sequences is calculated by measuring the euclidean 

distance between each point in the sequences, where the sequences consist of sets 

of time points. 

 

The PCMCI is initiated by assessing momentary conditional independence between pairs of 

variables. It then constructs a causal pathway graph as shown in figure 4.4 that captures potential 

causal relationships. In causal pathway graph, the relationships are represented through arrows 
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connecting nodes, where each node corresponds to a variable. Solid arrows denote direct causal 

connections, and dashed arrows indicate indirect paths. 

Direct relationships reflect immediate causal influences. Analysis shows the direct relationships 

are the links from Temperature (T) to Cardiovascular Disease Deaths (CVD) and from 

Temperature (T) to respiratory disease deaths (RDD). These suggest that changes in temperature 

can have direct effects on these health outcomes. Indirect relationships reveal more intricate 

connections, as the link from Cardiovascular Disease Deaths (CVD) to Nervous Mental and 

Behavioral Disease Deaths (NMBD) indirectly suggests that temperature changes affecting 

cardiovascular health could influence nervous and behavioral health. lag values to links accounts 

for time delays between cause and effect. These values are domain-specific and might reflect the 

time it takes for an impact to manifest. In our graph, lag values are provided to represent these 

temporal delays. A lag of -1 between Temperature Anomaly (T) and Cardiovascular Disease 

Deaths (CVD) indicates that temperature changes precede cardiovascular events by one time step.  

1. Temperature Anomaly (T) → Cardiovascular Disease Deaths (CVD, Lag: -1): An 

increase in temperature anomalies at time t-1 is associated with an increase in 

cardiovascular disease deaths at time t. This indicates a one-time lag between temperature 

anomalies and their impact on cardiovascular health. It aligns with the understanding that 

extreme temperatures could trigger cardiovascular events with a delay. 

2. Temperature Anomaly (T) → Respiratory Disease Deaths (RDD, Lag: 0): Changes in 

temperature anomalies at time t have an immediate effect on respiratory disease deaths at 

the same time t. This implies that respiratory health is sensitive to current temperature 

fluctuations. Short-term variations in temperature could directly impact respiratory health 

outcomes. 

3. Cardiovascular Disease Deaths (CVD) → Nervous Mental and Behavioral Disease 

Deaths (NMBD, Lag: 0): Changes in cardiovascular disease deaths at time t are associated 

with immediate changes in nervous, mental, and behavioral disease deaths at the same time 

t. This suggests that cardiovascular health might directly influence nervous, mental, and 

behavioral health outcomes, possibly due to shared physiological or psychological 

mechanisms. 
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4. Respiratory Disease Deaths (RDD) → Nervous Mental and Behavioral Disease Deaths 

(NMBD, Lag: 0): Variations in respiratory disease deaths at time t are linked with 

immediate variations in nervous, mental, and behavioral disease deaths at the same time. 

This imply that respiratory health issues might have direct psychological and behavioral 

effects, impacting mental and behavioral health outcomes without a delay. 

5. Nervous Mental and Behavioral Disease Deaths (NMBD) → Digestive Disease Deaths 

(DD, Lag: 2): Changes in nervous, mental, and behavioral disease deaths at time t have an 

impact on digestive disease deaths two time steps later, at time t+2. This suggests a delayed 

influence of mental and behavioral health on digestive health. Mental stress or behavioral 

changes might gradually contribute to digestive health issues over time. 

Figure 4.4: Causal Discovery analysis for the temporal lag connections 

 

4.4. Assumptions with regard to Future Trends 

Planning healthcare effectively requires an understanding of how various environmental, climatic, 

and developmental scenarios may affect population health. Additionally, predicting future health 

t = +0 t = +0 

t = +2 

TEMP 

CVD RDD 

NMBD  

t = -1 

DDD  
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trends is crucial in the context of climate change since population well-being is a crucial 

component of adaptive capacity. A prediction function built on a previously acquired model was 

used to investigate these aspects. The task entailed entering fresh data for subsequent years. 

The study by Miller et al. (2014) that forecasted increases in the concentration of a number of 

gases in the atmosphere, which are strongly linked to climate change, served as the basis for the 

future projection data utilised in this analysis, which were received from NASA. The previous 

analysis's models could only be developed with input data up to 2016. Data from 2017 onwards 

were used for forecasts beyond that time frame, with real data from 2017 to 2019 collected from 

aerial scans and analysed in the same way as previously described, yielding a global yearly 

average. Reference has been made to the abovementioned research article (Miller et al., 2014) for 

data after 2019 (Miller et al., 2014). 

The CMIP6 model, which incorporates data obtained from satellites pertaining to these variables 

and produces a model for predicting future based on the premise that human activity patterns will 

not change, was used to make the prediction for the four variables of concern (CO2, CH4, heat, 

and anthropogenic forcing). The estimates were generated using current regulations aimed at 

reducing pollutants and employing more renewable energy sources. 

It is plausible to anticipate a commensurate rise in future scenarios given that most future trends 

point to an increase in climate-related variables. The same process as before was used for 

integrating the latest input data, which incorporates future trends. The sequence of the data had to 

match that of the model analysis. A 'trainedModel' structure was used to generate predictions based 

on the fresh data once the algorithm was exported to the workspace of the Regression Learner. A 

prediction function and a model object are both present in this structure.  

Out of the 5 models developed using machine learning, only two were used in simulating future 

trends. These models exhibited the lowest error (RMSE) and were specifically associated with 

victims of nervous, mental & behavioral disease. The performance of these models was nearly 

perfect due to the consistent upward trend observed in the input and output data.  

While the forecast was extended until the year 2500, it is important to note that such distant 

predictions, being the result of a mathematical model, lack reliability. As a result, forecasts for the 
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four climate variables previously studied will be created for 10-year intervals using the forecasting 

data as demonstrated in Figure 4.5. 

An assessment of the future for the next 10 years is shown in Figure 4.6. Although extending the 

projection to 500 years is technically feasible, such a long prediction timescale lacks reliability 

and is rife with uncertainty.  

Figure 4.5: Mortality due to Cardio-Vascular Disease CVD (actual and forecasted) 
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Figure 4.6 Mortality Forecast (by Nervous, Mental & Behavioral illnesses) 

 

The projected number of victims attributed to nervous system disease exhibits a notable increase. 

Over a span of 35 years, the predicted rise amounts to nearly 5000 additional deaths per year, while 

a 10-year period anticipates a surge of 3000 deaths. The escalating casualties resulting from 

climate change each year are expected to yield a more pronounced escalation in the forthcoming 

years compared to the past. 

To generate the forecast, the most effective model was employed, despite the correlation being 

driven by the consistent upward trends observed in both the input and output curves. Consequently, 

the decision was made to employ neural networks for creating the forecast, aiming to address 

certain challenges encountered during regression using machine learning techniques. By utilizing 

forecast data pertaining to Temperature, CO2, CH4, and anthropogenic forces, simulations were 

conducted using the pre-trained neural network. Forecasts were successfully generated for all the 

variables under investigation, with Figure 4.6 specifically displaying the forecast for the nervous 

mental and behavioral diseases variable. 
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Figure 4.6 illustrates prediction based on machine learning models, revealing an upward trajectory. 

However, when extending the time frame under consideration, a decrease in the number of deaths 

becomes apparent. The fall in mortality suggests that the machine learning models have yielded 

somewhat better results in the case of this model. 

Similar to this, a 10-year-long scenario founded on the model for patients with respiratory 

disorders was created. Figure 4.7 depicts a probable future scenario that is similar to the previous 

10-year timeframe but differs noticeably in that the growth in casualties is less noticeable and 

displays an almost linear curve that is in accordance with the actual data curve. Despite not using 

a linear approach, the roughly linear trend indicates that the temperature variable's fluctuating 

trend, which is important to this model, may potentially have an impact on the future course. 

As previously stated, this model holds the highest significance and aligns best with the forthcoming 

climate data, despite having a lower R2 index compared to other trained models. Respiratory 

disease-related fatalities exhibit a strong correlation with climate change, specifically with 

fluctuations in temperature. This includes temperature variations such as heatwaves or frost, as 

well as the consistent yearly rise in the Earth's average temperature. 

Figure 4.7: Deaths due to respiratory illness (actual trend and projections) 
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4.5. Discussion: 

The findings from this analysis provide strong evidence of a global correlation between climate 

change and human health, which aligns with previous studies  (Song et al., 2017). By applying 

machine learning techniques, a more comprehensive investigation yielded detailed insights into 

the specific environment-related threats closely associated with the diseases examined. Nervous, 

Mental & Behavioral Disease share a close relationship with respiratory system diseases because 

of same pathological grounds. Hence it becomes mandatory to treat them collectively instead of 

separately. Our analysis revealed a robust correlation between mental pathologies and climate 

change, with these diseases exhibiting comparatively lowest relative error among all the diseases 

we studied. 

From a mathematical perspective, linkage between environmental change and respiratory illnesses 

is comparatively less accurate despite a 6% error. However, we observed a strong association in 

temperature and respiratory illnesses, independent of other climate change causes. This finding 

confirms a linkage between environmental change and digestive illnesses, as the trends in 

temperature align closely with the observed patterns in these diseases. 

Our utilization of artificial intelligence has provided new insights into linkage between 

environmental change and health. We employed ML techniques to better understand the input 

variables that have the highly conspicuous influence on the research. This application of causal 

discovery has further reinforced the previously established correlation and enhanced the reliability 

of our findings for three out of the four diseases studied. The inclusion of temporal lags aligns with 

econometric theory, which acknowledges that causal effects might not be immediate. The lag 

values provide insights into the time it takes for causal impacts to propagate through the system, 

which is crucial for understanding policy effects or intervention planning. This interpretation helps 

to differentiate true causal relationships from mere correlations by considering the dynamics of 

cause and effect. 

It is important to acknowledge that the resulting forecasts may not possess a high level of 

reliability. However, when compared to scenarios derived from other scientific articles, our 

forecasts exhibit striking similarities. The limitations of our study, including limited data 

availability and the multitude of factors required to explain such an intricate phenomenon, 
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contribute to the margin of error observed. While we utilized global data to facilitate our 

calculations, it is worth considering that conducting analyses on specific countries and focusing 

on prevalent mortality types within those countries could potentially yield more accurate results. 

The challenges associated with obtaining comprehensive data on human health present significant 

obstacles to studying the correlations between health and climate change. 

4.6. Conclusion 

This study aimed to explore the association between environmental change and health at a national 

scale using available time series data, employing machine learning techniques for analysis. Just as 

research by Solomon et al. (2007) has identified associations among climate related variables and 

indicators of human health on a continental scale, specifically indicating the relevance of such 

correlations for respiratory diseases and nervous system disorders (Zhou, 2013) 

The application of machine learning techniques in studying these correlations has yielded novel 

findings. Two distinct approaches of AI are utilized to assess and identify the strongest 

correlations. This study has yielded excellent results, providing deeper insights into the influential 

input variables in this research. The novel approaches of machine learning (ML) have affirmed the 

correlations that were previously identified, enhancing the viability of three out of the four studied 

pathologies. The analysis conducted with AI technologies has outperformed purely statistical 

approaches, particularly in terms of generating models with lower absolute error. 

There was no connection between digestive disorders and death due to climate change as analyzed 

through the ML regression analysis and causal discovery analysis. Instead of solely attributing this 

variable to the primary drivers of changing the climate, the analysis of this variable ought to focus 

on trigger variables relating to the quality, availability, and other aspects of water and food. There 

is no reliable link between the effects of climate change and fatalities from nervous system and 

mental diseases. The data's almost linear and predictable pattern shows that further investigation 

is required to establish its authenticity. 

On the other hand, the association between climate change and fatalities from respiratory disorders 

has been shown to be the strongest (Zhou, 2013). with heat playing a crucial part in this 

relationship. Based on the study, a possible future scenario was predicted for both of the illnesses 

evaluated, indicating an increase in fatalities from respiratory and mental illnesses as a result of 
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changing climate during the following 10 years (Guo et al., 2016). This study's overall analysis, 

however less comprehensive than earlier analyses, highlights the possibility of discovering a link 

between changing climate and human health, even when looking at a wide geographic area. In 

verdict, it is undeniable that a link exists between climate change and human health, particularly 

considering the connection between temperature changes and respiratory disease-related fatalities. 

Nonetheless, obtaining more extensive data and narrowing the focus of analysis to a specific 

geographical area would lead to more precise and accurate results. 
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CHAPTER 5 

VISUALIZATIONS 

This chapter presents visualization regarding the historic and future climate change trends and 

patterns along with the mapping of GHGs including CO2 and non-CO2 drivers, impacting the 

climate over time. Moreover, the chapter provides simulated visualization on the future green-

house gases emissions, global surface temperature anomalies and the forecast of the global surface 

temperature under different scenarios. Visualizations based on CMIP-6 model and IHME causes 

of health datasets. Visualization were made using Python and others special visualization apps.  

Global Surface Temperature Projection under different CMIP6 Shared Socioeconomic Pathways 

1 

 

 
1 This visualization employs python package “scmdata”, which is designed to handle simple climate model data but 
generalises to handle all sorts of timeseries-based data including data in the IAMC format alongside seaborn and 
native matplotlib as required.  

Figure 5.1: Surface temperature change projection over time under different scenarios 
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Based on historical data, the increase in global surface temperature in °C between 1850 and 1900 

can be correlated with cumulative CO2 emissions in GtCO2 from 1850 to 2019 which is shown 

by the black coloured line. The shaded range, along with its central line, provides estimates of 

historical human-caused surface warming. The coloured regions represent the projected range of 

global surface temperature with a high level of confidence, while the thick coloured lines depict 

the median estimate. These projections are based on cumulative CO2 emissions from 2020 to 2050 

for different scenarios including SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The 

expected global warming takes into account all human-induced factors and the cumulative CO2 

emissions associated with each scenario. The analysis covers the period from 1850 to 2050, during 

which global CO2 emissions are consistently positive across all different scenarios.  

Increase in global surface temperature (measured in C°) as a function of cumulative CO2 emissions 

given the base period of 1850-1900. Global surface temperature simulation under different shared 

socioeconomic pathways identified in CMIP6 model.  

The red line represents the SSP 3-7.0 pathway while the yellow line represents the SSP2 -4.5 

pathway. Red line represents the worst case scenario given by the SSP5-8.5 pathway. SSPs 

highlights the significant global warming as indicated by its various pathways such as SSP1-1.9 

scenario (light blue line), targeting a 1.5°C limit, predicts an average warming of 1.4°C across 

multiple models. Similarly, the SSP1-2.6 (dark blue line) scenario, aligned with the RCP2.6 of 

AR5, indicates an average warming of 2.0°C. Conversely, the SSP5-8.5 scenario suggests a higher 

average warming of 5.0°C, while the new SSP3-7.0 scenario forecasts 4.1°C of global warming. 
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2 

Figure 5.2: Cumulative Carbon dioxide emission projection over time 

5.1. Projections for GHGs: 

The following graphs shows the emissions trajectories of the anthropogenic drivers and their 

projections under different climate change scenarios accordingly to IPCC AR6. From the graphs 

 
2 This visualization employs python package “scmdata”, which is designed to handle simple climate model data but 
generalises to handle all sorts of timeseries-based data including data in the IAMC format alongside seaborn and 
native matplotlib as required. 
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its evident that CO2 and other non-CO2 drivers, emissions will increase, resulting in the global 

temperature to rise leading to global warming.  

 

3 

Figure 5.3: N2O Emission projections 

 

 
3  This visualization uses the Python package pyam, which provides a suite of features and methods for the analysis, 
validation and visualization of reference data and scenario results generated by integrated assessment models, macro-
energy tools and other frameworks in the domain of energy transition, climate change mitigation and sustainable 
development. 
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4

 

Figure 5.4: CO2 Emission projections 

 
4 This visualization uses the Python package pyam, which provides a suite of features and methods for the analysis, 
validation and visualization of reference data and scenario results generated by integrated assessment models, 
macro-energy tools and other frameworks in the domain of energy transition, climate change mitigation and 
sustainable development. 



58 
 

5 

Figure  5.5: Sulfur Emissions 

 

Figure 5.6: CH4 Emissions 

 
5 This visualization uses the Python package pyam, which provides a suite of features and methods for the analysis, 
validation and visualization of reference data and scenario results generated by integrated assessment models, 
macro-energy tools and other frameworks in the domain of energy transition, climate change mitigation and 
sustainable development. 
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5.2. Global Temperature Anomaly:  

The following maps and graphs show the global temperature anomaly for the future, for the 

possible future scenarios under different scenarios identified under CMIP6. Further, hindcasted 

maps show the global temperature anomaly for the past. Hindcasted maps validated the global 

temperature anomaly with the observed data. Hindcast maps are made using the data from the 

NASA-GISS-E2-H-1 historical stimulation experiment dataset. All the maps are generated using 

ArcGIS software and the graphs are made using python and other packages.  

Global surface temperature anomaly relative to 1850-1900 period under different scenarios 

Global surface temperature anomaly relative to 1850-1900 period under different scenarios under 

the CMIP share socioeconomic pathways. Following are the graphs for the surface air temperature 

change, presented with different scenarios and observed data.  

6 

Figure 5.7: Surface Air Temperature anomaly 

 
6 This visualization employs python package “scmdata”, which is designed to handle simple climate model data but 
generalises to handle all sorts of timeseries-based data including data in the IAMC format alongside seaborn and 
native matplotlib as required. 
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Figure 5.8: Surface air temperature anomaly and its projections 

The surface air temperature changed over the years starting from 1940 to 2120. The colored lines 

represent the Shared socioeconomic pathways (SSP) and the confidence interval.  
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7 

Figure 5.9: Global Surface temperature anomaly for year 1884 - Hind cast using NASA GISS Model dataset. 

 
7 This visualization (color coded map) is made using ArcGIS software employing NASA GISS Model dataset (GISTEMP surface temperature dataset). 
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8 

Figure 5.10:  Global Surface temperature anomaly for year 1904 - Hind cast using NASA GISS Model dataset. 

 

 
8 This visualization (color coded map) is made using ArcGIS software employing NASA GISS Model dataset (GISTEMP surface temperature dataset). 
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 9 

 
9 This visualization (color coded map) is made using ArcGIS software employing NASA GISS Model dataset (GISTEMP surface temperature dataset). 

Figure 5.11: Global Surface temperature anomaly for year 1944 - Hind cast using NASA GISS Model dataset. 
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10 

 
10 This visualization (color coded map) is made using ArcGIS software employing NASA GISS Model dataset (GISTEMP surface temperature dataset). 

Figure 5.12: Global Surface temperature anomaly for year 1984 - Hind cast using NASA GISS Model dataset. 
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11 

Figure 5.13: Global Surface temperature anomaly for year 2004 - Hind cast using NASA GISS Model dataset. 

 
11 This visualization (color coded map) is made using ArcGIS software employing NASA GISS Model dataset (GISTEMP surface temperature dataset). 
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12 

Figure 5.14: Global Surface temperature anomaly for year 2014 - Hind cast using NASA GISS Model dataset. 

 
12 This visualization (color coded map) is made using ArcGIS software employing NASA GISS Model dataset (GISTEMP surface temperature dataset). 
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13 

Figure 5.15: Global Surface temperature anomaly for year 2018 - Hind cast using NASA GISS Model dataset. 

 
13 This visualization (color coded map) is made using ArcGIS software employing NASA GISS Model dataset (GISTEMP surface temperature dataset). 
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14 

Figure 5.16: Global Surface temperature anomaly for year 2022 - Hind cast using NASA GISS Model dataset. 

 
14 This visualization (color coded map) is made using ArcGIS software employing NASA GISS Model dataset (GISTEMP surface temperature dataset). 
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5.3. Future Projections 

The following data visualizations depict projected temperature changes throughout the 21st 

century, utilizing the climate model provided by NASA's GISS dataset (E-2-H). These 

visualizations present the average outcomes based on specific groups of the Shared Socioeconomic 

Pathways (SSPs), which were developed by the IPCC AR6. Several of these SSP scenarios have 

been chosen to drive climate models for CMIP6. 

The SSPs encompass a wide range of potential global greenhouse gas emission and sequestration 

scenarios for the next century. Each pathway is assigned a numerical value based on the expected 

Watts per square meter, indicating the amount of heat energy retained by the climate system under 

each scenario. The pathways take into account the future concentrations of carbon dioxide and 

other greenhouse gases. Currently, the atmospheric carbon dioxide concentration stands at 

approximately 400 parts (previously 300 parts per million). 

SSPs highlights the significant global warming as indicated by its various pathways such as SSP1-

1.9 scenario, targeting a 1.5°C limit, predicts an average warming of 1.4°C across multiple models. 

Similarly, the SSP1-2.6 scenario, aligned with the RCP2.6 of AR5, indicates an average warming 

of 2.0°C. Conversely, the SSP5-8.5 scenario suggests a higher average warming of 5.0°C, while 

the new SSP3-7.0 scenario forecasts 4.1°C of global warming. 

Each visualization represents the average output of a distinct set of models for each scenario 

(SSPs), including the Representative Concentration Pathways (RCPs) from the previous CMIP5. 

All of these models compare temperature projections from 2006-2099 against a historical baseline 

average from 1971-2000. 
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15 

Figure 5.17: Global Surface temperature anomaly for year 2040 – Forecast Under Shared Socioeconomic Pathways (SSPs) using 

NASA GISS Model dataset. 
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16 

Figure 5.18: Global Surface temperature anomaly for year 2045 – Forecast Under Shared Socioeconomic Pathways (SSPs) using NASA GISS Model dataset. 

 
16 This visualization (color coded map) is made using ArcGIS software employing NASA GISS E-2-H Model dataset (surface temperature dataset). 
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17 

Figure 5.19: Global Surface temperature anomaly for year 2060 – Forecast Under Shared Socioeconomic Pathways (SSPs) using NASA GISS Model dataset. 

 
17 This visualization (color coded map) is made using ArcGIS software employing NASA GISS E-2-H Model dataset (surface temperature dataset). 
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18 

Figure 5.20: Global Surface temperature anomaly for year 2065 – Forecast Under Shared Socioeconomic Pathways (SSPs) using NASA GISS Model dataset. 

 
18 This visualization (color coded map) is made using ArcGIS software employing NASA GISS E-2-H Model dataset (surface temperature dataset). 
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19 

Figure 5.21:Global Surface temperature anomaly for year 2080 – Forecast Under Shared Socioeconomic Pathways (SSPs) using NASA GISS Model dataset. 

 
19 This visualization (color coded map) is made using ArcGIS software employing NASA GISS E-2-H Model dataset (surface temperature dataset). 
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20 

Figure 5.22: Global Surface temperature anomaly for year 2085 – Forecast Under Shared Socioeconomic Pathways (SSPs) using NASA GISS Model dataset. 

 
20 This visualization (color coded map) is made using ArcGIS software employing NASA GISS E-2-H Model dataset (surface temperature dataset). 
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Figure 5.23:  Global Surface temperature anomaly for year 2099 – Forecast Under Shared Socioeconomic Pathways (SSPs) using NASA GISS Model dataset. 

 
21 This visualization (color coded map) is made using ArcGIS software employing NASA GISS E-2-H Model dataset (surface temperature dataset). 
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5.4. Results for climate-sensitive health under three different adaptation scenarios: 

Heath outcomes under the different adaptation scenarios given by the AR-6-WGII- Risk 

Assessment (IPCC) in relation to climate change are given below. With rising change in the global 

surface temperature relative to the base line of 1850-1900. Health outcome include the Heat related 

morbidity and mortality, Ozone related mortality and vector borne diseases. The risk transition 

outcomes are measured from Low to moderate to high.  
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22 

Figure 5.24: Climate sensitive health outcomes under three adaptations of AR6-WGII-Risk Assessment 

 
22 This visualization is made using the python build app "Ember Factory" (https://climrisk.org/emberfactory). This application was 
made for making the burning ember diagram used in IPCC reports. Data from the AR6 -WGII- Risk Assessment for climate 
sensitive health outcomes was fed to this application and the burning ember diagram was visualized. 

G
lobal S

urface tem
perature change increase relative to the period 1850 to 1900. 
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CHAPTER 6 

CONCLUSION 

Global warming as a direct result of climate change is the biggest challenge for Pakistan. In an 

attempt to investigate the climate change linkages to human deaths in Pakistan to identify the 

extent to which climate change will impact the people of Pakistan, this research employs machine 

learning techniques to examine the relationship between climate change and human health on a 

global scale. The analysis confirmed strong correlations between climate change and respiratory 

diseases, while the correlations with digestive problems and cardiovascular diseases were less 

significant. Temperature was found to play a crucial role in the relationship with respiratory 

diseases. More focused analysis and extensive data are needed to obtain more precise results. 

Causality is rooted in the historical quest to understand natural phenomena. Correlation does not 

imply causation, and caution must be exercised in data mining techniques that rely on correlations. 

The rise of artificial intelligence has highlighted the need for trustworthy machine learning tools. 

Causality has the potential to overcome current limitations in machine learning. The study of 

causality is multidisciplinary, involving fields such as epidemiology, economics, statistics, and 

computer science. Two main tasks in causality are causal discovery and causal inference, with 

different approaches and algorithms. Utilizing causal discovery tools to extrapolate and examine 

the causal linkages between climate change and human deaths. The results highlighted the direct 

and indirect relationship with the indicators of the climate change and leading causes of deaths in 

Pakistan.  

It is worth noting that while our study provides valuable insights into the complex relationship 

between climate change and human health, further in-depth analysis and extensive data are 

necessary to obtain more precise results. A deeper understanding of causality in the context of 

climate change can facilitate more effective policies and interventions to mitigate the adverse 

health effects of climate change in Pakistan. Such measures should involve a multidisciplinary 

approach, incorporating expertise from various fields and focusing on the development of reliable 

machine learning tools. 
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In summary, this study underscores the urgency of addressing climate change as a formidable 

challenge facing Pakistan. By unraveling the correlations between climate change and respiratory 

diseases, we contribute to the growing body of knowledge on the subject. Our findings underscore 

the importance of causality in understanding complex phenomena, caution against drawing hasty 

causal conclusions based solely on correlations and highlight the potential of causality in 

overcoming limitations in machine learning. By further exploring the intricate causal pathways 

and gathering more extensive data, we can enhance our understanding of the relationship between 

climate change and human health, ultimately informing evidence-based strategies for the well-

being of the people of Pakistan. 

6.1. Recommendations  

It is imperative for using correlations with caution in the realm of the big data such as climate 

change science, natural sciences and socioeconomic scenarios as their presence does not inherently 

imply causal relationships. The increasing demand for reliable machine learning tools has 

prompted extensive scientific and empirical research on the topic of causality, bridging 

interdisciplinary gaps between philosophical investigations, empirical studies, and the domains of 

artificial intelligence and machine learning. Causality, as a concept, holds promise in addressing 

the existing limitations of machine learning techniques, with causal discovery and causal inference 

emerging as primary tasks within this field. Causal discovery entails the extraction of causal 

relationships from observational data, while causal inference focuses on the testing and 

quantification of the impact that one variable has on another. 

Within the context of Pakistan, despite its relatively minor contribution to global greenhouse gas 

emissions, the country remains highly susceptible to the adverse effects of climate change. 

Projections indicate a significant increase in mean annual temperature by approximately 6.1°C on 

average from 1990 to 2100 under a high emissions scenario. However, the implementation of 

substantial global emission reductions could limit this temperature increase to around 1.7°C. 

Pakistan faces numerous climate-related challenges, including the melting Himalayan glaciers, 

which pose a substantial threat to river flows, as well as the heightened frequency and severity of 

monsoons, cyclones, and saline intrusion. Furthermore, health risks such as the proliferation of 

vector-borne diseases and increased heat stress further compound the vulnerabilities faced by the 

population. 
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Pakistan's national development policy, "Pakistan Vision 2025," lays a strong emphasis on long-

term development complementing growth in the economy and inclusion in society to overcome 

these complex issues. The nation is aggressively developing its institutional and technical 

capacities to effectively address climate-related concerns. It has launched specific measures 

targeted at health adaptability to climate change. In addition, Pakistan is working on creating a 

comprehensive national policy that considers the health effects of climate change mitigation 

measures. To do this, a few important proposals have been put up, one of which is the requirement 

for a national evaluation to gauge the health-related impacts, vulnerabilities, and adaptation 

options of climate change.  Furthermore, efforts should be directed towards bolstering the climate 

resilience of health infrastructure and integrating climate information within existing disease 

surveillance and response systems. 

Mitigation measures should involve conducting assessments to ascertain the health co-benefits of 

climate change mitigation policies. Furthermore, it is crucial to develop and approve a national 

health adaptation strategy while ensuring that health considerations are incorporated into the 

National Communications to the United Nations Framework Convention on Climate Change 

(UNFCCC). 

Pakistan also faces significant risks related to inland river floods, with projections indicating that 

by 2030, an additional 1.5 million people may be annually exposed to such flooding due to climate 

change, with an additional 638,800 individuals at risk due to socioeconomic changes. The 

consequences of these floods extend beyond direct fatalities, encompassing secondary health 

effects such as impact on the production of food, availability of water, ecosystem collapse, 

epidemics of infectious diseases, and insect dispersal, among other things. Flooding can have long-

term effects, including population displacement and post-traumatic stress disorders. 

Moreover, it is worth noting that climate change has implications for the transmission of infectious 

diseases, as certain highly virulent infections are particularly sensitive to climate factors such as 

temperature, precipitation, and humidity. While socioeconomic development and health 

interventions have contributed to the reduction of disease burdens, climate change is expected to 

create more favorable conditions for disease transmission, potentially hampering progress in 
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disease reduction efforts and placing larger populations at risk if control measures are not 

adequately maintained or strengthened. 

Additionally, the projected rise in the average yearly temperature as well as the rising frequency 

and severity of heatwaves have significant effects on human health, especially for vulnerable 

groups like those over 65, kids, those with chronic medical conditions, those who are socially 

isolated, and those in vulnerable occupational groups. Under the worst-case scenario, it is 

anticipated that by 2080, there will be 63 heat-related deaths per 100,000 people, up from an 

estimated baseline of fewer than 10 deaths per 100,000 per year between 1961 and 1990. By 2080, 

however, rapid global emission reductions might be able to keep the number of elderly people 

dying from heat-related causes at roughly 17 per 100,000 people. 

Moreover, climate change exerts adverse effects on agricultural production, food systems, and 

subsequently increases the risk of food insecurity. These consequences disproportionately affect 

vulnerable populations and can potentially exacerbate existing issues related to hunger and 

malnutrition. 

Lastly, outdoor air pollution has direct and severe health consequences. Fine particulate matter, 

capable of penetrating the respiratory tract, has been linked to increased mortality rates from 

respiratory infections, lung cancer, and cardiovascular diseases. 

Addressing the challenges posed by climate change requires a comprehensive and 

multidimensional approach. By implementing the below mentioned Policy recommendations, 

Pakistan can enhance its resilience, mitigate vulnerabilities, and promote sustainable development 

in the face of a changing climate.  

1. Development & Designing of RCM: Pakistan being the most vulnerable country in the 

world in terms of climate change adverse impacts. With raging monsoons, flash floods and 

melting ice caps, harbinger for the worst and alarming situation to be faced in the future. 

In regard, its adamant to invest, design, plan and implement climate change mitigation 

policies, which are not possible without exact data and scientific evidence. Pakistan doesn’t 

have regional climate model and relies on the global climate models (GCMs) which comes 

with their own drawbacks. With the development of RCM, Pakistan will be able to 
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accurately forecast and hindcast, historical, and futuristic simulations in context of our own 

weather conditions and climate. The biggest drawback of the GCMs is they don’t account 

for the regional climatic anomalies, such as monsoon etc. With the development of RCM, 

Pakistan will be able to better predict the future scenarios.  

Recommended Policy Action: The research underscores the limitations of using Global 

Climate Models (GCMs) and the necessity for regional-specific data due to Pakistan's 

unique climatic conditions, particularly the role of monsoons. Developing and 

implementing RCMs could provide more accurate climate projections and health-related 

assessments. Therefore, a policy direction could involve investing in and establishing 

RCMs to better understand local climate dynamics and their impact on health. 

2. Development of Data Bank & Specializations: Development of climate change data bank 

is vital for the evidence building and effective policy making for the mitigation of the 

climate change.  

3. Conduct a comprehensive national assessment: Pakistan should undertake a thorough 

national assessment to understand the specific impacts of climate change on health and 

identify vulnerabilities. This assessment should be tailored to Pakistan's unique 

geographic and socioeconomic context, enabling the development of targeted adaptation 

and mitigation strategies. 

Recommended Policy Action: Initiating a comprehensive national assessment specifically 

tailored to Pakistan's geographical and socioeconomic context is crucial. This could 

involve the establishment of a specialized data bank focused on climate change and health, 

ensuring data availability for policymaking and implementation. 

4. Enhance resilience of health infrastructure: To effectively address the projected risks and 

vulnerabilities, it is essential to invest in strengthening the resilience of health 

infrastructure. This may involve measures such as improving the structural integrity of 

healthcare facilities, ensuring access to clean water and sanitation during extreme weather 

events, and developing robust emergency response plans. 
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Recommended Policy Action: Formulating policies and strategies aimed at improving the 

resilience of health infrastructure is essential. This might include measures to enhance the 

structural integrity of healthcare facilities, ensuring access to clean water and sanitation 

during extreme weather events, and developing robust emergency response plans to 

safeguard against climate-related health risks. 

5. Integrate climate information into disease surveillance: Pakistan should integrate climate 

information into its disease surveillance and response systems. By incorporating climate 

data, the country can enhance its ability to detect and respond to climate-sensitive diseases, 

enabling the implementation of timely and targeted interventions. 

6. Policy Action - Integrated Disease Surveillance and Response Systems: Integrating climate 

information into disease surveillance systems could enable more proactive and targeted 

responses to climate-sensitive diseases. This policy direction involves leveraging climate 

data to enhance disease surveillance, which can lead to timely interventions and better-

prepared health responses. Evaluate health co-benefits of climate change mitigation: 

Conduct a comprehensive evaluation to determine the health co-benefits associated with 

climate change mitigation policies. This analysis will provide evidence of the positive 

impact that reducing greenhouse gas emissions can have on public health. The findings can 

inform policy decisions and resource allocation towards climate change mitigation 

measures. 

Recommended Policy Action: Policymakers could focus on conducting a thorough 

evaluation to identify the health co-benefits associated with climate change mitigation 

policies. Understanding how reducing greenhouse gas emissions positively impacts public 

health can inform policy decisions and resource allocation toward mitigation measures. 

7. Developing a national health adaptation strategy: It is crucial for Pakistan to prioritize the 

development and approval of a comprehensive national health adaptation strategy. This 

strategy could outline specific actions and measures to address the health impacts of 

climate change, including capacity-building initiatives, public awareness campaigns, and 

community-based interventions. 
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Recommended Policy Action: A critical policy direction would be to prioritize the 

development and approval of a comprehensive national health adaptation strategy.  

Incorporate health considerations in national communications: Pakistan should ensure that health 

considerations are appropriately integrated into its national communications submitted to the 

United Nations Framework Convention on Climate Change (UNFCCC). This will help raise 

awareness about the health implications of climate change and highlight the country's commitment 

to addressing these challenges. 

6.1.2 Future Policy Direction & Measures:  

Integrating the recommended policy actions previously outlined can further enrich the approach 

to address climate change impacts on human health in Pakistan: 

1. Leveraging Government Policy for Climate Resilience: Highlighting the significance of 

government policies in fostering climate resilience is pivotal. Emphasize that effective 

policy implementation can multiply the efficiency of adaptation and mitigation measures. 

Acknowledge the role of policies in facilitating resilience through various sectors and 

spheres impacted by climate change. 

2. Navigating Political Economy Concerns in Policy Alignment: Recognize that while 

democracies like Pakistan may prioritize citizens' long-term well-being, political economy 

concerns can divert government interests away from long-term adaptation. Propose 

strategies that align short-term political goals with long-term climate adaptation objectives. 

3. One Health Concept Integration into Climate Policy: Emphasize the incorporation of the 

"One Health" concept into future climate change adaptation and mitigation policies in 

Pakistan. This integrated approach can address the interconnections between human health, 

animal health, and environmental health in the context of climate change. 

4. Critical Aspects for Effective Policy Making: Outlining the four essential aspects that 

effective CC and Human Health policy could address:  

a) Highlight the significant negative impacts of CC on households, firms, and 

the country's economy in terms of income and mortality.  
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b) Stress the spatial and temporal persistence of these effects, emphasizing the 

need for sustained adaptation measures.  

c) Acknowledge that individual adaptation efforts often fall short of 

completely mitigating climate impacts, thus underlining the necessity for 

policies that support and facilitate adaptation, leading to substantial welfare 

gains.  

d) Considering socio-economic policies as a means to provide safety nets and 

reduce obstacles that hinder effective adaptation, while acknowledging the 

potential for political economy concerns to shift focus away from climate 

resilience. 

5. Attraction & Optimal Allocation of International Climate Financing: Highlight the need 

for a strategic allocation of international climate financing towards high-impact regions 

and policies in Pakistan. Suggest that future work should focus on determining the most 

effective allocation strategies to maximize the impact of received international climate 

financing for adaptation. 

These future policy measures accentuate the need for strong government policy support, 

recognition of political challenges, incorporation of the "One Health" concept, and strategic 

allocation of financial resources to strengthen climate adaptation and resilience in Pakistan. 

Integrating these considerations into the outlined policy measures can enhance the effectiveness 

and impact of policies addressing climate-related health issues in the country. Furthermore, by 

implementing these recommendations, Pakistan can strengthen its capacity to respond effectively 

to the health impacts of climate change, safeguard vulnerable populations, and promote sustainable 

development in the face of evolving climatic conditions. 

6.2 Limitations of the Study 

The following are the limitations of the present study:  

1. Exclusion of Monsoon Effect:  

This study uses the Global Climate Models (GCMs) to forecast/hindcast climate change. 

GCMs estimate temperature which is in fact the climate change; through the forcings 
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(initial drivers of the climate) which include Solar Irradiance, GHGs emissions and 

Aerosols, dust, smoke, and soot. Climate feedback (processes that can either amplify or 

reduce the effects of climate forcings) include clouds, precipitation, forest greening and 

browning, ice albedo and water vapors. The GCMs estimates (hindcast/forecast) the 

temperature anomaly and precipitation variables as these two are central to climate change. 

But the GCMs excluding unique conditions to certain topographies due to its spatial 

resolution like the effect of monsoon which is area specific. GCMs don’t take into account 

monsoon, which renders the precipitation variable biased for Pakistan. As monsoons play 

a pivotal role in the country's climatic patterns, the exclusion of this crucial factor could 

lead to inaccuracies in assessing the true impact of climate change on human health as the 

result those diseases (Vector-borne diseases & Infectious diseases) that were linked to 

precipitation were also excluded from the analysis.  

2. Use of Global Climate Models (GCMs) Instead of Regional Climate Models (RCMs): 

This research uses Global Climate Models (GCMs) as source for the climate change data 

and projections, as GCMs captures broad climatic trends on a planetary scale, carries 

limitations due to their coarse spatial resolution, typically ranging from 100 to 300 km grid 

spacing. In contrast, the Regional Climate Models (RCMs) which downscale projections 

from GCMs to finer resolutions and account for regional climate features. RCMs offer a 

more localized lens with higher spatial resolution, ranging from 1 to 50 km grid spacing. 

Incorporating RCMs would have addressed this spatial limitation and facilitated a more 

comprehensive understanding of climate change's impact on human health in Pakistan. The 

utilization of RCMs would have corrected potential biases in GCMs and would have also 

account for region-specific phenomena such as monsoon patterns that are critical for 

understanding climate-health relationships in Pakistan.  

The downscaling of the GCMs to RCMs is time taking process and unavailability of the 

RCM data for CMIP6 was compelling factor to opt GCM. To address this limitation, future 

research should consider integrating RCMs into the methodology. This would enable a 

more precise examination of the unique characteristics of regional climate dynamics and 

human health, ultimately yielding more robust insights tailored to Pakistan's context.  

3. Limited Precision:  
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The machine learning techniques employed in this research provide insights into the 

relationship between climate change and human health as proxied by causes of deaths, but 

the results are constrained by the availability of the data. More extensive and detailed data 

would be essential for obtaining nuanced findings. 

4. Margin of Error:  

The availability of the health data was one of the biggest constraints for this research, 

therefore this is margin of error on the reliability of the data. The computational and ML 

biases could also affect the reliability of the projections.  

5. Contextual Variability:  

The findings pertain to the context of Pakistan and might not be directly transferable to 

other regions. Local variations in climate, health infrastructure, and socio-economic 

conditions could result in different causal dynamics. 

 

Conclusion: 

In conclusion, this study sheds light on the complex relationship between climate change and 

human health in Pakistan. While it captures how specific climatic change interacts with human 

health as proxied by number of deaths due to leading diseases in Pakistan. This study provides 

valuable insights into correlations and potential causal pathways, it's essential to acknowledge the 

limitations inherent in the study's design, data, and methodologies. Further research involving 

rigorous causal discovery methods and collaboration across disciplines can deepen the 

understanding of the causal mechanisms at play and guide evidence-based policy making to 

address the challenges posed by climate change on human health in Pakistan. 
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Glossary 

IPCC AR6 The Intergovernmental Panel on Climate Change Sixth 

Assessment Report (IPCC AR6) is a comprehensive report that 

assesses the current state of climate science, impacts, 

adaptation, and mitigation efforts. It serves as a key reference 

for policymakers and scientists worldwide. 

CMIP (Coupled Model Inter-

comparison Project) 

CMIP is an international effort that coordinates climate model 

simulations to assess and compare the performance of Earth 

System Models (ESMs) and General Circulation Models 

(GCMs) in projecting future climate changes. 

ESMs (Earth System Models) ESMs are complex computer models used to simulate the 

interactions and processes within the Earth's climate system, 

including the atmosphere, oceans, land surface, and 

biosphere, to project future climate changes. 

GCMs (General Circulation 

Models) 

GCMs are computer models that simulate the behavior of the 

Earth's climate system by dividing the planet into a grid and 

solving mathematical equations to project climate patterns 

and changes. 

GPR (Gaussian Process 

Regression) 

GPR is a statistical modeling technique that uses Gaussian 

processes to analyze data and make predictions by capturing 

underlying patterns and uncertainties in the data. 
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Squared Exponential Gaussian 

Process Regression 

A specific form of Gaussian Process Regression that utilizes a 

squared exponential covariance function to model data 

relationships, often used for smoothing and predicting 

continuous functions. 

PCMCI (Momentary conditional 

independence PC Algorithm) 

PCMCI is a statistical technique used for causal discovery that 

assesses conditional independence relationships between 

variables at different time points, helping to infer causal links 

between variables. 

PM (Particulate matter) PM refers to tiny solid or liquid particles suspended in the air, 

which can be harmful to human health when inhaled. PM is 

often categorized based on its size, such as PM2.5 (fine 

particles) and PM10 (coarse particles). 

RCMs (Regional Climate Models) RCMs are specialized climate models designed to provide 

high-resolution climate projections for specific regions, 

offering more detailed information than global climate 

models. 

RCP (Representative 

Concentration Pathways) 

RCPs are a set of scenarios used to represent future 

greenhouse gas concentration trajectories. They are crucial 

for climate modeling and assessing potential climate impacts 

under different emissions scenarios. 

SSPs (Shared Socioeconomic 

Pathways) 

SSPs are a set of scenarios that describe potential future 

socioeconomic conditions, including population, technology, 

and policy choices. These pathways are used to explore how 
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different socioeconomic trajectories can affect future climate 

change. 

Tas (Surface temperature) Tas represents the temperature of the Earth's surface, 

typically measured in degrees Celsius or Fahrenheit, and plays 

a critical role in climate assessments and studies. 

UNFCCC (United Nations 

Framework Convention on 

Climate Change) 

UNFCCC is an international treaty aimed at addressing climate 

change and its impacts. It provides the framework for annual 

climate conferences and the Kyoto Protocol, among other 

international climate agreements. 

IPCC-AR6-WG-II (Working Group – 

II): 

Working Group II of the IPCC AR6 focuses on assessing the 

impacts, adaptation, and vulnerabilities related to climate 

change, providing essential information on the consequences 

of climate change for society and ecosystems. 
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Appendix - A 

Climate Model 

A global climate model (GCM) is a complex mathematical representation of the major climate 

system components (atmosphere, land surface, ocean, and sea ice), and their interactions.  Earth’s 

energy balance between the four components is the key to long-term climate prediction.  The main 

climate system components treated in a climate model are: 

 The atmospheric component, which simulates clouds and aerosols, and plays a large role 

in the transport of heat and water around the globe. 

 The land surface component, which simulates surface characteristics such as vegetation, 

snow cover, soil water, rivers, and carbon storing. 

 The ocean component, which simulates current movement and mixing, and 

biogeochemistry, since the ocean is the dominant reservoir of heat and carbon in the climate 

system. 

 The sea ice component, which modulates solar radiation absorption and air-sea heat and 

water exchanges. 

Fundamentals of Climate Models 

Climate models, significant in their complexity and purpose, encapsulate nearly 18,000 pages of 

computer code, built and refined over years by hundreds of scientists. They range from regional to 

global, encompassing the dynamics of Earth's atmosphere, oceans, land, and ice-covered areas. 

At their core, these models are based on fundamental physical, chemical, and biological laws 

governing Earth's mechanisms. These laws—such as the law of conservation of energy and the 

Stefan-Boltzmann Law—underpin the models' equations and principles. For instance, they abide 

by fundamental physical laws like the law of conservation of energy and describe phenomena such 

as the relationship between air temperature and water vapor pressure. 

Equations governing fluid motion, like the Navier-Stokes equations, are pivotal in describing the 

behaviors of gases in the atmosphere and water in the ocean. These principles, translated into 

computer code, culminate in millions of lines forming a climate model. 
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 Spatial Resolution and Modeling Process: 

1. Climate models adopt a grid-based approach to simulate the Earth, dividing it into 

numerous grid cells, typically around 100km in longitude and latitude. These grids 

allow scientists to represent various climate processes within these defined cells. 

For smaller-scale processes, like convection, parameterizations—

approximations—are employed to fill these gaps, simplifying and including these 

processes in the model. 

2. Climate models divide the globe into a three-dimensional grid of cells representing 

specific geographic locations and elevations.  Each of the components (atmosphere, 

land surface, ocean, and sea ice) has equations calculated on the global grid for a 

set of climate variables such as temperature.  In addition to model components 

computing how they are changing over time, the different parts exchange fluxes of 

heat, water, and momentum.  They interact with one another as a coupled system. 

3. The model's spatial resolution determines the size and number of these grid cells. 

A higher resolution means more detailed regional climate information but requires 

significantly more computing power to execute. 

 Temporal Resolution and Model Calculations: 

1. Models work on a time-step basis, dividing time into manageable chunks to 

calculate the state of the climate system. A smaller time step yields more detailed 

climate information but demands additional calculations, affecting the model's 

overall processing speed. 

2. Both spatial and temporal resolutions necessitate a compromise: higher resolutions 

result in more detailed outputs but require considerably more computational 

resources and time for modelling. 

Evolution of CMIPs 

Climate models serve as a critical tool for understanding past and future climate changes, 

simulating various Earth system components, and necessitating the use of some of the world's 

largest supercomputers. These models are constantly evolving, with different modeling groups 

worldwide incorporating higher spatial resolution, new physical processes, and biogeochemical 

cycles. These coordinated efforts are part of the Coupled Model Intercomparison Projects (CMIP). 
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The 2021 IPCC sixth assessment report (AR6) features the latest state-of-the-art CMIP6 models, 

representing a significant leap in climate modeling. 

 CMIP6 Overview: 

CMIP6 involves "runs" from approximately 100 distinct climate models produced across 

49 different modeling groups. These models exhibit higher sensitivity, leading to 

projections of greater warming this century, around 0.4°C warmer than similar scenarios 

in CMIP5. CMIP6 aims to address a growing range of scientific questions by introducing 

common experiments, standards, coordination, and infrastructure, facilitating the 

distribution of model outputs and enhancing the character of the model ensemble. 

 Integration of IAMs in CMIP6: 

Integrated assessment models (IAMs) play a pivotal role in combining physical and 

economic analyses to develop and assess climate change policies. IAMs couple simplified 

climate and economic models to simulate the global economic impacts of climate change 

under various mitigation scenarios. These models inform domestic and international 

climate change policy, with a significant focus on three IAMs: DICE, FUND, and PAGE. 

IAMs provide a bridge between economists and scientists to resolve policy disagreements. 

1. Transparency and Assumptions in IAMs: 

IAMs incorporate simplified representations of the climate system compared to 

global climate models used by climate scientists. Transparency is essential, and 

underlying assumptions and model inputs must be made explicit. Equations 

driving IAMs need to be specified to understand the mechanisms behind model 

projections and avoid the impression that IAMs are 'black boxes'. 

2. Challenges in Climate Model Robustness and Consistency: 

Ensuring model robustness and consistency between models is a longstanding 

challenge for climate researchers. CMIP's major goal is to assess and improve 

the performance and reliability of global coupled ocean–atmosphere general 

circulation models used to predict future climate under various emissions 

scenarios. 
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The DECK and CMIP Historical Simulations 

Two types of processes within climate models are used: simulated and parameterized. Simulated 

processes are larger than grid-scale and based on bedrock scientific principles (conservation of 

energy, mass, and momentum).  An example of a simulated process represents tropical cyclones 

and storm activity. Parameterized processes represent more complex processes that are smaller 

than grid-scale (so, they cannot be physically represented) using simpler processes. Their 

formulations are guided by fundamental physical principles but also make use of observational 

data. An example of a parameterized process represents cloud and aerosol composition. 

CMIP6 features essential "diagnostic" simulations called DECK, including CO2 increases, abrupt 

quadrupling, and unchanged climate forcings for extended periods. These simulations also 

encompass historical runs driven by observed CO2 and other climate forcings, as well as future 

emissions scenarios. Notably, the model surface temperature "hindcast" and projections of future 

warming under different emission scenarios are examined. 

 Importance of Hindcasts: 

Hindcasts serve as valuable tools for assessing the performance of climate models. 

Accurate representation of past changes builds confidence in the models' ability to predict 

future changes. 

 Model Tuning and Model Projections: 

Climate models can't resolve all small-scale physics, leading to model tuning – a choice of 

values for processes that occur at too small a scale to simulate effectively. While most 

models avoid explicit tuning to match past temperature changes, discrepancies may prompt 

adjustments. 

 DECK Experiments and CMIP Historical Simulations: 

The DECK experiments provide continuity and are well-suited for quantifying and 

understanding important climate change response characteristics.  
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Adapted from Eyring, V. et al. Geosci. Model Dev. 9, 1937–1958 (2016). 

CMIP6 MIPs 

Additionally, CMIP6 offers 22 specialized Model Intercomparison Projects (MIPs) to assess 

climate changes beyond basic diagnostics and historical simulations. CMIP6 incorporates various 

MIPs to assess climate changes in specialized areas, including aerosols and chemistry, carbon 

cycle, land use, and more. 

The MIPs included in CMIP6 are shown in the figure below: 

 The Aerosols and Chemistry Model Intercomparison Project (AerChemMIP) 

 Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP) 

 The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP) 
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 Cloud Feedback Model Intercomparison Project (CFMIP) 

 Detection and Attribution Model Intercomparison Project (DAMIP) 

 Decadal Climate Prediction Project (DCPP) 

 Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) 

 Geoengineering Model Intercomparison Project (GeoMIP) 

 Global Monsoons Model Intercomparison Project (GMMIP) 

 High-Resolution Model Intercomparison Project (HighResMIP) 

 Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) 

 Land Surface, Snow and Soil Moisture (LS3MIP) 

 Land-Use Model Intercomparison Project (LUMIP) 

 Ocean Model Intercomparison Project (OMIP) 

 Polar Amplification Model Intercomparison Project (PAMIP) 

 Palaeoclimate Modelling Intercomparison Project (PMIP) 

 Radiative Forcing Model Intercomparison Project (RFMIP) 

 Scenario Model Intercomparison Project (ScenarioMIP) 

 Volcanic Forcings Model Intercomparison Project (VolMIP) 

 Coordinated Regional Climate Downscaling Experiment (CORDEX) 

 Dynamics and Variability Model Intercomparison Project (DynVarMIP) 

 Sea Ice Model Intercomparison Project (SIMIP) 

 Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB) 

 

Future Scenarios in CMIP6 

CMIP6 presents a significant expansion compared to CMIP5, featuring more modeling groups, a 

wider range of scenarios, and diverse experiments. The goal is to generate standard simulations, 

including future climate scenarios, which provide common greenhouse gas concentrations and 

climate forcings to project future changes. 

 Shared Socioeconomic Pathways (SSPs): 

In the lead-up to IPCC AR6, the energy modeling community introduced Shared 

Socioeconomic Pathways (SSPs) driven by different socioeconomic assumptions. SSPs 
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offer distinct end-of-century climate change outcomes, allowing for a range of climate 

change scenarios. 

 CMIP6 Scenarios: 

CMIP6 introduces updated scenarios similar to CMIP5 RCPs, including SSP1-2.6, 

SSP2-4.5, SSP4-6.0, and SSP5-8.5. Additionally, CMIP6 adds scenarios like SSP3-

7.0, SSP4-3.4, SSP5-3.4OS, and SSP1-1.9 to explore various climate change outcomes 

under different policy scenarios. 

 CMIP6 Scenario Improvements: 

1. CMIP6's scenarios offer a better exploration of "no climate policy" outcomes, 

improving upon the limited baseline scenarios in CMIP5. These new scenarios allow 

climate models to explore changes and impacts at different levels of warming, 

including 1.5°C. 

2. CMIP6 scenarios maintain end-of-century forcing similar to CMIP5 scenarios but 

feature different emissions pathways and CO2 and non-CO2 emissions mix. 
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Appendix -2 

Machine Learning & Climate Change Science 

Machine learning (ML) and artificial intelligence (AI) have seen rapid integration into numerous 

aspects of daily life, largely due to advancements in processor availability, connectivity, and the 

proliferation of big data. The impacts of these technologies are apparent across various sectors, 

from healthcare to transportation, internet interactions, food supply systems, and national security. 

As society moves closer to embracing self-driving cars, personalized medical diagnostics, speech 

recognition, and tailored consumer recommendations, the need to intertwine these technological 

advancements with the critical challenges posed by climate change becomes increasingly evident. 

Climate change is a multifaceted global issue that demands holistic responses, necessitating the 

incorporation of ML and AI into climate science. While ML algorithms, particularly neural 

networks, have existed for decades, their application in the realm of climate change has been 

hindered by computational limitations. 

The terminology surrounding these computational methods—big data, ML, and AI—encompasses 

diverse methodologies. Big data deals with handling complex datasets beyond the scale 

manageable by traditional analytical techniques. AI, a subset of computer science, focuses on 

training computers to execute tasks that surpass human capabilities, involving decision-making in 

various contexts. ML is a subset of AI that enables computers to learn from large datasets, refining 

or discovering linkages between different data points, such as in meteorological measurements or 

Earth System models. 

In the context of climate and weather applications, these can be summarized as: 

1. Big Data: Concerned with the collection and analysis of meteorological and Earth System-

related measurements and high-resolution model outputs. 

2. ML: Focuses on establishing new connections and refining existing linkages within 

datasets. For example, it could identify how sea surface temperature features influence 

weather predictions over land regions months later. 

3. AI: Leverages the connections discovered by ML to issue automated warnings and advice 

to societies regarding imminent weather extremes. 
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The recent surge in the application of ML methods has been facilitated by enhanced computational 

capabilities, especially through the innovative use of graphical processing units (GPUs) that offer 

higher processing speeds compared to standard central processing units. Researchers also suggest 

the utilization of computer memory to enhance the efficiency of calculations and bring them closer 

to the data storage locations. 

Numerical weather forecasting has seen significant advancements since the 1950s. Until recently, 

computational limitations necessitated solving equations on a coarse spatial grid. However, the 

growth in computing power has enabled ultra-fine-resolution weather forecasting models, 

providing grids with nearly kilometer-scale resolutions. Despite some limitations, these finer grids 

allow for explicit calculations of storm tracks, mesoscale cloud systems, and deep convective 

events. 

Earth System Models (ESMs), similar to weather forecast models, predict climate change by 

simulating the interactions between atmospheric greenhouse gases and radiative fluxes. These 

models operate over centuries and encompass detailed descriptions of ocean circulations and polar 

ice extents. However, computational constraints prevent ESMs from operating at the ultra-high 

resolutions of weather forecasts. As a result, they still rely on parameterizations for crucial sub-

grid processes like convection. 

Around 20 research centers have developed ESMs, leading to the establishment of shared 

databases like the Coupled Model Intercomparison Project Phase 5 (CMIP5) and Phase 6 (CMIP6). 

While these models reflect two decades of ESM development, discrepancies between them persist, 

impacting fundamental statistics like equilibrium climate sensitivity and posing challenges for 

climate adaptation planning and setting target thresholds for gas concentrations. 

Dimension Reductionality 

Dimension reduction in mathematical modelling aims to explain observed phenomena by 

governing equations. These equations, often partial differential equations, are continuous in space 

and time, coupled through various terms in the climate system. However, challenges persist in 

reducing the dimensions to highlight dominant processes and connections within a complex 

system. 
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The three historical approaches to dimension reduction include nondimensionalization, 

dimensional analysis, and statistical techniques. While these methods offer valuable insights into 

dominant climate parameters, they face constraints such as the complexity of climate equations 

and the need for foreknowledge to identify related quantities. 

A more recent technique, emergent constraints (ECs), aims to reduce inter-ESM discrepancies to 

refine projections. This involves searching for relationships between modelled climate system 

quantities and measurable data, which helps constrain estimates of future variables. 

Supervised ML Algorithms:  

The integration of ML and AI techniques into dimension reduction frameworks holds promise for 

further discoveries in climate modeling. The numerous ML methods available, both supervised 

and unsupervised, offer diverse applications in climate science. Supervised methods typically map 

inputs to outputs and are well-suited for classification and regression problems. Unsupervised 

methods, on the other hand, uncover patterns and connections within data without prior 

assumptions. 

Existing AI applications for Climate  

Many climate researchers have adopted ML methods to advance understanding of specific Earth 

System components in the following table. We now argue that there is enormous potential for 

using ML approaches also to find the more connected behaviors between multiple Earth System 

components, and how they aggregate to overall climate responses. 

Component 
of CC 

Research 

Findings/ Development 
Standard Techniques 

used 
Reference 

Climate 
impacts 

Determine the influence of climate 
drivers on sand-deposition in semi-
arid regions. 

Artificial Neural 
Networks(ANN). 

Buckland et 
al(2019) 
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Climate 
impacts 

Estimate crop yields from satellite 
data. 

Convolutional Neural 
Network (CNN). 
Gaussian Process(GP) 
Regression. 

Azzariet 
al(2017), Burke 
and Lobell 
(2017) 

Climate 
impacts 

Determine the impact of water 
scarcity (drought) in different 
climatic systems. 

Model Tree 
Ensembles(Random 
Forests, RF). 

Yang et al(2016) 

Climate 
impacts 

Predict hydrological 
variables(evapotranspiration) from 
inputs of meteorological 
variables(precipitation, 
temperature) in India. 

Fuzzy logic, Least 
Squares Support Vector 
Regression (LS-SVR), 
Artificial Neural 
Networks(ANN), 
Adaptive Neuro-Fuzzy 
Inference System 
(ANFIS). 

Goyalet al(2014) 

Climate 
impacts 

Assess the impact of future climate 
change on hydrology in India, and 
including for river flow. 

Principal Components 
Analysis (PCA) and fuzzy 
clustering, Relevance 
Vector Machine (RVM). 

Ghosh and 
Mujumdar(2008
) 

Climate 
impacts 

Assess the impact of climatic 
change on the global hydrological 
cycle, with an emphasis on changes 
in evapotranspiration. 

Model Tree Ensemble 
(MTE). 

Jung et al(2010) 

Climate 
impacts 

Assess the impact of climate change 
on above-ground biomass. 

Support Vector 
Machines(SVM); 
Artificial Neural 
Networks(ANN), 
Generalised Regression 

Wu et al(2019) 
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Neural Network 
(GRNN). 

Climate 
extremes 

Forecast meteorological droughts 
using antecedent meteorological 
information in Ethiopia. 

Artificial Neural 
Network (ANN); 
Support Vector 
Regression (SVR): 
Wavelet Transforms 

Mishra and 
Desai (2006), 
Belayneh et al 
(2016) 

Climate 
extremes 

Predict meteorological and 
agricultural drought conditions 
from satellite data. 

Random Forest (RF); 
Gradient Boosted 
Regression Trees(GBRT). 

Park et al(2016) 

Climate 
extremes 

Predict a drought index using 
meteorological and climate indices 
as inputs. 

Extreme Learning 
Machine & 
Convolutional Neural 
Network (CNN). 

Deo and Sahin 
(2015) 

Climate 
extremes 

Identify extreme weather events in 
the output of a global climate 
model. 

Convolutional Neural 
Network (CNN); 3D 
Convolutional encoder-
decoder. 

Liu et al(2016) 

Climate 
datasets 

Improving estimates of min and 
max temperatures for incomplete 
timeseries. Generate better 
estimates of daily maximum and 
minimum temperatures, based on 
information from other nearby 
measurements and where accurate 
time of recording is undertaken. 

Gaussian Process(GP) 
model fitted with a 
Markov Chain Monte 
Carlo (MCMC) method. 

Rischard et 
al(2018) 
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Climate 
datasets 

Downscale GCM precipitation fields 
to scales appropriate for impact 
assessment. 

Kernel Regression (KR). Salviet al(2017) 

 

Gaussian processes 

Gaussian processes, a supervised ML method, offer a non-parametric approach to regression. 

Unlike linear regression methods, Gaussian processes are defined over observation functions 

rather than input states, allowing for explicit representation of uncertainty and prior beliefs. These 

methods have significant potential for climate science, especially in making out-of-sample 

predictions for future climate states. 

1. Gaussian Process Regression (GPR): 

 Methodology: GPR is a non-parametric, Bayesian approach to regression. It's 

based on the assumption that the distribution of functions is Gaussian. Rather than 

fitting specific parameterized functions, GPR models the distribution over 

functions directly. 

 Predictions: It uses training data to make predictions about test data by assuming 

that the function values are jointly Gaussian. 

 Key Features: GPR is advantageous because it can capture complex and non-linear 

relationships between variables. It's also useful when there's uncertainty in the data 

or when few data points are available. 

2. Exponential Gaussian Process Regression (Exponential GPR): 

 Methodology:  Exponential GPR is a specific variant of Gaussian Process 

Regression that employs exponential kernels in its Gaussian process. 

 Kernel Function: Instead of using a standard covariance kernel function, 

Exponential GPR uses an exponential kernel function. This kernel function 
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considers the distance between pairs of points and assigns more weight to nearby 

points. 

 Purpose:  Exponential GPR is particularly well-suited for modelling relationships 

where the output tends to decrease exponentially as the input variable changes. It's 

effective in capturing decay patterns or situations where relationships decay over 

distance or time. 

Difference between GPR and Exponential GPR: The key distinction between GPR and 

Exponential GPR lies in the choice of kernel function. While GPR uses a general covariance kernel 

function, Exponential GPR specifically uses an exponential kernel function. This choice of kernel 

impacts how these models capture relationships and make predictions.  Exponential GPR is 

specialized to model scenarios where the relationships exhibit an exponential decay pattern. 

In summary, both GPR and Exponential GPR are based on Gaussian processes and are used for 

regression tasks. GPR is a more general approach, while Exponential GPR is a specialized form 

of GPR that focuses on relationships that exhibit exponential decay.  

n Gaussian Process Regression (GPR), the equation involves predicting the function f(x) at some 

input point x, assuming a Gaussian distribution over functions. The general equation for GPR is 

expressed as follows: 

𝑓(𝑥)~𝐺𝑃 𝑚(𝑥), 𝐾(𝜘, 𝑥 )  

Where: 

 f(x) represents the function to be predicted. 

 x is the input variable. 

 m(x) is the mean function, representing the prior mean assumption about the function at 

input x. 

 k(x,x′) is the covariance (or kernel) function, specifying the similarity or correlation 

between any two points x and ′x′. This function provides information about the 

relationships or interactions between the inputs x and x′. 
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This equation illustrates that the function f(x) follows a Gaussian distribution with a mean function 

m(x) and a covariance function k(x,x′). The GPR method allows inferring the posterior distribution 

over functions after observing some data, providing predictions about f(x) and the associated 

uncertainty at new input points. 

Rationale for Using GPR & Exponential GPR in this research: 

In nonlinear regression, a first attempt might involve fitting increasingly complex polynomials,  

𝑌 = 𝑓(𝑥, 𝑎 ) 

where Y is an observation, x is a potential predictor of Y, and ai are parameters. However, in a 

nonlinear system such as the climate, we might not understand the precise parametric process, as 

this would require consideration of all possible nonlinear functions. As a supervised ML method, 

Gaussian processes are an alternative to such (linear) regression approaches. A Gaussian process 

is a collection of random variables, Y, (data observations) such that any subset of these variables 

has a multivariate normal distribution. Notable is the Gaussian process is defined over the 

observation functions, Y, rather than input state, x. The process is specified by a mean function 

and a covariance matrix. Combining the Gaussian process prior with a (Gaussian) likelihood based 

on the data, where some data is observed and some not, produces a Gaussian posterior distribution. 

This method enables out-of sample predictions, y*: 

𝑃(𝑦∗|𝑥∗) = ∫ 𝑃(𝑦∗|𝜘∗, 𝑓, 𝐷)𝑃(𝑓|𝐷) 𝑑𝑓 

Where: 

 P(y∗∣x,f,D) is the probability of the predicted value ∗y∗ given the input x, the distribution 

f, and the data set D. 

 P(y∗∣x,f) is the conditional probability of ∗y∗ given x and f. 

 P(f∣D) is the probability of the distribution f given the observed data set D. 

where f now represents a Gaussian process and D is again an observed data set. These non-

parametric approaches allow explicit representation of uncertainty and prior beliefs, and are 

powerful ML approaches in nonlinear regression analyses. 
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Conclusion: 

As the intersection of machine learning and climate science progresses, these advanced 

computational techniques are expected to enhance climate models, refine projections, and aid in 

understanding and addressing the complexities of climate change. The application of machine 

learning principles to climate data opens up avenues for improved understanding, predictive 

accuracy, and ultimately more effective climate policy planning and decision-making. 

This note provides a glimpse into the intersection of machine learning and climate science, 

highlighting the potential and challenges posed by these advanced computational methodologies. 

As technological advancements continue, the integration of ML and AI into climate science is 

anticipated to revolutionize our understanding of climate change and drive more effective policy 

interventions and adaptation strategies. 

 

 


