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ABSTRACT 

Forecasting methods which incorporate appropriately chosen exogenous variables (EVs) 

produce enhanced forecasting performances than single variable time series 

methods. However, suitable exogenous variables are hardly available in practice. 

This study introduces a new forecasting approach, known as Wavelet 

Autoregressive Integrated Moving Average with WCs as EVs and Generalized 

Autoregressive Conditional Heteroskedasticity integrated with Wavelet Artificial 

Neural Network (WARIMAX-GARCH-WANN) method, to capture the data 

dynamics and enhance predictive power and accuracy, and, at the same time, 

address the challenge of non-availability of EVs. The WARIMAX-GARCH-

WANN method uses Wavelet Components (WCs) extracted from the wavelet 

transformation of the underlying time series. These WCs are taken as conventional 

EVs by WARIMAX-GARCH-WANN method. Like GARCH and ARIMA-

GARCH methods, the WARIMAX - GARCH-WANN method is used for high 

frequency time series which display nonlinear characteristics like non-constant 

conditional variance that hinges on lagged values of the time series. Moreover, it 

models frequency structure present in the data series to help achieve better 

performance in terms of prediction. The application of the WARIMAX-GARCH-

WANN method to Wilshire 5000 Price Index commendably outperforms the 

WARIMAX-GARCH, WANN in terms of performance for both insample and out-

of-sample forecast results. 

Keywords: WARIMAX-GARCH-WANN; WANN; forecasting accuracy
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CHAPTER 1 

INTRODUCTION 

Awareness of potential financial time series (FTS) results is important for efficient 

policy analysis in the financial sector. Financial sector forecasts provide the investors and 

fund managers in banks and insurance firms with valuable information to channel their 

assets correctly for higher returns. Understanding of potential financial time series (FTS) 

outcomes is essential for efficient policy analysis in the financial sector. For one-step ahead 

prediction, maintaining the data trend becomes entirely irrelevant. Nonetheless, as the need 

for h-step ahead forecast horizon arises, preservation of data trend becomes significant but 

challenging. In either case, high prediction accuracy remains indispensable. As a result, the 

main requirement for h-period ahead prediction models are retaining a high prediction 

accuracy and maintaining the data trend throughout the prediction period.  

Conventional models like ARIMA, GARCH or ANN fail to acquire both high 

prediction accuracy and retain the data trend at the same time (Babu & Reddy, 2015). 

ARIMA models model the conditional mean of a time series and serve as strong forecasting 

tools when it comes to low frequency data. As high frequency FTS data exhibit time-

dependent conditional variance, they fail to capture this volatile characteristic. GARCH 

models are designed to model the conditional variance. In essence, adding GARCH 

component to ARIMA models improves the model by taking account of the volatility in 

high frequency data. A further improvement in forecasting has been experienced in studies 
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by including exogenous variables (EVs) in the ARIMA-GARCH hybrid models, known as 

ARIMAX-GARCH models. However, in the absence or non-availability of exogenous 

variables, the researchers will have to compromise on forecast accuracy (Corrêa et al., 

2016). 

The use of (multi-layer perception) artificial neural networks (ANNs) have 

remained a common practice in FTS forecasting of late. ANNs have a remarkable 

capability to learn nonlinear association between input and output structures (Reston Filho 

et al., 2014).  Notwithstanding, the learning process that takes place in neural networks 

does not take into account the data trend; the process is developed to retain only high 

prediction accuracy (Babu & Reddy, 2014).    

Wavelet Artificial Neural Networks (WANNs) have an edge over ANNs in part 

due to their fast convergence. The fast convergence takes place as a result of the low 

correlation between the wavelet neurons. Further, functions dilation and contraction factors 

improve the network's capability of approximation. In addition to the above advantages, 

with amazing partial characteristic and multi-resolution learning, the WANN mimics 

remarkably the signal, which can display functional characteristics with varying 

resolutions with low forecast error; that is, high accuracy (Zolfagari & Sahabi, 2019).  

Correa et al. (2016) use wavelet components (WCs), using discrete wavelet 

decomposition (DWD) to generate them, as a solution for EVs. It is important to note that 

WCs obtained from DWD are stationary with a mean zero. However, their proposed 

Wavelet Autoregressive Integrated Moving Average with wavelet components as EVs and 
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Generalized Autoregressive Conditional Heteroscedasticity (WARIMAX-GARCH) model 

achieves enhanced prediction power as long as the stationary EVs are differenced. A 

serious drawback in differencing a stationary series is negative autocorrelation in the error 

terms.  

This study intends to use wavelet ANN in WARIMAX-GARCH model instead of 

differencing the EVs to acquire better prediction accuracy along with keeping the data 

trend. 

1.1 Research Gap 

Several hybrid models have been proposed for high frequency FTS data to obtain 

high prediction accuracy or to capture the data dynamics or both. The hybrid model 

WARIMAX-GARCH-WANN, which is proposed in this study, is not seen in any other 

studies. 

1.2 Motivation of the Study 

All studies conducted so far have concentrated on securing accurate forecasts in 

financial time series. Keeping in view the volatile nature of FTS data, most of the attention 

has remained focused on capturing the volatility in the series. However, achieving high 

prediction accuracy along with keeping the data trend intact has remained the primary goal 

of almost all of the researchers when it comes to h-period ahead forecasting. Some of them 

have achieved remarkably outstanding results. Nonetheless, there is still room for further 

improvement. This study is motivated to bring improvements by retaining data trend and 

achieving high prediction accuracy simultaneously.   
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1.3 Aims and Objectives 

To propose a model that retains the data dynamics, ensures high prediction accuracy 

and at the same time resolves the problem of exogenous variables using wavelet 

decomposition techniques while keeping the statistical properties intact. 

1.4 Significance of the Study 

As the proposed method used in this study captures the data dynamics and provides 

high prediction accuracy, it enables the investors and policy makers to arrive at informed 

decisions, which helps them to better channel their resources. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter gives a brief review of the literature on models used to generate 

forecasts using high frequency financial time series. 

2.1 Empirical Review  

Several techniques have been postulated for forecasting future outcomes; however, 

approximately all of them, one way or the other, have attracted some criticism in failing to 

forecast the events accurately or to fit the data perfectly.  The dynamic and unstable nature 

of the financial time series renders the forecasting task more difficult. FTS data usually 

exhibit non-constant conditional error variance. Engle (1982) proposed an autoregressive 

conditional heteroskedastic (ARCH) model, which models the non-constant conditional 

variance of the innovations. Bollerslev (1986) improved upon it by adding the 

autoregressive component, which is called the generalized autoregressive conditional 

heteroskedastic (GARCH) model. The problem with GARCH model is that it can only deal 

with symmetric series, but several financial time series data follow an asymmetric 

distribution. In order to cope with this problem asymmetric GARCH models like 

EGARCH, APARCH, TGARCH, GJR-GARCH etc. were introduced. 

The ARIMA type models popularized by Box & Jenkins (1970) with linear auto-

dependent features do not serve as appropriate models if the series has volatility in 

conditional variance of the error term. Even if the conditional and unconditional variances 

are fixed, it only ensures to maintain the data trend over the forecast period at the cost of 
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prediction accuracy (Babu & Reddy, 2015). The GARCH models, developed by Bolerslev 

(1986), have an edge over ARIMA models in that they capture volatility in high frequency 

financial time series. GARCH models in some cases are not appropriate to use as they 

assume Gaussian distribution. Since FTS usually exhibit fat-tail distributions, student’s t-

distribution better captures fat-tail features. Johnston & Scott (2000) have further explored 

the inappropriateness of Gaussian distribution assumption and the use of student t-

distribution. GARCH models- assuming student-t distribution or skewed t-distribution – 

win over the linear ARIMA models.  

Nonetheless, GARCH models too only retain the data dynamics at the expense of 

prediction accuracy. Their hybrid, like ARIMA-GARCH, models also suffer the same fate. 

Babu & Reddy (2015) propose a partitioning-interpolation based ARIMA-GARCH model 

and claim to have achieved a better forecasting technique which outperforms all other 

forecasting models. Notwithstanding, the partition and interpolation (PI) uses trial and error 

approach to determine the number of partitions. PI technique carried out with 10 partitions 

does not violate the Nyquist sampling theorem1, but as the number of partitions approaches 

30, PI violates Nyquist sampling rate.  An appropriate estimation technique needs to be 

worked out to get the required number of partitions. If, Babu & Reddy (2015) assert, 

estimation problem of partitioning the data set is resolved and covariates are included in 

                                                           
1 The Nyquist Sampling Theorem states that: A band-limited continuous-time signal can be sampled and 

reconstructed perfectly from the samples if the waveform is sampled over twice as fast as the highest 

frequency component. 
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the model, the PI based hybrid of ARIMA-GARCH models yield more accurate predictions 

while retaining the data trend.  

One important development in financial time series forecasting came with the 

application of (multi-layer perception) ANN in time series data. ANN provides better 

forecasts than ARIMA and GARCH models; that is, the forecast error is smaller as 

compared to that of ARIMA and GARCH models. Teixeira et al (2015) proposed a hybrid 

of Wavelet Decomposition technique with ANN (WD-ANN), also abbreviated as WANN, 

and showed that the method performs better than the conventional ANN model. The 

critique on ANN and WANN is that they learn, using the training data, from the data set 

before prediction. That is, they sacrifice the data dynamics. Khandelwal et al. (2015) 

propose a hybrid of ARIMA and ANN model. They have shown that ANN and ARIMA 

are not sufficient in forecasting when applied separately. Their hybrid, ARIMA-ANN, 

produces remarkable forecast accuracy. Nonetheless, a model with GARCH components 

explicitly included in the model also captures the GARCH effect in the series and may 

prove to yield better forecasts.  

Another development in time series forecasting which yields good forecasting 

results is a hybrid of ARIMA with exogenous variable and GARCH model known as 

ARIMAX-GARCH model. The exogenous variables (EVs), when chosen appropriately, 

enhance the forecasting performance of the model. Correa et al. (2016) claim that, in 

practice, exogenous variables are hard to obtain and/or are not available in many cases. In 

case, when EVs are not available, we have to use ARIMA-GARCH model instead, which 
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generates poor forecasts as compared to ARIMAX-GARCH model. They generate 

Wavelet Components (WCs) using Wavelet Decomposition and use them as EVs to solve 

the issue of the non-availability of exogenous variables. Then they use a hybrid of 

WARIMAX and GARCH to produce h period ahead forecasts. They have shown that this 

model performs better than ARIMAX-GARCH, ANN and WANN. ARIMAX-GARCH 

models preserve the data trend and ANN and WANN maintain the prediction accuracy 

only but not both simultaneously. They propose that if the exogenous variable generated 

using wavelet components is differenced, WARIMAX-GARCH model has the ability to 

retain the data dynamics as well as the in both in-sample and out-of-sample forecasting 

accuracy. 

WEVs consisting of WCs of detail are always stationary at level. The detailed 

components are differenced in order to obtain enhanced forecasting performance and/or 

get a reasonable model. As Mallat (2008) has pointed out, a wavelet function at level, which 

generates short duration curve images, has zero mean. From the statistical perspective, it 

means that the wavelet detail components are stationary around their conditional mean. 

Now, based on Mallat (2008), since the parameter linked with the spectral frequency of the 

detail WC is fixed, it shows that there is stationarity in conditional variance. As a result, a 

detail WC at level will always remain stationary. 

  Stationarity of the wavelet exogenous variable is a necessary condition that makes 

the WARIMAX and ARIMAX equivalent models, Correa et al. (2016). The error 

component of a stationary series has an autocorrelation close to zero. It is to be noted that 
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differencing induces negative autocorrelation in the error term. When the autocorrelation 

is more negative than -0.5, it implies that the series has been over differenced. In order to 

solve this issue more lags are to be added in the series.  

ANN and WANN provide good prediction accuracy. Instead of differencing the 

stationary series to achieve better forecasting power, we could combine ANN or WANN 

with WARIMAX-GARCH model, in which the stationary exogenous variables are not 

differenced, to capture the data dynamics as well as secure more accurate prediction power. 

Zolfagari & Sahabi (2019) propose ARIMAX-GARCH-AWNN and AWNN-ARIMAX-

GARCH hybrids. They suggest using Mexican-hat, the second derivative of the Gaussian 

function, as the mother wavelet. The forecast accuracy of the hybrids looks outstanding. 

As most of the FT series exhibit asymmetry, Haar, Daubechies, or other asymmetric 

wavelet families could be used to accomplish more accurate forecast results. 

2.2 Methodological Review 

2.2.1 Autoregressive (AR) Model   

Forecasting techniques in (financial) time series use past and current realizations to 

predict the future outcomes. The simplest model that relates the past values to the current 

value of the series to generate a forecast is an autoregressive (AR) process. The AR(p) 

models originated in the 1920s in the work of Udny Yule, Eugen Slutsky, and some others. 

The application of autoregressions is first found in the work of Yule in 1927 in which he 

analyzed the time-series behavior of sunspots (Klein 1997, p. 261). Mathematically, 

𝑦𝑡 = 𝛼0 + ∑ 𝛼𝑖𝑦𝑡−𝑖
𝑝
𝑖=1 + 𝜀𝑡                                                                                                (2.1)                                                                                                        
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where, 𝑦𝑡 represents the time series, 𝛼𝑖are the parameters of the autoregressive component 

𝑦𝑡−𝑖, 𝛼0 is the constant term and 𝜀𝑡is the white noise error terms (𝜀𝑡 ∼ 𝑁(0, 𝜎2)). The 

lagged values, 𝑦𝑡−𝑖, capture the first order autocorrelation.   

2.2.2 Moving Average (MA) Model 

It has also been noted that some series depend on the current and q past random 

shocks, especially when the series exhibits some negative autocorrelation. The resultant 

model is known as MA(q) model. Symbolically the model is written as: 

𝑦𝑡 = 𝛽0 + 𝜀𝑡 − ∑ 𝛽𝑗𝜀𝑡−𝑗
𝑞
𝑗=1                                                                                                           (2.2)                                                                                                  

 In the above equation, 𝛽𝑗are the parameters that measure the specific effect of the past 

error terms on 𝑦𝑡.  

2.2.3 ARMA Model 

Wold (1938) introduced the ARMA(p, q) model, the linear combination of 

autoregressive and moving average component, for stationary series in his PhD thesis, but 

he could not drive a likelihood function for estimation of the parameters. In some 

researchers’ view (e.g., Zhang, 2003; Chaâbane, 2014), for linear (smooth) time series the 

ARMA models show good ability to estimate and forecast. The ARMA(p, q) model is 

written as: 

𝑦𝑡 = 𝜇 + ∑ 𝛼𝑖𝑦𝑡−𝑖
𝑝
𝑖=1 − ∑ 𝛽𝑗𝜀𝑡−𝑗

𝑞
𝑗=1 + 𝜀𝑡                                                                                        (2.3)                                                                                

A mixed model, containing both AR and MA components (though not preferable), 

sometimes provides a best fit to the data. However, it is possible for the AR and MA terms 
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to cancel out each other’s effect, even though their coefficients (as judged by the t-

statistics) may appear to be significant. When the series is non-stationary, ARMA(p, q) 

becomes ARIMA(p, d, q). Box & Jenkins (1970) came up with the full modeling procedure 

for specification, estimation, diagnostics and forecasting of ARIMA(p, d, q). Symbolically, 

the model using lag and difference operator is as follows: 

𝛷 (𝛣)𝛥𝑑𝑦𝑡 = 𝑐 + 𝛩 (𝛣)𝜀𝑡                                                                                                          (2.4)                                                                                                  

Where 𝛷 (𝛣) = 1 − 𝜙1𝐵−. . . −𝜙𝑝𝐵𝑝, 𝛩 (𝛣) = 1 − 𝜃1𝐵−. . . −𝜃𝑞𝐵𝑞 and 𝛥𝑑 = (1 − 𝛣)𝑑 

indicates that the series 𝑦𝑡 has been differenced d times. 𝛣is the lag operator and 𝛷 and 𝛩 

are the coefficients of the lags of 𝑦𝑡 and the lags of 𝜀𝑡 , respectively. The lagged values of  

𝑦𝑡 and 𝜀𝑡 capture the remaining autocorrelation after the series has been differenced. The 

graphs of Autocorrelation function (ACF) and partial autocorrelation function (PACF) are 

used in choosing the number of AR and MA components in the model. 

2.2.4 ARIMAX Model 

Studies, including Prankratz(1991), Box & Tiao (1975), Williams (2001) and 

Jalalkamali et al. (2015) to name a few, have evidenced that incorporating relevant 

exogenous variables in ARIMA model improves the forecasting performance of the model. 

The specification of the ARIMAX (p, d, q) model is as follows: 

𝛷 (𝛣)𝑦𝑡 = 𝑐 + 𝛩 (𝛣)𝜀𝑡 + 𝛽𝑥𝑡                                                                                                   (2.5)                                                                                         

The estimation of the above models requires covariance stationarity of 𝑦𝑡and 

homoscedasticity in the error terms. In financial time series, heteroskedastic conditional 
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variances have been noticed. However, the assumption of covariance stationarity requires 

the unconditional variance to be constant over time. 

2.2.5 ARCH Model 

Engle (1982) noted that high frequency FTS exhibits conditional heteroskedastic 

variance; that is, FTS show volatility. He developed the autoregressive conditional 

heteroskedastic (ARCH) model to model the conditional variance. He observed that 

conditional (error) variance of FTS tends to depend on the past squared error terms.  

𝜎𝑡
2 = 𝜔 + ∑ 𝛽𝑗𝜀𝑡−𝑗

2𝑞
𝑗=1                                                                                                                (2.6)                                                                                                    

The presence of ARCH effect is tested using the Breusch-Pagan test. Usual OLS 

estimation technique is used on the mean model to obtain the residuals. Then an auxiliary 

regression of the squared residuals is run on the lags of the squared residuals (Enders, 

2015).  

𝜀𝑡̂
2 = 𝛼 + ∑ 𝛽𝑗𝜀𝑡̂−𝑗

2𝑞
𝑗=1 + 𝑢𝑡                                                                                                           (2.7)                                                                                                    

And then compute 𝑅2 × 𝑇. Under the hypothesis of homoscedasticity, the test statistic 

follows a 𝜒2 distribution. The ARCH(q) effect is present when the null hypothesis of 

homoscedasticity is rejected. 

A serious drawback in ARCH(q) model is that it is overparameterized. We need to 

estimate q+1 parameters to obtain the required estimated values of 𝜎𝑡
2. 
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2.2.6 GARCH Model 

Taylor (1986) and Bolserlev(1986) independently incorporated the autoregressive 

component in the ARCH model to improve its fit. The resultant model is known as the 

generalized autoregressive conditional heteroskedastic (GARCH) model. The specification 

of GARCH models is as follows: 

𝑦𝑡 = 𝜇 + 𝜀𝑡, where 𝜇is a constant bias term,𝜀𝑡 = 𝜎𝑡𝑧𝑡 and𝑧𝑡 ≈ 𝑁(0,1). 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜎𝑡−𝑖

2𝑝
𝑖=1 + ∑ 𝛽𝑗𝜀𝑡−𝑗

2𝑞
𝑗=1                                                                                         (2.8)                                                                                  

Where 𝜔 is the intercept component, 𝛽𝑗is a measure of the reaction to conditional volatility 

of market shocks and 𝛼𝑖is a measure of the persistence of shock in conditional volatility 

regardless of anything happening in the market. Black(1976) has evidenced that the returns 

are inversely associated with the changes in volatility of return volatility. As (conditional) 

variance is non-negative, it becomes a necessary condition for the coefficients to be 

positive. Therefore, GARCH models place nonnegativity constraints on the parameter that 

often get violated by the coefficient estimates and that may unnecessarily limit the 

dynamics of the conditional variance process. In addition, these constraints of 

nonnegativity can make estimation of GARCH models difficult. For instance, Engle, 

Lilien, and Robins (1987) had to impose a linearly decreasing structure on the 𝛽𝑗’s in (2.8) 

in order to stop some of coefficients from having negative values. Another issue in GARCH 

models is interpreting whether disturbances to conditional variance persist or are transitory, 

because the normal ways of the measurement of persistence often differ. The main 

question, in several studies (e.g., Poterba and Summers (1986), French, Schwert, and 



 
 
 
 

 

14 
 
 

Stambaugh (1987) and Engle and Bollerslev (1986a)), conducted on the time series 

behaviour of asset volatility, has been the length of shock persistence to volatility. If shocks 

to volatility persist for an indefinite time period, they may shift the entire risk premia term 

structure and are, therefore, more probable to have a great effect on investment in long-

lived capital goods (Poterba and Summers, 1986).  

2.2.7 GARCH-M Model 

The GARCH-M model of Engle and Bollerslev (1986a) introduces another 

equation. 

𝑦𝑡 = 𝜇 + 𝜆𝜎𝑡
2 + 𝜀𝑡,                                                                                                                   (2.9)                                                                                                      

in which 𝜎𝑡
2, the conditional variance of 𝑦𝑡, is used in the conditional mean equation of 𝑦𝑡. 

The coefficient of𝜎𝑡
2, 𝜆, represents the feedback effect.  

2.2.8 EGARCH Model 

Nelson (1991) highlighted the presence of asymmetric effect; that is, the leverage 

effect. EGARCH model maps the impact of unexpected external shocks on the predicted 

volatility due to the exponential nature of the conditional variance. The EGARCH(p, q) is 

formulated as: 

𝑙𝑛( 𝜎𝑡
2) = 𝜔 + ∑ 𝛼𝑖 |

𝜀𝑡−𝑖

𝜎𝑡−𝑖
|𝑝

𝑖=1 + ∑ 𝛾𝑘
𝜀𝑡−𝑘

𝜎𝑡−𝑘
+ ∑ 𝛽𝑗 𝑙𝑛( 𝜎𝑡−𝑗

2𝑞
𝑗=1

𝑟
𝑘=1 )                                           (2.10)                                    

Where 𝛼𝑖 and 𝛽𝑗 show the ARCH and GARCH effects, respectively, and 𝛾𝑘 denotes the 

asymmetric effect of disturbance on conditional variance and a negative value of this 

parameter is an indication of leverage effect. The logarithmic form of the conditional 
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variance implies the existence of exponential asymmetric effect and that the forecasts from 

the conditional variance have nonnegative outputs (Thomas and Mitchell, 2005). 

2.2.9 GJR-GARCH Model 

Glosten et al. (1993) proposed GJR-GARCH model which also allows for leverage 

effect. Mathematically GJR-GARCH(p, q) model is written as:  

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑝
𝑖=1 + 𝛾𝜀𝑡−1

2 𝐼𝑡−1 + ∑ 𝛽𝑗𝜎𝑡−𝑗
2𝑞

𝑗=1                                                                (2.11) 

Where, 𝜔 ≥ 0, 𝛼𝑖 ≥ 0, 𝛼𝑖 + 𝛾 ≥ 0, ∑ 𝛼𝑖 + 𝛾 + ∑ 𝛽𝑗
𝑞
𝑗=1

𝑝
𝑖=1 < 1. It =1 if 𝜀𝑡 < 0, and 0 

otherwise. Studies like Lu et al. (2016) have shown that hybrid models formed with GJR-

GARCH have high forecast performance. 

2.2.10 ARIMA-GARCH Model 

Chand et al. (2012), Hickey et al. (2012), Erdogdu (2010), Sumer et al. (2009), 

Nury et al. (2017) and Zolfaghari and Sahabi (2017) suggest using models of the form 

ARIMA-GARCH to describe the structure of the residuals’ variance obtained from the best 

fit time series mean models. The output of the appropriate GARCH model is put in 

ARIMA(p, d, q) to obtain the following ARIMA-GARCH model:  

𝛷 (𝛣)𝑦𝑡 = 𝑐 + 𝛩 (𝛣)𝜀𝑡 + 𝜑𝜎𝑡
2                                                                                                  (2.12)                                                                                            

2.2.11 ARIMAX-GARCH 

Incorporating the output of GARCH model in ARIMAX gives the ARIMAX-

GARCH hybrid model. Studies like Paul & Himadri (2014), Corrêa et al. (2016) and 
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Zulfaghari & Sahabi (2019) have shown that ARIMAX-GARCH yields better forecasts 

accuracy than ARIMA-GARCH. Mathematically the model is written as: 

𝛷 (𝛣)𝑦𝑡 = 𝑐 + 𝛩 (𝛣)𝜀𝑡 + 𝛽𝑥𝑡 + 𝜑𝜎𝑡
2                                                                                  (2.13)                                                                         

The prediction accuracy of the above models decreases as we employ these models 

for h-step ahead prediction as noted by Babu & Reddy (2014). 

2.2.12 Artificial Neural Networks (ANNs) 

The ANN, due to its potential to learn nonlinear relationship between input and 

output patterns, is employed in FTS data to forecast the volatilities (Reston Filho et al. 

2014). 

𝑦𝑡 = 𝛼0 + ∑ 𝛼𝑗𝑔(𝛽0𝑗 + ∑ 𝛽𝑖𝑗𝑦𝑡−𝑖) + 𝜀𝑡
𝐿
𝑖=1

𝑞
𝑗=1                                                                        (2.14)                                                  

Where, 𝛼𝑗(𝑗 = 0,1, . . . , 𝑞) and 𝛽𝑖𝑗(𝑖 = 0,1, . . . , 𝐿; 𝑗 = 0,1, . . . , 𝑞) are known as connection 

weights; k shows the count of input nodes; q denotes the number of hidden nodes. 𝜀𝑡 

represents the approximate error term. Since g(.) is a nonlinear transfer function, the ANN 

model above, it performs a nonlinear mapping of the lagged data points 𝑦𝑡−𝑖  to generate 

forecasts for 𝑦𝑡. The transfer function used as the hidden layer in ANN is a logistic function 

and is mathematically defined by 

𝑔(𝛽0𝑗 + ∑ 𝛽𝑖𝑗𝑦𝑡−𝑖) =
𝑒𝑥𝑝(𝛽0𝑗+∑ 𝛽𝑖𝑗𝑦𝑡−𝑖)𝐿

𝑖=1

1+𝑒𝑥𝑝(𝛽0𝑗+∑ 𝛽𝑖𝑗𝑦𝑡−𝑖)𝐿
𝑖=1

𝐿
𝑖=1                                                                        (2.15)                                      

Generally, ANN is written as 

𝑦𝑡 = 𝑓(𝑦𝑡−1, 𝑦𝑡−2, . . . , 𝑦𝑡−𝐿 , 𝑤) + 𝜀𝑡                                                                                          (2.16)                                                                          
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Where 𝑤represents the vector of parameters in ANN model. In practice 𝑤is unknown. The 

numerical estimation requires an objective function that applies an algorithm to optimize 

the weights of training data. The Levenberg-Marquardt’s algorithm2 is used as the 

numerical criteria to reduce the in-sample sum of squared errors.  

𝑦𝑡 = 𝑓(𝑦𝑡−1, 𝑦𝑡−2, . . . , 𝑦𝑡−𝐿 , 𝑤̂) + 𝜀𝑡̂,                                                                                      (2.17)                                                                    

with 𝑦̂𝑡 = 𝑓(𝑦𝑡−1, 𝑦𝑡−2, . . . , 𝑦𝑡−𝐿 , 𝑤̂) containing the optimal ANN end results at time t, 

which produces forecasts of 𝑦𝑡.        

2.2.13 Wavelets 

Wavelet analysis, in recent times, has found great use in non-stationary time series. 

Wavelets offer an alternative to the window-based techniques for examining localized 

frequency behaviour of the data whose characteristics vary across time. It can be viewed 

as an extention of the classical Fourier analysis in which short waves, called wavelets, are 

used in place of sines and cosines. Discrete wavelet transformation (DWT) separates the 

signal into a time domain and a frequency domain at the same time. On the contrary, 

Fourier Transform decomposes the raw signal (time domain) into processed signal 

(frequency domain); time information is complete last (Ortega & Khashanah, 2014). 

Any function 𝑓(𝑡) can be split into component parts by a series of projections onto 

the wavelet basis: 

                                                           
2 The Levenberg – Marquardt algorithm, also known as the Damped least-squares method, is used in 

mathematics and computing to solve problems with non-linear minus squares. 



 
 
 
 

 

18 
 
 

𝑆𝑚,𝑛 = ∫ 𝑓(𝑡)𝛷𝑚,𝑛(𝑡)𝑑𝑡                                                                                                           (2.18)

  

𝑑𝑚,𝑛 = ∫ 𝑓(𝑡)𝜓𝑚,𝑛(𝑡)𝑑𝑡                                                                                                          (2.19) 

where m denotes the count of multiresolution; 𝛷 represents the father wavelet and 𝜓 is the 

mother wavelet. 𝑆𝑚,𝑛 and 𝑑𝑚,𝑛 represent the smooth and the detailed coefficients, 

respectively. 𝛷𝑚,𝑛 and 𝜓𝑚,𝑛, the scaling and translation of Ф and ψ, are defined by 

𝛷𝑚,𝑛(𝑡) = 2
−𝑚

2⁄ 𝛷(2−𝑚𝑡 − 𝑛)                                                                                               (2.20) 

𝜓𝑚,𝑛(𝑡) = 2
−𝑚

2⁄ 𝜓(2−𝑚𝑡 − 𝑛)                                                                                               (2.21) 

 

A number of wavelets like Haar, Daubechies, Morlet and Mexican Hat, to name a 

few, are available. Morlet and Daubechies wavelets have useful applications in image 

processing but are not without problems. Mexican Hat wavelets are hard to compute. Hair 

wavelets are useful for time series analysis because they capture variations between 

adjacent observations (Ortega & Khashanah, 2014; Lahmiri, 2014; Murtagh, Starck, & 

Renaud, 2004; Li, Li, Zhu, & Ogihara, 2002).           

2.2.13 Wavelet Decomposition (WD)  

The proposed hybrid model uses discrete wavelet decomposition to split the series 

𝑦𝑡 into an approximate component 𝑦̃𝐴𝑚0 ,𝑡 and several detail components∑ 𝑦̃𝐷𝑚,𝑡
𝑚0+(𝑟−1)
𝑚=𝑚0

. 

Type of the time series’ variations determines the number of detail components (Zulfaghari 

& Sahabi 2019). 
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𝑦𝑡 = 𝑦̃𝐴𝑚0 ,𝑡 + ∑ 𝑦̃𝐷𝑚,𝑡 + 𝜀𝑡
𝑚0+(𝑟−1)
𝑚=𝑚0

                                                                              (2.22)                                                                          

Where, 𝑦̃𝐴𝑚0 ,𝑡 = ∑ 𝑎𝑚0,𝑛
2(𝑀−𝑚0)−1
𝑛=0 𝜙𝑚0,𝑛(𝑡) and 𝑦̃𝐷𝑚,𝑡 = ∑ 𝑑𝑚,𝑛𝜔𝑚,𝑛(𝑡)2(𝑀−𝑚0)−1

𝑛=0 , with 

𝑡 = 1, . . . , 𝑇.  Diagrammatically, wavelet decomposition can be depicted as below: 
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Figure 2.1: The Flowchart of the Discrete Wavelet Decomposition 
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 DWT comes up with a couple of limitations. Firstly, DWT requires that the of size 

of the dataset be dyadic; that is, a power of 2. Secondly, the output produced by DWT 

remain highly dependent on origin of the signal being analyzed. A slight change in origin 

has effects on the produced outputs, and this issue is referred to as Circular Shift. Owing 

to the circular shift the transformed signals are difficult to match with time. An alteration 

of DWT called Maximal Overlap Discrete Wavelet Transformation (MODWT) is used to 

resolve the above two limitations. MODWT is invariant to circular shift and is not 

constrained by the restriction of the dyadic length; hence, the signal interpretation becomes 

easier for time series analysis. In this study, DWT and MODWT will be used 

interchangeably. Gençay, Selçuk, & Whitcher (2002), Ortega & Khashanah (2014) and 

Lahmiri (2014) practically apply wavelets in Finance and Economics. 

2.2.14 Wavelet Artificial Neural Network (WANN) 

Wavelet decomposition combined with ANN, called wavelet ANN, as shown in 

several studies (e.g., Teixeira Júnior, 2015), achieves remarkable predictive accuracy in 

forecasting in time series. For the series𝑦𝑡 (𝑡 = 1, . . . , 𝑇), WANN is constructed in two 

steps: 

Step 1: A wavelet decomposition of 𝑦𝑡at level r is carried out, creating one approximate 

WC at level𝑚′, denoted by 𝑦𝐴
𝑚′ ,𝑡 (𝑡 = 1, . . . , 𝑇), and r detail components of wavelet 

transform at levels 𝑚′, 𝑚′ + 1, . . . , 𝑚′ + (𝑟 − 1), denoted by 𝑦̃𝐷𝑚,𝑡 (𝑡 = 1, . . . , 𝑇), where r, 

𝑚′ ∈ ℤ; and 
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Step 2: The WCs, both of approximation and detail, then are modelled using ANN. The 

general form of wavelet ANN model is given by 

𝑦 = 𝑓(𝑦𝐴
𝑚′ ,𝑡,𝐿; 𝑦𝐷

𝑚′ ,𝑡,𝐿; . . . ; 𝑦𝐷
𝑚′+𝑚′+(𝑟−1)

,𝑡,𝐿; 𝑤̂) + 𝜀𝑡̂                                                            (2.23)                                                 

Where 𝑦𝐴
𝑚′ ,𝑡,𝐿 = (𝑦𝐴

𝑚′ ,𝑡, . . . , 𝑦𝐴
𝑚′ ,𝑡−𝐾) and 𝑦𝐷

𝑚′ ,𝑡,𝐿 = (𝑦𝐷𝑚,𝑡 , . . . , 𝑦𝐷𝑚,𝑡−𝐿) with the input 

data 𝑚 = 𝑚′, 𝑚′ + 1, . . . , 𝑚′ + (𝑟 − 1). The Levenberg-Marquardt’s algorithm is used to 

obtain the optimal solution for 𝑤̂; such that 𝑚𝑖𝑛𝑤 ∑ 𝜀𝑡
2𝑇

𝑡=1 is obtained. The forecasts of 

𝑦are given as 

𝑦̂ = 𝑓(𝑦𝐴
𝑚′ ,𝑡,𝐿; 𝑦𝐷

𝑚′ ,𝑡,𝐿; . . . ; 𝑦𝐷
𝑚′+𝑚′+(𝑟−1)

,𝑡,𝐿; 𝑤̂), and 𝜀𝑡̂represents the forecast error of𝑦̂. 

The time subscript t is removed from the output,𝑦, to differentiate it from the variable used 

dependent variable in WARIMAX-GARCH-WANN. Following is a general diagram of 

the WANN:  

Input Layer                 Wavelet Layer                     Product Layer          Output Layer 

  

 𝜓1 

x1   

                 𝛼1 

  𝜓𝑗 𝛼𝑗 y     

  

    𝛼𝑚  

xn 

 𝜓𝑚 

  

Figure 2.2: The General Architecture of a WANN Model 
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2.2.15 ARIMAX-GARCH-AWNN 

Zulfaghari & Sahabi (2019) propose the following ARIMAX-GARCH-AWNN 

hybrid model and achieve enhanced prediction power. Where AWNN stands for adaptive 

wavelet neural networks. 

𝛷 (𝛣)𝑦𝑡 = 𝑐 + 𝛩 (𝛣)𝜀𝑡 + 𝛽𝑥𝑡 + 𝜑𝜎𝑡
2 + 𝛿𝑦                                                                               (2.24)                                                                           

Where 𝑦 = ∑ 𝜔𝑗𝜙𝑗 + ∑ 𝜈𝑖𝑥𝑖 + 𝑔𝑛
𝑖=1

𝑚
𝑗=1 , 𝜔𝑗 is the weight of the layer between the jth node 

of the product layer and the output node and 𝜈𝑖is the weight of input between the ith input 

node and output node.  

2.2.16 WARIMAX-GARCH 

The composite model proposed by Correa et al. (2016), known as WARIMAX- 

GARCH (p, d, q)x(P, D, Q) model, is given by 

𝜙(𝐵)Ф(𝐵𝑆)𝛻𝑑𝛻𝑆
𝐷𝑦𝑡 = 𝜑𝐴𝑚0

𝛻𝑘𝑔(𝑦̃𝐴𝑚0 ,𝑡,𝐶) + ∑ 𝛻𝑘𝑚𝑦̃𝐷𝑚,𝑡,𝐶𝜑𝐷𝑚,𝐶 +
𝑚0+(𝑟−1)
𝑚=𝑚0

𝜃(𝐵)𝛩(𝐵𝑆)𝑒𝑡 + 𝜑𝜎𝑡
2                                                                                                  (2.25)   

Where, 𝜙(𝐵) = (1 − 𝜙1𝐵−. . . . −𝜙𝑝𝐵𝑝), 𝜃(𝐵) = (1 − 𝜃1𝐵−. . . −𝜃𝑞𝐵𝑞), 𝛻𝑑 = (1 −

𝐵)𝑑, 𝛻𝑆
𝐷 = (1 − 𝐵𝑆)𝐷, 𝛩(𝐵𝑆) = (1 − 𝜃1𝐵𝑆−. . . −𝜃𝑄𝐵𝑆𝑄),  and   𝑘 ∈ ℤ. 

WARIMAX-GARCH with exogenous variables at level becomes: 

𝜙(𝐵)Ф(𝐵𝑆)𝛻𝑑𝛻𝑆
𝐷𝑦𝑡 = 𝜑𝐴𝑚0

𝛻𝑘𝑔(𝑦̃𝐴𝑚0 ,𝑡,𝐶) + ∑ 𝑦̃𝐷𝑚,𝑡,𝐶𝜑𝐷𝑚,𝐶 + 𝜃(𝐵)𝛩(𝐵𝑆)𝑒𝑡 +
𝑚0+(𝑟−1)
𝑚=𝑚0

𝜑𝜎𝑡
2                                                                                                                                           (2.26)                                
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Each WC obtained in section (2.2.15) is modeled separately using a specific 

ARIMA-GARCH to produce out-of-sample forecasts. These forecasts produce the 

completed WCs (CWCs). Algebraically,  

𝑦̃𝐴𝑚0 ,𝑡,𝐶 or 𝑥1,𝑡(𝑡 = 1, . . . 𝑇, 𝑇 + 1, . . . , 𝑇 + ℎ), which is the CWC of approximations at level 

𝑚0of 𝑦𝑡(𝑡 = 1, . . . , 𝑇). And 𝑦̃𝐷𝑚,𝑡,𝐶 or 𝑥𝑖,𝑡(𝑡, . . . , 𝑇, 𝑇 + 1, . . . , 𝑇 + ℎ; 𝑖 = 1, . . . , 𝑟 + 1) is 

composed of the CWCs of detail at level m of 𝑦𝑡(𝑡 = 1, . . . , 𝑇), where 𝑚0 ≤ 𝑚 ≤ 𝑚0 +

(𝑟 − 1). The above 𝑟 + 1 CWCs are used as wavelet exogenous variables in equations 

(2.25) and (2.26). 
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CHAPTER 3 

DATA & METHODOLOGY 

High frequency FTS like Wilshire 5000 price index is used to compare the 

forecasting performance of the proposed model with the other existing models. The output 

of equation (2.23) is put in equation (2.26) to form the WARIMAX-GARCH-WANN 

model.  

𝜙(𝐵)Ф(𝐵𝑆)𝛻𝑑𝛻𝑆
𝐷𝑦𝑡 = 𝜑𝐴𝑚0

𝑔(𝑦̃𝐴𝑚0 ,𝑡,𝐶) + ∑ 𝑦̃𝐷𝑚,𝑡,𝐶𝜑𝐷𝑚,𝐶 + 𝜃(𝐵)𝛩(𝐵𝑆)𝑒𝑡 +
𝑚0+(𝑟−1)
𝑚=𝑚0

𝜑𝜎𝑡
2 + 𝛿𝑦                                                                                                                    (3.1)       

When the series does not exhibit seasonal patterns, the model becomes: 

𝜙(𝐵)𝛻𝑑𝑦𝑡 = 𝜑𝐴𝑚0
𝑔(𝑦̃𝐴𝑚0 ,𝑡,𝐶) + ∑ 𝑦̃𝐷𝑚,𝑡,𝐶𝜑𝐷𝑚,𝐶 + 𝜃(𝐵)𝑒𝑡 + 𝜑𝜎𝑡

2𝑚0+(𝑟−1)
𝑚=𝑚0

+ 𝛿𝑦  (3.2)  

 The stock prices are affected by numerous shocks to the economy like policy changes, 

disasters, pandemics, economic recessions, etc. Such shocks may persist indefinitely unless the 

government implements a policy change to counter the shock. The 2008 recession and the Covid-

19 pandemic appear to have the effects on stock prices and the economy of the countries at large. 

Therefore, Bai-Perron test was used to find out the number of structural breaks in the series which 

might have been caused by different shocks to the economy.  Fourier ADF and Fourier LM tests, 

developed by Enders & Lee (2012a,b), were used to confirm whether the Wilshire 5000 

price index contained any unit roots.  As high frequency FTS exhibit linear and nonlinear 

characteristics, DW and BDS tests were applied to test for the presence of linear and 

nonlinear autocorrelation. The lag order will be chosen on the basis of Autocorrelation 

Function (ACF), Partial Autocorrelation Function (PACF) graphs. The selection of best 
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WARIMAX-GARCH model is based on the forecasting performance that is measured by 

their Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE) and Root 

Mean Squared Error (RMSE); and model based on Akaike Information Criteria (AIC) and 

Bayesian Information Criteria (BIC) also known as Schwardz Information Criteria (SIC). 

Model with lowest RMSE, MAPE, and MAE value and with the greatest AIC or BIC is 

considered better than others WARIMAX-GARCH models are. 
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CHAPTER 4 

EMPIRICAL RESULTS AND DISCUSSIONS 

This chapter presents the obtained results of the WARIMAX- GARCH-WANN 

model applied to the time series of daily Wilshire 5000 price index. For comparison, 

WARIMAX-GARCH, and WANN methods have also been used on the price index data. 

In section 4.1, for the justification of the selected model, a statistical analysis of the time 

series is carried out. In Section 4.2, an appropriate WARIMAX-GARCH model was chosen 

to model the price index series. Section 4.3 contains the application of WARIMAX-

GARCH-WANN method, and its key statistical tests that determine the validation of the 

model. Section 4.4 compares the forecasting performance of the proposed method with the 

WARIMAX-GARCH and WANN methods. 

4.1 The daily time series of Wilshire 5000 price index  

The daily observations for the price index, price returns, are the daily index value 

computed at market close. A daily time series of Wilshire 5000 price index from 6th of 

January 2005 to 17th of July 2020 was used for the purpose of testing the forecasting power 

of the proposed method as compared with other leading models as used in Correa et al. 

(2016). Figure 4.1 depicts the time series plot of the 3907 daily data points. The first 3877 

data points were allocated as in-sample training set and the remaining 30 data points were 

allocated for out-of-sample model testing. In this study no exogenous variables were used. 
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It can be observed from Figure 4.1 that the series exhibits sharp drops around 

periods 2008, 2020 and in between, which are indicative of volatility in the series. An 

upward trend is evident from the graph which shows that the series evolves around a 

nonconstant mean. And more importantly, the series clearly shows high frequency 

characteristics. An ARIMA model integrated with wavelet decomposition and a GARCH 

component can capture the high-frequency traits along with the volatile nature of the series. 

Table 4.1a: Bai-Perron multiple breakpoint test of Wilshire 5000 price index 

Breaks No. of 

Coefficients 

Sum of Sq. 

Residuals 

Log-L Schwarz 

Criterion 

LWZ 

Criterion 

0 1 1.71E+11 -39903.96 17.59637 17.60098 

1 3 3.91E+10 -37023.83 16.12589 16.13971 

2 5 1.51E+10 -35161.14 15.17637 15.19940 

3 7 1.32E+10 -34900.56 15.04717 15.07942 

4 9 1.04E+10 -34445.89 14.81860 14.86006 

  5 11 9.81E+09 -34321.63 14.75921 14.80989 
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Bai-Perron multiple breakpoint test, using the global information criteria 

specification, identified five breakpoints in series. Both the Schwartz criterion and LWZ 

criterion selected five structural breaks on the basis of minimum information criterion 

values as displayed in shading. Though the graph of the series displays more than five 

breaks in the series, Bai-Perron test selects only five structural breaks. Nonetheless, the test 

results and the graph suggest that the series has multiple breakpoints. Therefore, ordinary 

unit root tests - like ADF, KPSS, PP, Narayan and Popp, to name a few – do not offer a 

solid testing ground for non-stationarity in the series. 

Table 4.1b: Unit root tests under multiple unknown structural breaks at level 

Model 

 

Test  

Break in Level Break in Level and Trend 

Test statistic Critical Value 

(1%) 

Test statistic Critical Value 

(1%) 

Fourier ADF -1.751 -4.310 -4.528 -4.800 

Fourier LM -4.328 -4.560 -- -- 

 

Table 4.1c: Unit root tests under multiple structural breaks at first difference 

Model 

 

Test  

Break in Level Break in Level and Trend 

Test statistic Critical Value 

(1%) 

Test statistic Critical Value 

(1%) 

Fourier ADF -16.532 -3.610 -16.583 -4.240 

Fourier LM -9.997 -4.560 -- -- 

 

Fourier ADF and Fourier LM tests for unit root with multiple breakpoints were 

carried out on the series at level. The null and alternative hypotheses of the two tests are 

H0: Unit root series with unknown number of level breaks and Ha: Stationary process with 
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unknown number of level breaks, respectively. Both the tests did not reject the presence of 

unit root at 1% level of significance. However, the tests applied to the first difference gave 

highly significant results at 1% level as given in Table 4.2. The Autocorrelation Function 

(ACF) in figure 4.2a exhibits spikes which do not die out, showing the non-stationarity of 

the series at level; however, the ACF of the first difference in figure 4.2c tapers off after 

the first lag, indicating stationarity. PACF in figure 4.2b shows a significant spikes at lag 

one and two which indicate that the appropriate model is ARIMA. The LM test for ARCH 

effect gave a chi-square value of 486.9426 with a p-value of 0.000 rejecting the null 

hypothesis of no arch effect at 1% level of significance, which is evident that GARCH 

would be a suitable choice to capture the volatility. Hence, as the study deals with a single 

series with its WCs, a WARIMAX-GARCH model was deemed reasonable to model the 

process. 

The conducted investigation produced multi-step forecast values, of both the out-

of-sample and in-sample, from WARIMAX-GARCH model (used for comparison 

purposes) and from the WARIMAX-GARCH-WANN model. For statistical validation, 

Fourier ADF and Fourier LM tests for unit root, Ljung-Box, DW and BDS tests were 

conducted for randomness in the error terms and first order autocorrelation, respectively. 

The ACF and PACF plots were constructed, and BDS test was carried out to check for the 

presence of nonlinear serial auto-dependent residuals and ARCH test was conducted to see 

if conditional heteroskedasticity existed. R, GAUSS and Eviews softwares were used to 

obtain the ACF and PACF graphs and to perform the above tests. 



 
 
 
 

 

30 
 
 

 

 



 
 
 
 

 

31 
 
 

 

 



 
 
 
 

 

32 
 
 

4.2 The WARIMAX-GARCH Method 

A level-2 wavelet transformation was used to split the time series into an 

approximate and two detail components in MATLAB (version 2020a) software. A 

WARIMAX- GARCH (2, 1, 1) x (1, 1) model using WCs as exogenous variables, with 

student’s t-distribution, came out to be the best fit to the first difference of Wilshire 5000 

price index, 𝑦𝑡
′ where t = 1, …, 3903. The MLE gave statistically significant results of the 

parameter estimates at 1% significance level except the conditional variance coefficient, 

which is significant at 5% significance level. 

Table 4.2a: the WARIMAX-GARCH(2,1,1)x(1,1) estimation output 

Variable Coefficient Standard Error t-statistic P-value 

△ 𝑦𝑡−2 
𝑒𝑡−1 

△  𝑦𝐴2,𝑡−1 

𝑦𝐷1,𝑡 

𝑦𝐷1,𝑡−1 

𝑦𝐷2,𝑡 

𝑦𝐷2,𝑡−1 

𝑙𝑛𝜎𝑡
2 

0.222645 
0.454774 
-0.343622 
0.646617 
-1.392607 
0.233658 
-0.836907 
-407.5250 

0.012456 
0.019129 
0.022390 
0.023025 
0.035096 
0.021610 
0.022907 
174.6999 

17.87383 
23.77443 
-15.34706 
28.08385 
-39.67936 
10.81236 
-36.53539 
-2.332715 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0197 

 

Table 4.2b: BDS test outcomes from the ordinary standard residuals of 

WARIMAX-EGARCH(2,1,1)(1,1) model. 

 
Dimension BDS Statistic Std. Error z-Statistic p-values 

2 

3 

4 

5 

6 

-0.013065 

 0.007444 

 0.007998 

 0.026923 

 0.030745 

0.002036 

 0.003248 

 0.003884 

 0.004068 

 0.003942 

-6.416787 

 2.292251 

 2.059235 

 6.619040 

 7.799209 

0.0000 

 0.0219 

 0.0395 

 0.0000 

 0.0000 
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  Among all possible WARIMAX-GARCH models, the WARIMAX-EGARCH (2, 

1, 1) x (1, 1) produced more accurate forecasts in terms of in-sample RMSE, MAE and 

MAPE. The outcomes of the  BDS test, shown in Table 4.2b, applied to the residuals of 

WARIMAX-EGARCH (2, 1, 1) x (1, 1) reject the null hypothesis of linear auto-

dependence in the ordinary least squares residuals. In addition, the computed DW statistic 

of 2.162100 indicates no significant first order autocorrelation in the residuals.  

The BDS test was used to determine if there existed linear auto-dependence in the 

residuals of WARIMAX-EGARCH (2, 1, 1) x (1, 1) model.  The p-value of dimensions 2, 

5 and 6 suggest the existence of no linear dependence on its own lagged values at 1% 

significance level and the p-values of dimensions 3 and 4 suggest no linear aut-dependence 

in the errors at 5% significance level. Which suggests that the series better mapped by 

WARIMAX-EGARCH (2,1,1) x (1,1) as compared with the other WARIMAX-GARCH 

models. The model selection was based on the lowest MAPE, MAE and RMSE values,  

and largest R2. 

4.3 The WARIMAX-GARCH-WANN Model 

MATLAB (version 2020a) was used to obtain a wavelet transformation of level 2. 

The plots of the approximate and detail WCs are shown in Figures 4.3a, 4.3b and 4.3c 

below. 
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Table 4.3a: Bai-Perron Multiple Breakpoint Test of Wavelet Component of 

Approximation at level 2 

Breaks No. of 
Coefficients 

Sum of Sq. 
Residuals 

Log-L Schwarz 
Criterion 

LWZ 
Criterion 

0 1 1.71E+11 -39902.71 17.59573 17.60034 

1 3 3.90E+10 -37018.35 16.12308 16.13690 

2 5 1.50E+10 -35147.16 15.16921 15.19224 

3 7 1.31E+10 -34884.52 15.03896 15.07121 

4 9 1.03E+10 -34424.71 14.80776 14.84921 

        5 11 9.69E+09 -34299.05 14.74765 14.79832 

              

The graph of the WC of approximation at level 2 clearly depicts several 

breakpoints. Therefore, to formally test for the breaks, Bai-Perron multiple breakpoint test, 

using the global information criteria specification, was carried out and it identified five 

breakpoints in the WC of approximation series. Both the criteria, Schwartz and LWZ, 



 
 
 
 

 

35 
 
 

selected five breakpoints on the basis of minimum information criterion values as shown 

in shading. Although the graph shows more than five breakpoints, Bai-Perron test, due to 

its limitations, identifies five breaks from 2008 to 2017. As a result, Fourier ADF and 

Fourier LM were considered as the most appropriate unit root test with multiple structural 

breaks. The tests were applied to the series at level and at first difference. The results are 

shown in the tables below. 

Table 4.3b: Unit root tests under multiple unknown structural breaks at level 

Model 

 

Test  

Break in Level Break in Level and Trend 

Test statistic Critical Value 

(1%) 

Test statistic Critical Value 

(1%) 

Fourier ADF -1.617 -4.310 -4.326 -4.800 

Fourier LM -4.133 -4.560 -- -- 

 

Table 4.3c: Unit root tests under multiple structural breaks at first difference 

Model 

 

Test  

Break in Level Break in Level and Trend 

Test statistic Critical Value 

(1%) 

Test statistic Critical Value 

(1%) 

Fourier ADF -16.255 -3.610 -16.310 -4.240 

Fourier LM -8.477 -4.560 -- -- 

 

Both the test did not reject the null hypothesis of unit root with multiple unknown 

structural breaks at level. Nevertheless, the two unit root tests gave significant results at 

first difference, indicating stationarity of the series at first difference.  
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 The series 𝑦𝑡 was decomposed into an approximate component 𝑦
~

𝐴2,𝑡 and two detail 

components 𝑦
~

𝐷1,𝑡 and 𝑦
~

𝐷2,𝑡 where t =1, …, 3907. In the second step, theses WCs were used 
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as exogenous variables in ARIMA-GARCH model, written as WARIMAX-GARCH. 

Different lagged values of the WEVs were tried for the selection of the best WARIMAX-

GARCH model. And the model was used to produce 30-step-ahead forecasts from the level 

of the series. The best formation of WARIMAX-GARCH method on the basis of its 

forecasting performance is algebraically given as 

(1 − 𝜙1𝐵 − 𝜙2 )𝑦𝑡  =  (1 − 𝜃1𝐵) 𝑒𝑡  + △ 𝑦
~

𝐴2,𝑡−1𝜑𝐴2,𝑡−1  + ∑ 𝑦
~

𝐷1,𝑡−𝑗 𝜑𝐷1,𝑡−𝑗

1

𝑗=0
  +

∑ 𝑦
~

𝐷2,𝑡−𝑗 𝜑𝐷2,𝑡−𝑗

1

𝑗=0
 + 𝜑 𝑙𝑛𝜎𝑡

2                                                                                  (4.1)                                                                    

The three WEVs, each lagged once, were required in WARIMAX-GARCH to 

produce better forecasts.  In addition to the WEVs, the log of conditional variance is used 

to map the non-linear effect in the series. The best GARCH model which helped achieve 

better forecast accuracy was an EGARCH (1, 1) with student’s t distribution. Algebraically, 

𝑙𝑛(𝜎𝑡
2) = 𝜔 + 𝛼 |

𝜀𝑡−1

𝜎𝑡−1
| + 𝛾

𝜀𝑡−1

𝜎𝑡−1
+ 𝛽𝑙𝑛(𝜎𝑡−1

2 )                                                             (4.2) 

The parameter estimates of the WARIMAX-GARCH model were obtained using 

MLE method. All of them were significant at 1% level of significance. 

The WEVs were used as input variables in ANN, known as WANN, and obtained 

the required output of WANN. The outputs were incorporated in WARIMAX-GARCH. 

Mathematically,  
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(1 − 𝜙1𝐵 − 𝜙2 )𝑦𝑡 =  (1 − 𝜃1𝐵) 𝑒𝑡  + △  𝑦
~

𝐴2,𝑡−1
𝜑

𝐴2,𝑡−1
 + ∑ 𝑦

~

𝐷1,𝑡−𝑗 𝜑𝐷1,𝑡−𝑗

1

𝑗=0
  +

∑ 𝑦
~

𝐷2,𝑡−𝑗 𝜑𝐷2,𝑡−𝑗

1

𝑗=0
 + 𝜑 𝑙𝑛𝜎𝑡

2 + 𝛿𝑦                                                                              (4.3)                                                                       

Table 4.3d: the WARIMAX-GARCH-WANN estimation output 

Variable Coefficient Standard Error t-statistic P-value 

△ 𝑦𝑡−2 
𝑒𝑡−1 

△  𝑦𝐴2,𝑡−1 

𝑦𝐷1,𝑡 

𝑦𝐷1,𝑡−1 

𝑦𝐷2,𝑡 

𝑦𝐷2,𝑡−1 

𝑙𝑛𝜎𝑡
2 

𝑦 

0.140345 
0.451566 
-0.352847 
0.640105 
-1.395568 
0.225232 
-0.840035 
-1763.914 
0.001188 

0.011089 
0.019032 
0.022312 
0.022920 
0.034909 
0.021530 
0.022787 
268.4902 
0.000176 

12.65602 
23.72722 
-15.81448 
27.92798 
-39.97770 
10.46133 
-36.86488 
-6.569753 
6.762612 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
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Figure 4.4a and Figure 4.4b display the ACF and the PACF, respectively, up to lag 

30 of the ordinary least residuals from the estimated WARIMAX-GARCH-

WANN(2,1,1)x(1,1) model. It is to be noted that estimated ACF tapers off after the first 

lag suggesting stationarity in the error terms. The PACF of residuals show that lags, other 

than lags five and eight, are within 99% CI indicating no sign of linear auto-dependence in 

the residuals obtained from WARIMAX-GARCH-WANN model. The ARCH test gave 

insignificant results suggesting no ARCH effect in the residuals obtained from the above 

model. Which indicates that the model has captured the volatility. The DW statistic was 

2.108644 showing no significant first order autocorrelation in the error term. 

4.4. WANN Model 

WCs were used as input variables in ANN. Daubechies functions were used for 

each WC. Total three hidden layers were used with 5 and 3 neurons, respectively. 
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Leverberg-Marquardt training algorithm was applied at each hidden layer, respectively, in 

order to obtain optimal weights. Figure 4.5 displays the obtained optimal weights WANN 

methods. 

Figure 4.4: Wavelet ANN plot with Optimal Weights 

 

4.5 Comparison of the Forecasting Performance 

 Table 4.2 contains the RMSE, MAE and MAPE values for both the in-sample and 

the out-of-sample forecasts of WANN, WARIMAX-GARCH and the WARIMAX-
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GARCH-WANN methods. The optimal WARIMAX-GARCH model given in Section 4.2 

is a WARIMAX-EGARCH (2, 1, 1) x (1, 1). It is evident from the inputs in Table 4.2 that 

the WARIMAX – GARCH-WANN method has lower RMSE, MAE and MAPE values. 

Therefore, it has a better performance than WARIMAX-GARCH and WANN models in 

terms of both the in sample and out-of-sample horizons. Particularly, the WARIMAX-

GARCH-WANN method generates improved in and out-of-sample forecasts, having a 

RMSE of 0.00097912, MAPE of 0.069494% and MAE of 0.00040330 against RMSE of 

0.007569, MAPE of 103.512% and MAE 0.00430041 of WARIMAX-GARCH model and 

RMSE of 0.00305133, MAE of 0.00139755 and MAPE of 0.228% of  WANN model. 

From the results, it appears that WCs - which are used as exogenous variables in the model- 

and the WANN component in ARIMA-GARCH model improved its forecasting 

performance significantly. Put differently, the WARIMAX-GARCH-WANN captured the 

dynamics of the underlying series remarkably better as compared to the benchmark 

methods and give out better forecast results than the WARIMAX-GARCH and WANN 

methods. 

Table 4.4: The in-sample and out-of-sample Forecast Results Comparison 

  

Out-of-sample In-sample 

 RMSE MAE MAPE RMSE MAE MAPE 

WANN 0.00305133 0.00139755 0.227746 0.007341 0.002527 0.124051 

WARIMAX-

GARCH 

0.00756972 0.00430041 103.5186 0.009187 0.005443 185.3334 

WARIMAX-

GARCH-

WANN 

0.00097912 0.00040330 0.069494 0.000482 0.001537 0.087541 
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Figure 4.6: The Comparison of Predictions from WARIMAX-GARCH-WANN and 

WARIMAX-GARCH 

Figure 4.5 above gives the actual values of the price index, PR, WARIMAX-

GARCH-WANN and WARIMAX-GARCH models. The outputs from WARIMAX-

GARCH-WANN almost mimic the series perfectly. However, the WARIMAX-GARCH 

values deviate from the actual values at the end period from 2017 onwards. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

In this study, a new approach to forecasting high frequency time series, 

WARIMAX-GARCH-WANN, is proposed. The proposed method uses wavelet 

components derived from the wavelet transformation of the series and treats them as 

exogenous variables and produces outstanding forecasting performances improvements 

over conventional WARIMAX-GARCH and WANN models. The wavelet components 

incorporated in this model exhibit good statistical properties which make them suitable for 

use as EVs by both the WARIMAX-GARCH as well as WARIMAX-GARCH-WANN 

methods. For example, the components of detail show stationarity at level and display 

conditional volatility- as present in a number of high frequency financial time series– that 

helps account for nonlinear effects in the final model. Moreover, it can easily be verified 

that WCs have strong association with the regressand they come from. The method 

proposed in this study was applied to the daily time series of Wilshire 5000 price index. 

The results, as compared with the WARIMAX-GARCH and WANN model predominantly 

produce enhanced forecasting performance.  It will be interesting to note if the proposed 

method can produce similar results when applied to other high frequency time series. 
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