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Abstract: The main rationale of asset pricing theory is to identify the underlying pattern

of the drivers and establish their relationship with the financial performance of a firm. The

proliferation of hundred of drivers often called the curse of dimensionality in the candidate

factor pool is a result of continuous research to achieve higher returns than market. Thus,

the fundamental task facing the asset pricing theory today is to bring discipline to the zoo of

factors. The leverage to utilize machine learning techniques is enhanced due to their innate

ability of handling and extracting valid signals from such complex data structures. The most

notable techniques are the neural networks, tree based models, and penalized regressions.

The neural networks on the training sample of US market performed the best with the MSE

of 3% and hit ratio of 55%. The most prevalent factors include the market capitalization

confirming the existence of size anomaly, momentum indicators, and the capital expenditure

to sales cash flow ratio among others. The MSE and the hit ratio for the data of Pakistan,

where the best performing candidate model is random forest is 0.3% and 84% respectively.

Most significant contributors for the data of Pakistan includes momentum, price volatility,

and dividend yield etc. The results are encouraging but still warrants further research espe-

cially to the formulation of ensembles that may beat the naive equal weighted ensembles.

5



Abbreviations:

Table 1: Abbreviations used in the thesis
United States US

Pakistan Pk

Market Capitalization Market Cap

Price to book ratio Pb ratio

Price to sales ratio Ps ratio

Mean Absolute error MAE

Mean Squared error MSE
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Chapter 1

Introduction and Background

1.1 Introduction

The capital market is the barometer of the economy by which we can assess and guarantee the

sustainable growth in an economy. The issuance of shares as a mean to raise new capital is sig-

nificant source of financing available to companies. Equity markets are relatively more flexible in

offering greater variety of financing options as compared to debt markets. The equity instruments

most commonly traded in the form of common stock in a stock market. In addition, the stock

market also provides an opportunity for an ordinary individuals to invest their savings in attractive

securities with higher returns.This goal of capital formation is important in promoting the level of

savings and enabling the country to efficiently allocate the resources to achieve economic growth.

Efficient markets may be desirable for the society, as prices determine the allocation of eco-

nomic resources. Most of the early work that relates to efficiency theory stems from closely related

concept of random walk hypothesis (RWH). The RWH asserted that the changes in the markets are

completely random and hence unpredictable, later consolidated, by (Fama, 1965) in form of effi-

cient market hypothesis. The (EMH) has stirred both the interest and controversial views among

the academics and practitioners alike, which resulted in staggering evidence both for and against

the efficiency of market prices. The support for EMH came from the growing body of empirical

research that demonstrated the difficulty of beating the average return in the stock market index

12



((Fama & French, 2015). On the contrary, studies that describe deviations from the EMH are

termed as anomalies, are the biggest threat to the hypothesis of efficient markets. Asset pricing

anomalies, whether they are broad macro-economic factors or company specific characteristics

became the foundation of asset pricing theory.

The practitioners aligned their investment strategies with groups of stocks, such as value

stock, growth stock, or other stock metrics such as income. The focus is to earn positive alpha

returns that usually aims to exploit the short-term mis-pricing. Academic research on using the risk

factors in asset pricing dates back to the seminal study of (Graham & Dodd, 1934), where he wrote

about value premium. The researchers dig deeper to explain the underlying phenomenon of the

equity markets and as a result two equilibrium models originated to map the relationship between

asset returns and factors: the capital asset pricing model (CAPM) and the arbitrage pricing theory

(APT). The CAPM provided an important foundational principle of modern finance, stating that

the security return is a function of market risk. However, APT demonstrated that the returns of

securities can be modeled as a function of various risk factors. The APT provided an empirical

based framework, launching the tradition of using multiple factors as a research tool, to understand

the risk and return characteristics of different securities.

The two most commonly used set of factors to analyze and predict stock returns are funda-

mental and technical analysis. The former approach studies the general economic and company-

specific factors, and is best suited for a longer-term prediction spectrum. On the other hand, the

technicians suggest that prices already reflect all the fundamental information and historical be-

havior of financial asset tend to repeat itself (Murphy, 1999). But as noted earlier, the financial

series are essentially a complex phenomenon and the real-time aspect of financial prediction fur-

ther adds an additional layer of complexity as the temporal dimension, where the influence of time

is different for different attributes and vary across the cross-section of asset classes. This makes the

predictability of stock returns in both the time series and cross-section context a challenging task as

it needs to account for a myriad of confounding factors including both technical and fundamental

factors.

Several academic disciplines including finance, mathematics, and engineering have tried to

model and predict the behavior of equity markets (Yoo, Kim & Jan, 2005). Traditionally, statistical
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models and econometric techniques were employed to forecast equity returns, which generally

assume that the equity returns are generated through a specified underlying probability distribution.

(Kumar & Murugan, 2013). However, the time series of equity returns is essentially very complex,

highly noisy, dynamic, non-linear, non-parametric, and chaotic in nature (Si & Yin, 2013).

Recently the advent of computer science methods provided leverage to apply advance data

analytics algorithms to extract valid signals from such a highly complex financial data. In other

words, machine learning seeks to extract knowledge from large amounts of data without any re-

strictions. The goal of machine learning algorithms is to automate decision-making processes by

generalizing from known examples to determine an underlying structure in the data. The emphasis

is on the ability of the algorithm to uncover structure or predictions from data without any human

help.

The success of machine learning in asset pricing has it source at the convergence of three fa-

vorable developments: data availability, computational capacity, and economic groundings. In or-

der to model and make predictions about the future expected returns, machine learning techniques

have been applied with relative success (Lee, 2009). Machine-learning techniques are better able

than statistical approaches to handle problems with many variables (high dimensionality) or with

a high degree of non- linearity. ML algorithms are particularly good at detecting change, even in

highly non- linear systems, because they can detect the preconditions of a model’s break or an-

ticipate the probability of a regime switch. (Atsalakis & Valavanis, 2009). As a result, financial

models became more capable of dealing with real-time prediction problem of stock prices.

Asset-pricing models that use machine-learning techniques is an emerging topic, offering both

theoretical and practical perspectives to equity trading and is at the cross-section of finance, eco-

nometrics and computer science. The theoretical underpinning is provided by the field of finance

and the econometrics and computer science provides the analytical tools to operationalize finan-

cial theories and models. As a results, we yield intelligent decision support and prediction models

that are of practical use in understanding the drivers of equity returns. Reliable and action-able

financial prediction is still a challenge given the demand for real-time forecasting, in the pres-

ence of a myriad of factors that are probably interlinked with and influenced by geopolitical and

socio-economic phenomenon.
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The chapter 2 includes the background, objectives, and the problem statement. Chapter 3

provides with a comprehensive literature review of both the evolution of factors in asset pricing

theory and the application of machine-learning tools. Chapter 4 introduces with the data acquis-

ition process and the pre-processing. In this chapter, we also lay down the methodology, which

we will be utilizing to gather and interpret results. Chapter 5 illustrates and discusses the res-

ults. Chapter 6 is related to building and testing the different ensemble models. Finally, chapter 7

discusses the outcome and the future directions.

1.2 Background, Objectives, and Statement of problem

1.2.1 Background

(Bachelier, 1900) with his seminal contribution in ’The Theory of Speculation’ deeply influenced

the whole development of mathematics of equity pricing theory. Bachelier’s work wasn’t applied

to Economics until the beginning of modern financial theory in 1965, when (Samuelson, 2016)

demonstrated that in a well-informed and competitive speculative market, asset prices will be ran-

dom. Samuelson’s proof together with his further research in collaboration with (Fama, 1965) has

been crucial to the development of the efficient market hypothesis (EMH). The EMH postulated

that the prices reflect all available information i.e. technical indicators, fundamental factors and

insider information in the stock prices and thus, only new information explains the movement of

stock prices. Since the new information comes in a random way, thus the stock prices also fluctuate

randomly making the predictability of stock returns infeasible.

For every research producing empirical evidence in favor of market efficiency, a contradictory

paper is available to establish market inefficiency, which is often termed as anomaly (Majumder,

2013). Anyone who has observed price behavior following an earnings surprise, in which price

movement has been excessive and would be expected to self-correct within a few trading days.

This tendency is far from random and is caused by a variety of distortions in supply and demand.

Thus, the belief in EMH is questioned because it claims that market participants will perform at

the market average over time. Many characteristics, for example price momentum, price earnings

ratio, dividend yield etc. clearly proves the postulates of EMH wrong.
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The two main approaches commonly used to analyze and predict financial market behaviors

are the technical analysis and the fundamental analysis. The technical analysts like the practition-

ers tend to exploit the short-term inefficiencies and believe that the movement in the stock price and

volume reflects all the relevant information. Moreover, technicians assume that these past trends

in prices and volume tend to repeat themselves in the future, thus by identifying the previous beha-

vior patterns, trading rules can be formulated to achieve higher returns (Esfahanipour & Mousavi,

2011).

It is important to note that predictability and earning higher abnormal returns using technical

analysis are only possible if weak form EMH is rejected i.e. historical prices do not reflect all past

information in future. Regardless of the theories supporting EMH in general and weak form in

specific, investors, financial experts and brokerage firms have used technical analysis with consid-

erable success (Rodrı́guez-González, Garcı́a-Crespo, Colomo-Palacios, Iglesias & Gómez-Berbı́s,

2011). Several scientific papers in the literature have proposed many technical indicators that

explain the variability in stock market returns e.g. (Aghabozorgi & Teh, 2014). The most persist-

ent technical anomalies that poses serious questions to market efficiency are momentum or trend

following effects (Luo, Subrahmanyam & Titman, 2019) and emergence of bubbles and market

crashes.

Fundamentalists closely knitted with the academics, on the other hand, believe that the stock

prices of the company is reflected by several political and economic factors that are internal and

external to the company. This belief is in contrast with the semi-strong efficient market hypothesis,

which postulates that all available information is already reflected in equity prices.

Studies that examined the results of corporate insiders and stock exchange specialists (Schwert,

2003) suggests that both corporate insiders having insider information and stock exchange spe-

cialists having better analytical skills and tools earn abnormal returns by beating the world most

sophisticated and informationally strong-form efficient stock markets consistently. Few examples

of fundamental anomalies are returns based on price earning ratios, size, neglected stocks, book

value to market value ratios, outperformance of value stocks in favor of growth stocks (Richardson,

Tuna & Wysocki, 2010) among others. This evidence contradicts the semi-strong hypothesis since

all these fundamental factors are public knowledge, and this contradictory evidence suggests that
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some combination of technical and fundamental analysis can predict the market.

Furthermore, an additional layer of complexity is added when (Malkiel & Fama, 1970) demon-

strated that the hypothesis of efficient markets could not be rejected without an accompanying

rejection of the model i.e. model misspecification. This difference between the theory and the

reality, known as a joint hypothesis problem and we can only test a joint hypothesis by stating that

the market is efficient in equating asset prices with their intrinsic values, where the intrinsic values

are determined by a perfect asset pricing model. Hence, whenever an anomaly is found, we have

no way of knowing that which part of this joint hypothesis did not work. Most studies that deny

the existence of anomalies shift the blame towards incomplete models of stock prediction. In the

words of (Fama, 1998) inferences about market efficiency can be sensitive to the assumed model

for expected returns.

1.2.2 Research Questions

The main rationale behind the asset pricing theory is to identify the underlying phenomenon in the

volatility of asset returns. Thus, anomalies or factors that explain asset prices are considered to

be a corner-stone of factor models in asset pricing literature. In other words, the core objective of

a factor model is to identify the underlying patterns and establish a relationship of the identified

drivers with the financial performance of a firm. This subject is incredibly large and there are many

papers dedicated to it and it is still growing with a fast pace. So naturally, the first essential question

is to identify the relevant drivers of asset returns. In answering the first question, we will establish

that drivers are either the individual firm characteristics or broad macro-based factors, which is

done in the literature review presented in Chapter 2 of this study. The sequential literature review

will help us identify the most common drivers that explain the cross-section of asset returns. There

are hundreds of drivers already identified in the literature as explained in the background study

and the candidate pool is still evolving both in the sense of quantity and dynamism amongst the

variables. Thus, the fundamental question is to identify the most relevant drivers of asset returns

in such a high-dimensional, non-linear, complex, chaotic, and dynamic space.

The machine-learning techniques offer more adaptive and flexible mechanisms in optimal
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feature selection, as they are well suited to handle high-dimensional, non-linear, and complex

spaces ((Lee, 2009). Specifically, penalized regressions, tree based models, and neural networks

are amongst the famous feature-selection techniques that are well suited in high-dimensional space.

In this light, we will present our methodology in section 3 and sequentially test the question of in-

sample and out-of-sample explanatory predictive power of the techniques we are employing, which

is discussed in section 4 and 5. We will also evaluate the feasibility of different ensembles based on

the combination of techniques that are employed. Since, machine-learning techniques are hard to

interpret, we finally address the question of explaining how the respective decision is being made

in each network.

1.2.3 Objectives of the study

• Identify and investigate the formal representation of key underlying factors or characteristics

that are determinants of stock returns in the presence of hundreds of potential factors using

machine-learning tools.

• Evaluation and comparison of machine-learning techniques and ensembles in identifying

and explaining the underlying factors of stock returns. The tools that we used are shrink-

age techniques including Ridge regression, Lasso, and Elastic Net, tree-based techniques

including simple-trees and random forests, and neural networks.

• Opening up the traditional black-boxes by ascertaining the feature importance of each al-

gorithm.

• The ensembles are formed utilizing two completely different markets i.e. the US and Pakistan

in order to evaluate any potential diversification benefits. We will further provide a compar-

ison of the predictive out-of-sample performance of the techniques used.

1.2.4 Significance of the study

The reason on which the factor investing is based is to identify the relationship between the finan-

cial performance of a firm and underlying drivers. Explaining the underlying phenomenon of asset

returns is the fundamental objective of any factor model and the search for factors has produced a
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large amount of potential candidates. The fundamental task facing the asset pricing theory today

is to bring more discipline to the proliferation of factors (Cochrane, 2009).

Most of the studies that explain the variability of stock returns are concentrated to employ

only past price and volume information also called technical indicators (Cavalcante, Brasileiro,

Souza, Nóbrega & Oliveira, 2016). Other studies such as fama-five factor model (Fama & French,

2015) focuses on the factors of portfolios that are usually a long position in the best performing

stock and short position on the lowest quantile stocks rather than just the pure characteristics of

firms. There are very few recent studies discussed in the literature review in the US market, while

we do not find any related study in the case of Pakistan. Thus, the main contribution of our study

is the advancement of asset pricing theory through a lens of factor investing in the field of Finance.

This thesis aims to contribute the subject of asset pricing by addressing the problem of ex-

tracting a valid signal from a high-dimensional stock market space. The answers to the research

questions presented above are exploratory and expected to alleviate the uncertainty among the

participants of the equity markets by providing them with a comparative performance of recent

machine-learning techniques in selection of a robust model. The process of model building is

unique to this study, as this study mainly utilizes the individual level firm characteristics rather

than just relying on the raw price and volume data to build up the candidate feature library. The

feature space for the data of US is 93 variables for 1200 stocks and 40 variables for all 19 major

banks of Pakistan. To best of our knowledge, there is no other study specially in the case of Pakistan

that utilizes such a diverse feature space to extract relevant signals that explain the cross-section of

different firms.The most closely related study is (Jan, 2019), but the scope of this study is signi-

ficantly different in many ways. Primarily (Jan, 2019) dealt with the forecasting ability of CAPM

and fama-french factor models using 6 indicators in context of artificial neural networks. On the

contrary, we take an approach to value a firm based on individual 40 characteristics. Moreover, we

have comprehensively compared the performance and built ensembles on penalized regressions,

tree based models, and neural networks.

Additionally, the factors are extracted by employing the most recent and cutting-edge machine-

learning techniques, so we are also contributing on the application of machine-learning techniques

in the context of asset pricing. More specifically, our contribution to the machine-learning literat-
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ure is geared on the comparison of different techniques and their respective explanatory power in a

high-dimensional setting for robust model building. As machine-learning techniques are generally

considered as black-boxes, the revelation of the feature importance under each respective network

is an important contribution of this study. Lastly, we will build ensemble of different models on

two completely different datasets to maximize the diversification benefits from the models.

20



Chapter 2

Literature Review

Financial markets are the drivers of modern market economy and they reflect the expected growth

prospects and risk associated with the firms. It also implies that investors can get significant amount

of information from these risk factors to diversify their losses and to perform investment decision-

making. In last few decades, various risk factors were identified and reported. The problem is that

those risk factors do not persist and continuously evolve over time (Shanaev & Ghimire, 2020).

This is the reason of the proliferation of factors. (Cochrane, 2011) labeled the current state of

research a ”factor zoo” highlighting that many papers over the past three decades have reported

various factors providing excess risk adjusted returns, but they remain not relevant over time.

Thus, any reasonable model of prediction must be dynamic enough to cope up with ever changing

nature of high dimensional variables

The section 3.1 provides a literature review of the evolution of modeling techniques and the

meta studies covering anomalies. This section further signifies the importance of characteristics in

comparison to the long-short portfolio based factors. In section 3.2 onward, we present a system-

atic review of the studies related to the application of machine-learning tools with more focus on

predicting the stock returns.
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2.1 Evolution of asset pricing models and anomalies

Stock valuation models are a significant tool as they enable a researcher to value the shares in

presence of risk factors. Foremost is the modern portfolio theory by (Markowitz, 1952) is referred

as one of the most important studies in financial economics literature. The theory proposed that

investors should focus on selecting portfolios based on their overall risk-reward characteristics.

Modern portfolio theory is the basis for developing the theories of price formation for financial

assets, the famous Capital Asset Pricing Model (CAPM) (Sharpe, 1964) and arbitrage pricing

theory (APT) Ross(1976). CAPM is perhaps the most significant study in the field of modern

financial economics, and it has long been a guide for academics and practitioners interested to

model the relationship between average returns and market risk.

CAPM is a market equilibrium model in which market βs is the only relevant measure of an

asset’s risk. Hence, the cross-section of asset returns only depend on the cross-section of market

β. This approach was criticized by (Jensen, Black & Scholes, 1972), which argued that given the

condition of high volatility of market returns, β underestimates the overall risk. To address the

cross-sectional problem, (Fama & MacBeth, 1973) provided a solution as Fama-Macbeth cross-

sectional regression.

The intense econometric investigation of CAPM also lead to the development of several dif-

ferent versions on much more realistic assumptions. The foremost among them was the (Fama &

French, 1992) three-factor model. The three-factor model extended the basic CAPM to include

size and book-to-market as explanatory variables in explaining the cross-section of stock returns.

After rigorous testing, the three-factor model could not explain the momentum effect presen-

ted by (Jegadeesh & Titman, 1993), which lead to the development of four-factor model by

(Carhart, 1997). However, the latest studies have proved that four-factor models are inadequate

to explain the stock pricing and returns. Recently, (Fama & French, 2015) presented a five-factor

model, which adds profitability and investment in addition to the factors from three-factor model.

The launch of five-factor model had proved to be an enormous improvement compared to the pre-

vious models. However, it has left opportunities for better models to be further developed in future

(Rowshandel, Anvary Rostamy, Noravesh & Darabi, 2017) and hence, the search for a better asset
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pricing model is still on.

The meta-studies that document the historical anomalies include (Green, Hand & Zhang,

2013), (Harvey, Liu & Zhu, 2016), and (McLean & Pontiff, 2016) among others. However, a few

most frequently cited factors and their time-lines are summarized below:

• Size anomaly (SML): That explains the out performance of small cap firms in comparison

to the large cap firms: (Astakhov, Havranek & Novak, 2019), (C. Asness, Frazzini, Israel,

Moskowitz & Pedersen, 2018), (Van Dijk, 2011), (Fama & French, 1993), (Fama & French,

1992), (Banz, 1981).

• Value anomaly (HML): Out performance of value stocks as apposed to the growth stocks:(C. S. As-

ness, Moskowitz & Pedersen, 2013), (Fama & French, 1993), (Fama & French, 1992).

• Momentum (WML): An anomaly where stocks having highest average returns continue to

out perform those with weak returns: (C. S. Asness et al., 2013), (Carhart, 1997), (Jegadeesh

& Titman, 1993).

• Profitability (RMW): Firms with strong profitability surpass the returns of firms with weaker

profits. (Bouchaud, Krueger, Landier & Thesmar, 2019), (Fama & French, 2015),

• Investment (CMA): Firms with aggressive investment philosophy exceed the returns in com-

parison to the conservative investments. (Hou et al., n.d.), (Fama & French, 2015).

• Betting against beta (BAB): The strategy predicts that the assets with higher beta are over-

valued and assets with lower beta are under-valued and both are mean reverting. (C. Asness,

Frazzini, Gormsen & Pedersen, 2020), (Baker, Hoeyer & Wurgler, 2019), (Boloorforoosh,

Christoffersen, Fournier & Gouriéroux, 2020), (Frazzini & Pedersen, 2014), (Baker, Bradley

& Wurgler, 2011), (Ang, Hodrick, Xing & Zhang, 2005).

It is often convenient to look into the returns of portfolio instead of individual stocks, as port-

folios are more stable and have desirable statistical properties. It is easier to detect anomalies from

a long-short combination of highest quantile portfolio minus the lowest quantile extreme. It is a

current topic in the academic debate of the asset pricing literature, that whether the firm returns are

explained by the exposure to the long-short factor portfolios or simply by the pure characteristics
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of the firms. (Daniel & Titman, 1997) along with two subsequent papers (Daniel, Titman & Wei,

2001) and (Daniel, Titman et al., 2012)) provided evidence in favor of individual firm level char-

acteristics. Small market cap firms with high book-to-market ratios consistently out-performed the

average returns, even if other factors are not very positive for them. Therefore, the significance

of intrinsic characteristics cannot be ignored against the long-short factor exposure. Some earlier

contributions that are made to explain and predict returns with firm attributes include (Hjalmarsson

& Manchev, 2012), (Ammann, Coqueret & Schade, 2016), (DeMiguel, Martin-Utrera, Nogales &

Uppal, 2020), and (McGee & Olmo, 2020), but these studies are originally not with the intent or

focus of machine-learning perspective. The role of characteristics in explaining the return variation

with the machine-learning perspective are:

• (Chordia, Goyal & Shanken, 2017) reiteriates the significance of characteristics in com-

parison to the factor loadings and in their sample characteristics based models have more

explanatory power in the variation of expected returns in comparison to the factor-based

models.

• (Kozak, Nagel & Santosh, 2018) took a different approach by incorporating the sentiments

based risk premium approach for model building.

• (Han, He, Rapach & Zhou, 2019) employed penalized regressions to predict the monthly

returns of US stock and they extracted more than 20 characteristics from the pool of 90

variables.

• (Kelly, Pruitt & Su, 2019) and (S. Kim, Korajczyk & Neuhierl, 2019) took an approach by

combining both the factors and characteristics by taking factors as latent and beta loadings

on characteristics.

• (Koijen & Yogo, 2019) have proposed a demand model in which characteristics are utilized

to form the porfolios. They demonstrated that aggregate demand is directly linked to char-

acteristics and not to the factors. In subsequent studies, (Koijen, Richmond & Yogo, 2019)

show that only a few sets of characteristics has large explanatory power in the prediction of

future returns. Finally, (Martin & Nagel, 2019) proposed that the characteristics play im-

portant role in the predictability of dividend growth, which in turn explains the variability of
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stock returns.

2.2 Machine Learning

Due to the development of computing power and availability of data, machine learning techniques

offered a huge improvement in comparison to traditional statistical methods. Machine learning

techniques have been applied with relative success in modeling and predicting the asset returns

(Lee, 2009). Many machine learning techniques are able to extract nonlinear relationship between

the factors without any prior information (Atsalakis & Valavanis, 2009). Most of the applications

in the realm of machine learning in asset pricing uses only technical indicators, which might be

motivated by the fact that technical indicators are reported daily and easily available. However, we

present a case of using both fundamentals and technical indicators in machine learning context in

this thesis.

2.2.1 Penalized Regression

We introduce the widespread concept of regularization for linear models. There are several pos-

sible applications for these models. The first one is to resort to penalization to improve the ro-

bustness of factor-based predictive regressions. For instance, (Han et al., 2019) and (Rapach &

Zhou, 2020) used penalized regression to improve stock returns predictions that emanates from

individual firm characteristics. Similar ideas are also developed for macroeconomic predictions

(Uematsu & Tanaka, 2019). The second application stems from (Stevens, 1998), where he links

the weight of optimal mean-variance portfolios to particular cross-sectional regressions. The idea

is to improve the quality of mean-variance driven portfolio weights. In any case, the idea presen-

ted in seminal paper of (Tibshirani, 1996) is same: standard unconstrained optimization programs

may lead to noisy estimates, thus adding a structuring constraint helps remove some noise. For

instance, (Kremer, Lee, Bogdan & Paterlini, 2020) use this concept to build more robust mean-

variance (Markowitz, 1952) portfolios and (Freyberger, Neuhierl & Weber, 2020) use it to single

out the characteristics that help explain the cross-section of equity returns. The focus of this paper

is, however, first objective of improving the robustness of factor-based predictive regressions.
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2.2.2 Tree-based Models

After the monograph of (Breiman, Friedman, Stone & Olshen, 1984) popularized the powerful

yet simple clustering algorithms in form of classification and regression trees. Recently, the surge

in Machine Learning applications in Finance has led to multiple publications that use trees in

portfolio allocation problems. A list includes (Ballings, Van den Poel, Hespeels & Gryp, 2015),

(Patel, Shah, Thakkar & Kotecha, 2015), (Moritz & Zimmermann, 2016), (Krauss, Do & Huck,

2017), (Gu, Kelly & Xiu, 2020), (Guida & Coqueret, 2018), (Coqueret & Guida, 2020b) and

(Simonian, Wu, Itano & Narayanam, 2019). One notable contribution is (Bryzgalova, Pelger &

Zhu, 2019) in which authors create factors from trees by sorting portfolios via simple trees, why

they call Asset Pricing Trees.

2.2.3 Neural Networks

Neural networks (NNs) are a very rich and complex subject. We refer to the definition of NNs

given by (Francois, 2017) ”chains of differentiable, parameterised geometric functions, trained

with gradient descent”. (Bansal & Viswanathan, 1993) and (Eakins, Stansell & Buck, 1998) are

few of the early adapters of neural networks in financial economics. (Bansal & Viswanathan,

1993) utilized a pricing kernel by estimating nonlinear functional form of the model. While scope

of (Eakins et al., 1998) is to identify and quantify the relationship between institutional investments

and the attributes of the firm. (Burrell & Folarin, 1997) provided with an early review of finan-

cial applications of NNs during the 1990s, while more recently, (Sezer, Gudelek & Ozbayoglu,

2020), (Jiang, 2020) and (Lim & Zohren, 2020) surveyed the deep learning models that attempt

to forecast financial time series. Since the predictive out-performance of NNs in financial markets

is a popular subject and we further cite these recent additions by (Krauss et al., 2017), (Fischer

& Krauss, 2018), (Aldridge & Avellaneda, 2019) and (Soleymani & Paquet, 2020) for interested

reader. Below we provide a brief description of some recent studies on neural networks in the

realm of financial economics:

• (Feng, Polson & Xu, 2019) studies the factors explaining the stock returns in cross-sectional

data emplying neural networks.
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• (Gu et al., 2020) studies the relationship between macro-economic variables and firm char-

acteristics to forecast future returns.

• (Chen, Pelger & Zhu, 2019) employed a deep neural network to estimate the pricing kernel.

2.2.4 Model Comparison

Earlier studies that made a comparison between the machine-learning techniques include (Kim,

2003), (Huang, Nakamori & Wang, 2005),(Matias & Reboredo, 2012),(Dunis, Likothanassis,

Karathanasopoulos, Sermpinis & Theofilatos, 2013), and (Gu, Kelly & Xiu, 2021). These studies

are based on only on daily price and volume information. However, (Guida & Coqueret, 2018)

and (Tobek & Hronec, 2020) are the most recent studies that incorporate a large-cross section of

characteristics and utilizes machine-learning techniques. (Guida & Coqueret, 2018) is not with the

foucs on the comparitive performance of the techniques, rather they utilized aggregated anomalies

to create one mis-pricing signal. (Tobek & Hronec, 2020) is the most closely related study, which

has drawn a comparison on random forest, boosted trees, and neural networks. (Tobek & Hronec,

2020) has taken it as a classification task. Further, they have not taken penalized regression and

regression trees into account.

2.3 Conclusion

The existence of hundreds of potential factors explaining the expected equity returns as noted by

(Cochrane, 2011) and more recently by (Harvey et al., 2016), (McLean & Pontiff, 2016), and

(Hou, Xue & Zhang, 2020) aspires a researcher naturally of the search for factors that contribute to

explain the asset returns. The key findings of the literature review is the evolution of risk factors and

factor models is a continuous process. More than 300 risk factors are identified by the researchers,

but only few of these essential risk factors are significantly responsible in explaining the variation

of stock market returns. Moreover, due to continuous evolution and changing nature of risk factors,

the essential risk factors may lose their efficiency in the future. Thus, it seems quite difficult to

have a stable efficient factor model that can capture the stock market risk and return relationship

globally in long run.
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The infusion of evolving factors in the asset pricing space is enormous, but they also provide

a unique opportunity to test and compare the performance of new emerging machine learning

techniques. Thus, the fundamental task facing the asset pricing field today in the words of (Feng,

Giglio & Xiu, 2020) is to bring more discipline to the proliferation of factors. To tame the zoo of

factors, machine-learning techniques can leverage the non-linear pattern recognition abilities even

in high-dimensional space. There is a lot of space available for this current research especially

if we take the problem as regression exercise not classification as demonstrated in the literature

review. This will allow us to draw comparison amongst diverse set of techniques, which is not

available in the literature.
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Chapter 3

Methodology and Data

3.1 Methodology

3.1.1 Introduction

As already explained above, there are many known determinants of stock market returns and the

relationship keeps on evolving over passage of time. In such a high-dimensional data with a large

number of independent variable, the standard regression models does not suffice the purpose of

our prediction. The strong presence of multicollinearity reduces the precision of estimates, thus

weakening the statistical power the regression models. Standard p-values are not trustworthy to

identify the independent variable that are statistically significant. In order to extract valid signals,

resorting to some sort of dimension reduction technique must be used. Traditional techniques

include step-wise regressions and information criterion, but they lack in their flexibility. The advent

of machine learning techniques has now made it possible to apply some sort of penalization without

relying on the restrictive assumptions. The ability of the machine-learning techniques to identify

patterns especially the non-linear interaction of variables is unparalleled. Thus, in this thesis,

we will resort to supervised machine-learning to extract the relevant characteristics and forecast

returns in the cross-section of different firms. The baseline equation in supervised learning is,

y = f(X) + ε, (3.1.1)
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In financial terms, the equation can be expressed as

rt+1,n = f(xt,n) + εt+1,n, (3.1.2)

where f(xt,n) can be viewed as the expected returns for time t + 1 computed at time t, which

is Et[rt+1,n]. Building a fair model for predictions or inference requires to delve in all parts of

eq.2. Sequentially the first step is gathering and processing of the data, which will be discussed

later. On the right side of the equation, there is a consensus in the literature as discussed above,

the features should include classical predictors such as market capitalization, accounting ratios,

risk measures, and momentum proxies. For the dependent variable, most researchers work with

monthly returns, but there exists the possibility that other maturities may also perform better in

out-of-sample performance. While the significance of the choice of the model f is a crucial part,

but the selection and engineering of the inputs are at least as important. Finally, εt+1,n the errors are

most commonly dealt with vanilla quadratic programming. Theoretically, arbitrage pricing theory

(APT) of Ross (1976) explains all of the linear factor models to be a special cases of this theory.

The return on assets is assumed to be a linear combination factors under APT. Mathematically,

rt,n = αn +
K∑
k=1

βn,kft,k + εt,n, (3.1.3)

where E[εt,n] = 0, cov(εt,n, εt,m) = 0 and cov(fn, εn) = 0. If possibility of such factors is proven,

then it is in contradiction with the capital asset pricing model (CAPM)(Jensen et al., 1972), ac-

cording to which market risk is the only driver of asset returns. Restricing the model to the linear

relationships of only market risk and prices is not plausible beyond simple interoperability of the

CAPM model. We will extend the eq. (2) to serve the dual purpose of capturing non-linearities

and prediction as,

rt+1,n = g(xt,n) + εt+1. (3.1.4)

The most obvious difference between (4) and (2) is the introduction of the nonlinear function

g. The second difference between the equations is the shift of time index. The interest in the

prediction of stock prices in the cross-section of firms will provide a forecast of future average

returns. Once the nonlinear model ĝ is established, which is the time-t measurable value g(xt,n),
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it will map the relationship between the predictors and the interest variable. There are several

other specifications, in which machine-learning related equations could be used to estimate asset

pricing models, beyond the explicit form of Equation (4). One mainstream way to price assets is

by stochastic discount factor (SDF) Mt, which satisfies Et[Mt+1(rt+1,n − rt+1,f )] = 0 for an asset

n (Cochrane, 2009). Another alternative method is to model asset returns as linear combination of

factors, just as in (2) and (3). Allowing the loadings βt,n to be time dependent, the compact form

becomes,

rt,n = αn + β′t,nft + εt,n,

An important theme is to introduce the independent variables as firm characteristics in the equation

above. As also in (Fama & French, 1993) study, characteristics are traditionally present in the

definition of factors. The portfolios are constructed on basis of some characteristics like market

size, accounting ratios, past performance etc to identify the factors that explain the variability of

stock returns. The factors may be constructed heuristically in the portfolios from simple rules

like thresholding or sorting. For example, firms within the lowest quantile from book-to-market

perspective may be classified as growth stocks and those in the upper quantile as value firms. So

a long-short portfolio of the lowest quantile and the highest quantile can be defined as a value

factor. It is important to note that (Fama & French, 1993) used a more advanced approach to build

the value factor that also takes market capitalization into account. More recently, the process of

the construction of factors is automated by the advances enabled by machine learning. One such

application is (Feng et al., 2019), where the authors developed a way to optimize the automatic

construction of factors for better fit in the cross-section of different assets. Theoretically such

models are more generalized and thus the resultant factors help explain a greater proportion of

in-sample variation in stock returns.

A third approach was put forward by (Kelly et al., 2019), where the beta loadings are de-

termined by the characteristics and factors are considered unobservable. Naturally, this approach

suffers with degrees of freedom problem because in rt,n = αn + (βt,n(xt−1,n))′ft + εt,n, only char-

acteristics xt−1,n are well defined, while both the factors ft and the functional form βt,n(·)has to

be estimated. But the major advantage of Kelly, Pruitt, and Su (2019) is their linear functional

form of the model, which is naturally more tractable. Lastly, (Gu et al., 2020) introduced another
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approach, which combines two neural network architectures. The first neural network processes

the characteristics xt−1 as inputs and generate factor loadings βt−1(xt−1). A second neural network

is then used to transform the returns rt into factor values ft(rt). The aggregate model can then be

written as:

rt = βt−1(xt−1)′ft(rt) + εt. (3.1.5)

The specialty of above specification is important as the output is also present as input and it helped

the researchers (Gu et al., 2020) to find parsimonious nonlinear representation in their dataset.

3.2 Penalized Regressions

3.2.1 Simple Regressions: The Principles

Legendre (1805) is an early reference on least squares optimization, which makes the ideas behind

linear models at least two centuries old. Given a matrix of predictors X, we seek to decompose the

output vector y as linear function of the columns of X plus an error term ε. y = Xβ + ε. The best

choice of β is naturally the one that minimizes the error. For analytical tractability, it is the sum

of squared errors that is minimized L = ε′ε =
∑I

i=1 ε
2
i . This loss L is called the sum of squared

residuals (SSR). In order to find optimal β, it is imperative to differentiate this loss L with respect

to β because the first order condition requires that the gradient be equal to zero:

∇βL =
∂

∂β
(y− Xβ)′(y− Xβ) =

∂

∂β
β′X′Xβ − 2y′Xβ

= 2X′Xβ − 2X′y

The first order condition∇β = 0 is satisfied if

β∗ = (X′X)−1X′y, (3.2.1)

Which is known as the standard ordinary least squares (OLS) solution of the linear model.
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3.2.2 Forms of penalization

Penalized regressions have been popularized since the seminal work of (Tibshirani, 1996). The

idea is to impose a constraint on the coefficients of the regression so that their total magnitude be

restrained. In the original paper, (Tibshirani, 1996) proposes to estimate the following LASSO

model:

yi =
J∑
j=1

βjxi,j + εi, i = 1, . . . , I, s.t.
J∑
j=1

|βj| < δ, (3.2.2)

for some strictly positive constant δ. Under least square minimization, this amounts to solve the

Langragian formulation:

min
β


I∑
i=1

(
yi −

J∑
j=1

βjxi,j

)2

+ λ
J∑
j=1

|βj|

 , (3.2.3)

for some value λ > 0 which naturally depends on δ, the lower the δ, the higher the λ : the constraint

is more binding. This specification is close to the ridge regression which is L2 regularization:

min
β


I∑
i=1

(
yi −

J∑
j=1

βjxi,j

)2

+ λ
J∑
j=1

β2
j

 , (3.2.4)

and which is equivalent to estimating the following model:

yi =
J∑
j=1

βjxi,j + εi, i = 1, . . . , I, s.t.
J∑
j=1

β2
j < δ, (3.2.5)

3.2.3 Predictive regressions

The introduction of penalization within predictive regressions goes back to (Rapach, Strauss &

Zhou, 2013), where they are used to assess lead-lag relationships between US markets and other

international stock exchanges. More recently, (Chinco, Clark-Joseph & Ye, 2019) use LASSO

regressions to forecast high frequency returns based on past returns in the cross-section. (Han

et al., 2019) and (Rapach, Strauss, Tu & Zhou, 2019) use LASSO and elastic net regressions to

improve forecast and single out the characteristics that matter when explaining stock returns. In

simple machine-learning based asset pricing, models are often built on Eq (4), but if we stick to
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linear relationship and add penalization terms, the model becomes:

rt+1,n = αn +
K∑
k=1

βknf
k
t,n + εt+1,n, s.t. (1− α)

J∑
j=1

|βj|+ α

J∑
j=1

β2
j < θ

where we use fkt,n or xkt,n interchangeably and θ is penalization intensity. Again, one of the aims of

the regularization is to generate more robust estimates. If the patterns extracted hold out of sample,

then the equation below will be a relatively reliable proxy of future performance.

r̂t+1,n = α̂n +
K∑
k=1

β̂knf
k
t,n,

3.3 Tree-based methods

3.3.1 Simple trees: The principles

Decision trees seek to partition datasets into homogeneous clusters. Given an exogenous variable

Y and features X, trees iteratively split the sample into groups which are as homogeneous in as

Y possible. The split is made according to one variable within the set of features. For technical

construction of the splitting process, we follow the approach of (Hastie, Tibshirani & Friedman,

2009) that is given a sample of (yi, xi) of size I , a regression tree seeks the spilitting point which

minimizes the total variation of the yi inside the two child clusters. In order to do that, it first

finds the best splitting point so that clusters are homegeneous in Y for each feature x(k)i and then

selects the feature that achieves the highest level of homegeneity. Homegeneity in trees is closely

related to variance. Since we want the yi inside each cluster to be similar, we seek to minimize

their dispersion inside each cluster and then sum the two figures. We cannot sum the variances

because this would not take into account the relative sizes of clusters. Hence, we work with total

variation that is the variance times the number of elements in the clusters. To find the best split for
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each feature, we solve the argmin
c(k)

V
(k)
I (c(k)) with

V
(k)
I (c(k)) =

∑
x
(k)
i <c(k)

(
yi −mk,−

I (c(k))
)2

︸ ︷︷ ︸
Total dispersion of first cluster

+
∑

x
(k)
i >c(k)

(
yi −mk,+

I (c(k))
)2

︸ ︷︷ ︸
Total dispersion of second cluster

, (3.3.1)

where

mk,−
I (c(k)) =

1

#{i, x(k)i < c(k)}

∑
{x(k)i <c(k)}

yi and

mk,+
I (c(k)) =

1

#{i, x(k)i > c(k)}

∑
{x(k)i >c(k)}

yi

are the average values of Y , conditional on X(k) being smaller or larger than c. The cardinal func-

tion #{·} counts the number of instances of its argument. For feature k, the optimal split ck,∗ is the

one for which total dispersion over the two subgroups is the smallest. Of all the possible spilitting

variables, the tree will choose the one that minimizes the total dispersion not only over all splits,

but also over all variables: k∗ = argmin
k

V
(k)
I (ck,∗). After one split is performed, the procedure

continues on the two newly formed clusters. Each leaf has an average value for the label, which is

the predicted outcome, and this only works when the label is numerical as in our case. There are

different criteria that can determine the stoppage of the splitting process. It is imperative to limit

the size of the tree to avoid over fitting, the process called pruning.

3.4 Random forests

The combination or ensemble of many simple trees is random forest, which seems to be a reason-

able path towards the diversification of prediction errors. The major reference for random forests

is (Breiman, 2001), who proposed practical considerations for building a random forest. There are

two ways to create multiple predictors from simple trees, and random forest combine both:

• The model is trained on similar yet different datasets. One way to achieve this is through
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bootstrapping, where the instances are resampled with or without replacement for each indi-

vidual tree, yielding new training data each time a tree is built.

• The data can be altered by curtailing the number of predictors. Alternative models are built

based on different set of features. The user chooses the number of features to retain and then

the algorithm selects these features randomly at each try.

Hence it becomes simple to grow many trees and the ensemble is simply a weighted combination

of all trees. As random forests are built on the idea of bootstrapping, they are more efficient than

simple trees. (Ballings et al., 2015), (Patel et al., 2015), (Krauss et al., 2017), and (Huck, 2019)

have shown their relative better performance in comparison with other algorithms. The original

theoretical properties of random forests are demonstrated in Breiman (2001), where he defines the

margin function as:

mg =M−1
M∑
m=1

1{hm(x)=y} −max
j 6=y

(
M−1

M∑
m=1

1{hm(x)=j}

)
,

where the left part is the average number of votes based on the M trees hm for the correct class.

The right part is the maximum average for any other class. The margin reflects the confidence

that the aggregate forest will classify properly. Notably, (Breiman, 2001) also shows that as the

number of trees grows to infinity, the accuracy converges to some finite number which explains

why random forests are not prone to overfitting.

3.5 Neural network

3.5.1 Principles of a basic neural network perceptron

The emergence of neural networks dates back to the stufy of (Rosenblatt, 1958), which proposes a

binary classification algorithm as a result. The nodes of the neural network are interconnected into

the layers. An input layer, a hidden layer and a output layer are the typical ones that are interlinked.

Learning takes place in the hidden layer, where a summation operation is performed on each before

an activation function is applied on it. The signals are then passed next layers and so on. Due to

the flexibility and robustness of approach, neural networks can capture non-linearities and complex
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interactions among variables. The model is the following:

f(x) =

 1 if x′w + b > 0

0 otherwise

The vector of weights w is a scaling parameter for the variables and the bias b determines the

overall direction of the decision-making process. The value of error is computed by εi = yi −

1{∑J
j=1 xi,jwj+w0>0}. after the initial calculations for biases b and weights wi. The default values

of the bias is set to zero s b = w0 and then an initial constant is added to x : xi,0 = 1, such that

εi = yi−1{∑J
j=0 xi,jwj>0}. The optimal weights in the perceptrons are only approximated, thus they

do not provide a close ended solution unlike the traditional regression techniques. Initial weights

can be derived by minimizing the sum of squared errors and to serve this purpose an efficient way

to proceed is

• computing the model value at point where xi : ỹi = 1{∑J
j=0 wjxi,j>0}.

• adjust the weight vector: wj ← wj + η(yi − ỹi)xi,j.

which acts as adjusting the weight in the right direction. The learning rate often represented as

scaling factor η acts similarly in both the neural networks and the decision trees. The learning will

be rapid if the shifts implied by η is large, but convergence may be slow or may even not occur as

a trade off. Thus, to reduce the risk of overfitting, a small η is usually preferable.

3.5.2 Multilayer perceptron (MLP)

A single perceptron can be viewed as a linear mapping of inputs and outputs to which is applied a

particular activation function. This is how nonlinearity is introduced in an otherwise linear model.

The idea behind neural networks is to combine multiple perceptrons together, which in essense is

similar to the random forests with trees. It follows the following process:

• The data enters the network and goes through an initial linear mapping:

v
(1)
i,k = x′iw

(1)
k + b

(1)
k , for l = 1, k ∈ [1, U1],
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• A non-linear activation function f 1 transforms the data to act as an input for the next layer.

With different weights and biases often calculated through back-propagation, the process of

linear mapping will be repeated for each layer until the end of the network:

v
(l)
i,k = (o(l−1)

i )′w(l)
k + b

(l)
k , for l ≥ 2, k ∈ [1, Ul].

• The layers are inter-connected such that the output of previous layer acts as an input for

next layer. Yielding inputs in such a way for the next layer is essentially the same as linear

mapping of inputs and outputs to which the activation function f (l) have been applied.

o
(l)
i,k = f (l)

(
v
(l)
i,k

)
.

• Finally, in the terminal stage, the outputs are aggregated from the feedback of the last layer:

ỹi = f (L+1)
(
(o(L)
i )′w(L+1) + b(L+1)

)
.

From the lens of factor investing, the characteristics of the firm initiate the process of feeding the

input layer. The value of the features is multiplied by the initial weights and a bias is added, in the

first step. The process is performed on all the units of first layer, such that the output of first step,

which is a linear combination of the input is then transformed by the activation function. All of

the values from the first layer are combined and then fed to the second layer following the same

process. These iterations are performed until the end of network. The objective of last layer is to

produce a linear output that may correspond to a categorical label or numerical value. The output

is a single number in case of numerical value and a vector equal to the number of categories if

it is categorical label. The outperformance of neural networks can be attributed to their universal

approximations. Meaning that a simple network with few layers can approximate the underlying

function with arbitrary precision given a bounded continuous function. (Cybenko, 1989). For more

early references, (Du & Swamy, 2013), (Goodfellow, Bengio & Courville, 2016) and (Guliyev &

Ismailov, 2018) for recent results.
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We can now formally define a single-layer perceptron as:

fn(x) =
n∑
l=1

clφ(xwl + bl) + c0,

where φ is a non-constant bounded continuous function.

The training of neural networks is done by minimizing error function subject to some penalization

just like for other machine-learning tools:

O =
I∑
i=1

loss(yi, ỹi) + penalization,

where yi are the true values of all instances and ỹi are the values obtained by the model. The

weights and biases of all the units of all layers are adjusted in the training of neural network,

such that O defined above is the smallest possible, which is performed via gradient descent with

following equation:

W←W− η∂D(ỹi)

∂W
. (3.5.1)

The ultimate goal of the decision trees is to create homogeneous clusters as explained preiously.

In contrast, the nerural network works to reduce the error in prediction ỹi and a target label yi..

The choice of suitable activation function is more important for a classification problem specially

at the end of the network.

3.6 Evaluation measures

The measures we will use to evaluate the machine learning techniques are mean squared error

(MSE) and hit ratio. The MSE measures the variance between the training and test sample i.e. the

average squared difference between the estimated value based on training sample and actual value

based on test sample. However, the MSE is is harder to interpret for an average investor because

it is complicated to map it into intuitive financial indicator. The hit ratio is more ogranic in this

perspective as it demonstrates the proportion of times the prediction guesses the return correcly i.e.

if we take a long position based on positive signal and short position based on negative ones, the

hit ratio indicates the proportion of correctly identified expected direction.
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3.7 Data sources and preprocessing

We have resided to utilize two different datasets in this thesis for the comparison purposes. In

the process of building the ensembles, the machine learning techniques that we are employing

are highly correlated in terms of extracting the variables especially in the case of US. As most

the models are essentially extracting the same pattern, there is very less diversification benefit

that is available if an ensemble has to be created. It makes it very difficult to even beat a simple

equally weighted ensemble. To draw a comparison and evaluate the feasibility of ensembles we

will also train our models in the data of Pakistan in addition to US. The data for US stocks is

taken from (Coqueret & Guida, 2020a) already pre-processed, while we manually extracted the

required variables from publicly available banks traded on Pakistan Stock Exchange (PSX). The

financial reports are available at quarterly frequency from the PSX website (PSX, 2021). Monthly

price and volume information is extracted from the company archives of business recorder website

(Recorder, 2021). We have choosen the time-period from 12/31/1999 to 01/01/2019 for 1200

US stocks with a total of 93 variables and 9/30/2005 to 9/30/2020 of 19 major banks in Pakistan

with a total of 22 variables. A full list is provided in the appendix. After the data extraction, we

join the monthly price and volume information with quarterly company financials by replacing the

missing points with the closing values. We utilized the exploratory data analysis of the features to

reveal the distributions of data. As an example, the distribution of the market capitalization before

uniformization is shown in figure 3.1. This plot clearly shows the positive skewness in the market

capitalization, which is not ideal to the analysis we are performing in the study. To circumvent the

issue we have to resort to some normalization technique, as applied in figure 3.3 before inputting

the data to the model.
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Figure 3.1: Distribution of market capitalization before uniformization Pakistan

We further show a box plot illustrating the distribution of correlations between the selected

features and the returns in figure 3.2. The correlations are computed over the whole cross-section of

stocks. They are mostly located close to zero, but there are periods which experience exteme shifts

as demonstrated by the black circles representing outliers. Further, price to sales ratio, the price to

book ratio, and the relative strength indicator are the predictors with positive median correlation

with returns.
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Figure 3.2: Distribution of correlation of factors with returns Pakistan

As demonstrated above, the distribution of some variables is not normal. Additionally they

also differ in the measurement scale, i.e. market capital is measured in billions, while returns does

not have any units. Both of these concerns render any type of machine learning analysis useless.

We thus need to homogenize the data as most models like neural networks perform much better

when predictors have similar scales and normally distributed. The convention is to scale inputs so

that they range in [0,1] before sending them through the training of neural networks (Freyberger

et al., 2020). The simplest way to uniformization is to rank the firms according to some indicator

and assign the values between 0 to 1. It is done such that at each date the variables are processed

so that the firm with the smallest indicator is equal to 0 and 1 for the largest firm. After this step,

all of the features are uniformly scaled accross the cross-section of assets and are comparable in

magnitude. Mathematically, if we write xi for the raw input and x̃i for transformed data, common

scaling methods include:

• standardization: x̃i = (xi −mx)/σx.

• min-max rescaling: x̃i = (xi −min(x))/(max(x)−min(x))

• uniformization: x̃i = Fx(xi), where Fx is the empirical c.d.f of x. In this case the vector x̃

is defined to follow a uniform distribution over [0,1].
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We have first taken the log of the indicators with bigger values before applying the 0 to 1

uniformization to data. We now present, as an example the market capitalization in figure 3.3

showing the smoothness achieved after the pre-processing.

Figure 3.3: Distribution of market capitalization after uniformization Pakistan
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Chapter 4

Results and Economic Interpretation

4.1 Illustration and results of Penalized Regression

The outcome is different for every penalization technique, thus justifies a separate treatment.

Mechanically, as λ increases, all of the coefficients of the ridge regression slowly decrease in mag-

nitude towards zero. The convergence is much smoother as shown in the figure 4.1. Clearly, the

ridge regression gleans market capitalization as the most dominating predictor with large negative

coefficients. The negative coefficients indicate the presence of size anomaly in our sample, ac-

cording to which small firms experience higher future returns compared to their large counterparts.

These results are in line with (Astakhov et al., 2019) and (C. Asness et al., 2018). Furthermore,

our sample is also confirming the contribution of momentum, price to book ratio, price to earning

ratio, and net profit margin etc. in explaining significant portion of variation in stock returns. Other

small contributors include earning per share, free cash flow yield, earning before interest and tax

over operating profits, and interest expense etc.
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Figure 4.1: Ridge Regression US Stocks

The figure represents the LASSO model, where the convergence is brutal as some coefficients

shrink to zero very quickly. For instance, the convergence of earning before interest and tax over

operating profit to zero is quick. Other variables that persist the penalization longer i.e. for λ

sufficiently large, the market capitalization resisted the most unlike the ridge regression where

zero value is only reached asymptotically for all coefficients. Again the negative sign with the

coefficient of market capitalization signifies the presence of size anomaly in the US data. Similar

to ridge regression the moderate and small contributors remain the same in LASSO model.
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Figure 4.2: LASSO Model US Stocks

Elastic nets, by definition are the combination of both ridge and LASSO models, meaning that

as long as the value of alpha is greater than 0, the shrinkage quality of LASSO will be preserved.

So, LASSO and elastic net functions to shrink the dimensionality of variable space and hence an

ideal candidate model selection tool. The figure 4.3 shows the variable importance of the elastic

net approach, which is very much in line with the results of ridge and LASSO models.
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Figure 4.3: Variable Importance of elastic net

From the table 4.1, elastic net outperforms both the LASSO and ridge regressions in both the

terms of our evaluation measures, the mean squared error (MSE) being the lowest at 3.6% and

the highest hit ratio of 54.60%. The MSE measures the variance between the training and test

samples, while the hit ratio is the proportion of times that the prediction guesses the sign of the

return correctly in the testing sample. A natural benchmark for hit ratio is 50% but to account for

the transaction costs, adding 1% on average will be more prudent. All of our penalized regression

models were able to beat the benchmark considering transaction costs by reasonable margin.

Method MSE Hit Ratio

LASSO 0.03703482 0.5340689

Ridge 0.03701371 0.5363682

Elastic 0.03699696 0.5460346

Table 4.1: Mean squared error and Hit ratio of penalized regressions
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excel

4.2 Illustrations and results of Decision trees

The Rpart package is used for implementation of decision trees and to reduce the risk of overfitting,

several criteria to stop the splitting process of decision trees are presented below:

• Impose a minimum number of instances for each leaf (minbucket function in Rpart), which

ensures that each final cluster is composed of a sufficient number of observations. The

minimum number of observations required in each terminal nodes are set to 3500.

• Similarly, it can also be imposed that the cluster has a minimal size (minsplit function in

Rpart) before considering any further split. The minimum number of observations required

to continue splitting are set to 8000.

• Require a certain threshold of improvement in the fit (cp function in Rpart) such that if a split

does not sufficiently reduce the loss, it can be deemed unnecessary. The precision measure

is set to be 0.0001.

• Limit the depth of the tree (maxdepth function in Rpart), which is defined as the overall

maximum number of splits between the root and any leaf of the tree. The maximum depth is

set to be 3 in this study.

The figure 4.4 represents a characteristics based decision tree where the dependent variable is the

1 month future return. The convention in the representation of trees is at each node, a condition

describes the split with a true or a false expression. If the statement is true, the observation goes to

the left cluster and if not, it goes to the right cluster. Given the full sample, initial split is performed

according to the market capital. If the market capital is greater than 0.15, the instance is placed on

the left bucket, otherwise it goes to the right bucket. Similarily, in the next left node if the price

to book ratio fulfills the benchmark of 0.025, it gets split further until maximum depth is reached.

The final returns at the bottom are color coded from left to right, left being the lowwest at 0.39%

and right the highest at 11%. At the top of the tree with all instances one month future return is

1.4%.
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Figure 4.4: Graphical representation of decision trees

The figure 4.5 represents the feature importance of the decision trees, where market capital-

ization, momentum, and volatility are the most significant ones. The results in terms of varibale

selection are quite similar to penalized regressions. The prevalence of size and momentum anom-

alies are reiterated, while volatility measure also becomes significant.
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Figure 4.5: Variable importance of Decision trees

From the table 4.2 below, the hit ratio of decision tree is 54.6% which is exactly the same as

the hit ratio of elastic net. However, the decision trees slightly improved upon in reduction of mean

squared error in comparison to penalized regressions.

Method MSE Hit Ratio

Decision Tree 0.0369881 0.5460346

Table 4.2: MSE and Hit ratio of decision trees

4.3 Illustrations and Results of Random Forest

The decision trees are known to over fit the training sample, although we have put together several

controls to avoid it by limiting the size of trees. Random forests are more efficient than simple

regression trees as they are built on the idea of bootstrapping. Several recent studies (Krauss

et al., 2017) and (Huck, 2019) have shown their successful implementation of random forests,
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although the original theoretical properties of random forest are demonstrated in (Breiman, 2001).

Sequentially, we first make a comparison of the variables extracted by decision trees and random

forests in figure 4.6. We can observe from the figure 4.6 that many of the idiosyncrasies of decision

trees got tamed. Specially the impact of market capitalization reduces in magnitude in random

forests unlike both the decision trees and penalized regressions. There is an increase in magnitude

in both the momentum anomaly and price to book ratio, while volatility has mixed results. Other

significant contributors include cash flow to sales and dividend yield ratios, which are very unique

to this study.

Figure 4.6: Comparison of Decision trees and Random forest

Finally we present the table 4.3 stating mean squared error and hit ratio of random forests.

Random forest has certainly reduced the over fitting problem of the trees as demonstrated by the

improvement in MSE with a negligible reduction in hit ratio.
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Method MSE Hit Ratio

Random Forest 0.03689782 0.5434993

Table 4.3: MSE and Hit ratio of Random forest

4.4 Illustration and results of Neural Networks

It is important for the neural networks to have the number of parameters smaller than the number

of instances. It is preferable to have a large sample, which is readily available for US stocks from

many sources. We start the neural network by calculating the number of parameters that includes

the weights and the biases to be estimated in a network.

• In the first layer, we have (U0 + 1)U1 parameters, where Uo are the number of independent

variables represented as columns in X and U1 depicts the number of neuron in the first layer.

• The number of parameters for hidden layers are (Ul−1 + 1)Ul..

• Finally, UL + 1 are the number of parameters for the output layer.

• The total number of the parameters that require optimization are

N =

(
L∑
l=1

(Ul−1 + 1)Ul

)
+ UL + 1

The table 4.7 shows the number of parameters in each layer of our neural network. It is a

forward pass list meaning the order is from input to output. The number of parameters for the first

layer with 24 neurons is 93 the number of features plus one for the bias multiplied by 24, which

makes it 2256 and similarly so on.
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Method Layer name Number of neurons Number of parameters

Neural network Input layer 24 2256

first layer 16 400

Hidden layer 8 136

Output layer 1 9

Total trainable parameters 2801

Table 4.4: Architectural choice of neural network

The improvement in the loss function as the number of training epochs increases is shown in

the figure 4.7 below. The learning is quite rapid at the beginning of training process but converges

suddenly to a point where no additional epoch offers any improvement.

Figure 4.7: Neural network training

The figure 4.8 shows the variable importance of the neural network. Interestingly unlike other

algorithms the most highly rated variable under neural network is the average daily volume over

3 months. Other unique findings of our neural network is the prevalence of capital expenditure
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to price to sales cash flow ratio, which may require further investigation of other asset classes to

confirm the finding. Other relevant factors include market capitalization, momentum, dividend

yield etc. which are almost same across all the techniques we have employed.

Figure 4.8: Neural network features

Finally we present the accuracy measures of our neural network in table 4.5. The hit ratio for
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all models is very competitive, but by far neural networks performed best in reducing the mean

squared error in comparison to other models.

Method MSE Hit Ratio Loss MAE Test Loss

Neural Network 0.02944842 0.5460346 0.02905057 0.08345813 0.03698535

Table 4.5: Accuracy measures of Neural network

55



Chapter 5

Ensembles

5.1 Illustration and results of Ensemble Models

In order to build an ensemble, we gathered the predictions and corresponding errors of all the

models we have constructed above. A correlation matrix is then computed and shown in table 5.1.

From the table 5.1, all of the models are strongly correlated to each other meaning that most of

the indicators that are choosen by the models are grossly similar. There are little diversification

benefits that are available in the ensemble as the models fails to generate heterogeneity in their

predictions. Correlation Matrix of models in Training sample:

Pen_reg Tree RF NN

Pen_reg 1.0000000 0.9982507 0.9977416 0.9982573

Tree 0.9982507 1.0000000 0.9981544 0.9984143

RF 0.9977416 0.9981544 1.0000000 0.9987878

NN 0.9982573 0.9984143 0.9987878 1.0000000

Table 5.1: Correlation matrix in training sample for US
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The table 5.2 compares the training accuracy of models by computing Mean Absolute Error

(MAE) in Training sample. The regression trees performed the worst and the best performing

machine learning engine in the training sample is random forest.

Pen_reg Tree RF NN

0.08345916 0.08366795 0.08342645 0.08357141

Table 5.2: MAE of models in training sample

Now we compare the accuracy of our models in the testing sample, again the correlations

5.3 amongst the different techniques are high but interestingly penalized regression generalizes the

training from training sample in test sample the best as shown in table 5.4, meaning that elastic

net which we have used as a representative of penalized regression have the best out of sample

performance.

Pen_reg Tree RF NN

Pen_reg 1.0000000 0.9985518 0.9979074 0.9979575

Tree 0.9985518 1.0000000 0.9985593 0.9986113

RF 0.9979074 0.9985593 1.0000000 0.9989766

NN 0.9979575 0.9986113 0.9989766 1.0000000

Table 5.3: Correlation matrix in testing sample of US

Pen_reg Tree RF NN

0.06618181 0.06650492 0.06684155 0.06682563

Table 5.4: MAE in test sample of US
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Below we calculate the optimized weights of models 5.5 based on the training data where

w∗ = (E′E)−11M
(1′ME′E)−11M

and the corresponding MAE 5.6 of optimized model is shown.

Pen_reg -0.54785327

Tree 0.16153549

RF 1.44102545

NN -0.05470766

Table 5.5: Weights of optimized ensemble US

0.06763758

Table 5.6: MAE of optimized ensemble

Since the correlation between the models is high and thus the diversification benefits are

very limited, we consider an equally weighted ensemble performance 5.7, which outperforms the

optimized ensemble as shown below:

0.06627278

Table 5.7: MAE of equally weighted ensemble

5.1.1 Inclusion of macro-economic indicators

Finally, we extend our analysis to include macro-economic indicators. We included term spread,

CPI, GDP, and unemployment rate. We create a decision tree 5.1 that tries to explain the accuracy

of models as a function of macro-variables. One big cluster represents 92% of predictions. It cor-

responds to the periods when the term spread is above 0.29. The other two groups are determined
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according to the level of GDP. If the latter is above from the index value of 100, the average of

absolute error is 6.9%. The last number of 12% indicates that when the term spread is low and

GDP negative, the predictions of the models are not trust worthy because the errors have a mag-

nitude that is twice as large as in other periods. So an important deduction is not to use ML-based

forecasts in volatile economic conditions.

Figure 5.1: Decision tree of MAE appropriation of equal ensemble to economic indicators
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5.2 Machine learning on the data of the Banks of Pakistan

5.2.1 A short glimpse into the feature selection

Since the focus of this section is to study the feasibility of ensembles on a different dataset, we

therefore provide only a short glimpse of features selected accross the different techniques. The

figures 5.2, 5.3, and 5.4 presents the variables selected by elastic net, tree based models, and neural

networks respectively. The common indicator that is most prevalent in all of the techniques is the

relative strength indicator (RSI) that reflects the momentum effect first documented by (Jegadeesh

& Titman, 1993) in the prices of stock. RSI developed by (Wilder, 1978) measures the magnitude

of recent prices to evaluate an over-valued or undervalued conditions in the price of a stock. Other

researchers including (Rasheed, Saood & Alam, 2019) and (Tauseef & Nishat, 2016) also found

similar prevalence of momentum effects in their respective samples of Pakistan stock exchange

market. The beta and the size anomaly as shown in figure 5.2 are also in line with results of (Iqbal

& Brooks, 2008) and (Jan, 2019) respectively. It is important to note that both the market capital

to revenues ratio and price to sales ratio are effectively measuring the same metric. We have not

found any study in the literature especially in the case of Pakistan, which documented price to sales

ratio significantly explaining cross-section of equity returns. Other characteristics that are unique

to this study and plays an important role in determining the future returns of Banks especially in

our sample of Pakistan are shown in the figures below:
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Figure 5.2: Feature selection elastic net Pakistan
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Figure 5.3: Feature selection comparison of trees and random forest Pakistan
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Figure 5.4: Feature selection Neural network Pakistan

Method MSE Hit Ratio

Pen reg 0.003749399 0.8232469

Trees 0.004360869 0.8088377

Random Forest 0.003647283 0.8386167

Neural nets 0.009174978 0.5014409

Table 5.8: MSE and Hit ratio of all methods

5.2.2 Ensemble methods on Pakistan

In order to build an ensemble, we gathered the predictions and corresponding errors into a matrix.

A correlation matrix is then calculated 5.9, the models have a reasonable success to generate het-

erogeneity in their predictions. It essentially means that the variables extracted by the models are

diversified enough but that could be due to a relatively small sample size of Pakistan. This is an
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interesting direction for future research and we will further discuss it in the final section below.

Pen Tree RF NN

Pen 1.0000000 0.8297448 0.9142431 0.7027043

Tree 0.8297448 1.0000000 0.8156952 0.6511078

RF 0.9142431 0.8156952 1.0000000 0.9030927

NN 0.7027043 0.6511078 0.9030927 1.0000000

Table 5.9: Correlation matrix in training sample of Pakistan

The figure 5.10 shows the mean absolute error of the tools and based on this measure random

forests is the best performing technique in our testing sample. Penalized regressions also performed

relatively well compared with simple trees and neural networks on the training data : MAE of

ensemble on Pakistani Data:

Pen Tree RF NN

0.05582614 0.05702258 0.05092703 0.08472196

Table 5.10: MAE of ensemble on Pakistan training sample
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Below we calculate the optimized weights of models 5.11 based on the test data and the

corresponding MAE of optimized model 5.12 is shown. Our optimized ensemble is performing

almost as good as the equally weighted ensemble 5.13, but future improvements are still required.

Weights in optimized ensemble:

Pen -0.6089056

Tree 0.3161692

RF 2.0586458

NN -0.7659094

Table 5.11: Weights in optimized ensemble of Pakistan

mean abs (optimal unconstrained test))

0.046219

Table 5.12: MAE of optimized ensemble of Pakistan

mean abs(Equally weighted test))

0.04197303

Table 5.13: MAE of equal weighted ensemble of Pakistan
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We gained significant improvements in terms of the diversification benefits of our ensemble.

Now we show the correlation matrix in the testing sample 5.14, MAE on testing sample 5.15, and

a comparison of the performance between optimal combination and equally weighted ensembles.

The random forests have the best out-of-sample performance in comparison to the penalized re-

gression, decision trees, and neural networks respectively in the sample of Pakistan.

Pen_reg Tree RF NN

Pen_reg 1.0000000 0.7177480 0.8321413 0.4428607

Tree 0.7177480 1.0000000 0.7008418 0.4290073

RF 0.8321413 0.7008418 1.0000000 0.8219463

NN 0.4428607 0.4290073 0.8219463 1.0000000

Table 5.14: Correlation matrix in testing sample of Pakistan

Pen_reg Tree RF NN

0.04624148 0.04905040 0.04077325 0.06865359

Table 5.15: MAE on testing sample of Pakistan
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Chapter 6

Conclusion and Recommendations

6.1 Outcome of the study

We have analyzed and compared several machine learning techniques namely penalized regres-

sions, trees-based methods and neural networks in the markets of US and Pakistan. We have also

tested the formation of ensembles and tested them in both datasets. The results are mixed; our

optimal combination of ensemble was not able to beat the equally weighted benchmark in the

US market, while the performance is enhanced when the ensembles were made on the data from

Pakistani Banks, but still the optimal ensemble does not comprehensively beat the equally weighted

ensemble. Thus, an important future direction is to work on some combination of techniques that

yield improvements over simple equally weighted ensembles.

We interpreted the traditional black-boxes and shown the variable importance in each net-

work. The most significant variable in the US market is the market capitalization that confirms

the presence of size anomaly. Other significant variables in the sample of US includes momentum

effect, volatility of stocks, and price to book ratio among others. Most significant outcome is that

both of the technical and fundamental indicators are included in significant predictors of US stocks.

Furthermore, in general our results are promising with the hit ratio of neural networks, decision

trees and elastic net around 54.6%, which is well above the benchmark of 52% considering trans-

action costs in the US market. Lastly for the US market 5.1, inclusion of macro-economic variables
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reveal that our predictions are reliable in normal economic conditions and machine learning tool

should be avoided in highly volatile markets as in recession.

Although the original purpose of utilizing the data of Pakistan was to evaluate the performance

of the optimal ensemble as stated above. But in the process of building the ensembles, we also

tested the MSE and hit ratio of in the testing sample. We achieved considerable enhancements

in terms of both the measures with the hit ratio averaging more than 80% and MSE of 0.4%.

The most prevalent variables in the banks of Pakistan include the momentum indicator, price to

book value, the shares turnover, market cap, and price to sales ratio among others. Machine-

learning techniques have significantly more value in the emerging markets as the markets are more

informationally inefficient in comparison to the developed markets like US. However, it requires

more research to cover other developing markets to see if these results persist. It is therefore a

very compelling research idea for future researchers to include more firm specific characteristics

in their analysis.

6.2 Challenges and Future Directions

The application of machine learning techniques poses many significant challenges for financial

forecasting that includes modeling of highly complex, multidimensional, and noisy data series. As

already discussed above, the simple linear ensembles do not beat the equally weighted ensembles

in general, but an investigation into the application of stacked ensembles for capturing trading

patterns in both the supervised and un-supervised learning presents an important future direction

in the field of financial forecasting. As we have not found much literature on this topic, so as

a policy recommendation, we suggest to look forward for utilizing the brute force of machine-

learning techniques to innovate on mutiple-staged ensembles.

Along many other challenges, the core one remains the feature engineering in a high dimen-

sional space with minimum loss of valuable information. As the stock market data is very noisy

in nature, it becomes very challenging to glean out a true signal from a mere noise. In this space,

there are still a lot of opportunities, as there are myriad of different factors that can be tested. First

and foremost inclusion of comprehensive list of technical and fundamental indicators is always
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solicited.

Further the pre-processing of the features can take many forms and each indiviual form has

significant effects on the results. For example; we have just utilized the uniformization technique

for this study, however normal standardization procedures or min-max scaling could also be util-

ized. Similarly, we only predicted the 1-month future returns, a relatively longer term or shorter

term predictions may also prove to be more efficient. Thus, we suggest to adopt a more holistic

approach for future researchers interested in this field.

Another dimension of the holistic approach may also take into consideration the concept of

portfolio building. As already discussed, the application of machine learning methods are closely

related to the task of predicting values for financial assets, an important required future contribution

should focus on the whole portfolio of stocks. Foe example; the application of machine learning

tools to optimize the portfolio building process, such as done in (Markovitz, 1952) provides signi-

ficant opportunities for future contributions.

Majority of the studies as discussed above are based on technical analysis only which are

typically the historical price series. By using only price and volume information as a proxy of a

complex market, is a major short-coming of the existing literature. These assumptions are rare

to hold in financial markets, as there are multiple factors that may effect the overall movement in

stock prices. For example, the stock prices of a company may change its behavior due to changes in

economic and company specific information or may be due to changes in the investors psychology

or expectations. An interesting future direction will be to incorporate the behavioral factors in the

model. There is still a lot of scope to work especially in the context of the stock market of Pakistan.

We have included the banking sector with only 40 indicators in this research, however in future it

will be interesting to explore more sectors with more indicators. Another very promising direction

is the mining of significant feaures on textual information or including the sentiments from social

media and news to improve the predictability of stock returns.
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Table 4: Indicators and their types Pakistan
Indicator Abbrevaition Indicator Type

Date DATE Date

Stock name STOCK ID Factor

1 months return Returns Dependent Variable

Total revenue growth TRG Growth indicator

Earnings from continued operations growth EG Growth indicator

Net income growth NIG Growth indicator

Normalized net income growth NNIG Growth indicator

Diluted EPS growth DEPSG Growth indicator

Common equity growth CEG Growth indicator

Total asset growth TAG Growth indicator

Tangible book value growth TBVG Growth indicator

Dividend per share growth DPSG Growth indicator

Stock price Stock price Momentum and technical analysis

Relative strength index RSI Momentum and technical analysis

Log of prices Log Price Momentum and technical analysis

Log returns Log returns Momentum and technical analysis

Relative strength index dividends adjusted RSI Div adjusted Momentum and technical analysis

Return on assets ROA Profitability indicator

Return on equity ROE Profitability indicator

Return on common equity ROCE Profitability indicator

Selling, general and admin margin SGAM Profitability indicator

Earnings from continued operations margin EM Profitability indicator

Net income margin NIM Profitability indicator

Price to diluted EPS ratio P Diluted EPS Valuation indicator

Price to normalized EPS ratio P Normalized EPS Valuation indicator

Price to sales ratio P Sales Valuation indicator

Price to book value ratio P BV Valuation indicator

Price to tangible book value ratio P TangBV Valuation indicator

Market cap to total revenues Mcap Total Revenues Valuation indicator

Log of market cap Log Market Cap Valuation indicator

Diluted market capital Dil Mcap Outstanding Valuation indicator

Dividend yield Dividend Yield Valuation indicator

Market capitalization Market Cap Vauation indicator

1 year beta Beta Yearly Volatilities

1 year beta squared Beta R squared Volatilities

1 year price volatility Price volatility Yearly Volatilities

6 months price volatility Price volatility Halfyearly Volatilities

3 months price volatility Price volatility threemonths Volatilities

Average daily volume Daily Volume Volume and liquidity indicator

Log of share turnover Log Turnover Volume and liquidity indicator

Share turnover TURNOVER Volume and liquidity indicator
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Table 1: US Indicators
Column Name Short Description
stock id Stock Identification
Date Time Period
Advt 12M Usd Daily volume aveage USD 12 months
Advt 3M Usd Daily volume average USD 3 months
Advt 6M Usd Daily volume average USD 6 months
Asset Turnover Sales to assets ratio
Bb Yld Redemption Yield
Bv book value of the assets
Capex Ps Cf Capital Expenditure on price to sale cash flow
Capex Sales Capital Expenditure margin
Cash Div Cf cash dividends cash flow
Cash Per Share cash per share
Cf Sales cash flow per share
Debtequity debt to equity
Div Yld dividend yield
Dps dividend per share
Ebit Bv EBIT on book value
Ebit Noa EBIT on non operating asset
Ebit Oa EBIT on operating asset
Ebit Ta EBIT on total asset
Ebitda Margin EBITDA margin
Eps Earnings per share ratio
Eps Basic Basic Earnings per share ratio
Eps Basic Gr Growth in earnings per share
Eps Contin Oper earnings per share due to continued operations
Eps Dil diluted earnings per share
Ev enterprise value
Ev Ebitda enterprise value on EBITDA
Fa Ci fixed assets on common equity
Fcf Free Cash Flow
Fcf Bv Free cash flow to book value ratio
Fcf Ce free cash flow to capital employed ratio
Fcf Margin free cash flow to sales ratio
Fcf Noa free cash flow to net operating assets coverage
Fcf Oa free cash flow to operating assets coverage
Fcf Ta free cash flow to total assets coverage
Fcf Tbv free cash flow to tangible book value
Fcf Toa free cash flow to total operating assets
Fcf Yld free cash flow to price
Free Ps Cf free cash flow to price sales ratio
Int Rev intangibles to sales ratio
Interest Expense interest expense coverage
Mkt Cap 12M Usd avg market cap 12 months USD
Mkt Cap 3M Usd avg market cap 3 months USD
Mkt Cap 6M Usd avg market cap 6 months USD72



Table 2: US Indicators
Mom 11M Usd momentum 1year minus 1month USD
Mom 5M Usd momentum 6months minus 1 months USD
Mom Sharp 11M Usd momentum 1year minus 1month USD by volatility
Mom Sharp 5M Usd momentum 6month - 1month USD by volatility
Nd Ebitda debt on Earning before interest tax and depreciation
Net Debt net Loan
Net Debt Cf net loan to cash flow
Net Margin margin
Netdebtyield debt yield
Ni net income
Ni Avail Margin net income margin
Ni Oa net income to operating asset ratio
Ni Toa net income to total operating asset
Noa net operating Asset
Oa operating Asset
Ocf operating Cash Flow
Ocf Bv operating cash flow to bv ratio
Ocf Ce operating cash flow to capital employed ratio
Ocf Margin Operating Cash Flow margin
Ocf Noa operating cash flow to net operating asset ratio
Ocf Oa operating cash flow to operating asset ratio
Ocf Ta operating cash flow on total assets
Ocf Tbv operating Cash flow on TBV
Ocf Toa operating Cash Flow on total operating assets
Op Margin operating margin
Op Prt Margin net margin growth
Oper Ps Net Cf cash flow from operations per share
Pb price to book ratio
Pe price earnings ratio
Ptx Mgn pretax to sales ratio
Recurring Earning Total Assets Reccuring Earnings on total assets
Return On Capital Return on capital employed
Rev revenue
Roa return on assets
Roc return on capital
Roce return on capital employed
Roe return on equity
Sales Ps price to sales
Share Turn 12M average share turnover 12 months
Share Turn 3M average share turnover 3 months
Share Turn 6M average share turnover 6 months
Ta total assets
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Table 3: US Indicators
Tev Less Mktcap enterprise value minus market cap
Tot Debt Rev total debt on revenue
Total Capital total capital
Total Debt total debt
Total Debt Capital debt to capital ratio
Total Liabilities Total Assets liabilities to asset ratio
Vol1Y Usd Returns volatility 1 year
Vol3Y Usd Returns volatility 3 years
R1M Usd return 1 month
R3M Usd return 3 months
R6M Usd return 6 months
R12M Usd return 12 months
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