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ABSTRACT 

This study has provided a method for detection of multivariate seasonal level shift in 

multivariate time series based on joint test statistics which follows a chi-square distribution 

and also provides a modified joint maximum test statistic of Tsay et al. (2000) method 

based on one test statistics for multivariate analysis. The J-maximum test statistic is 

modified by including multivariate seasonal level shift (MSLS). We have detected five 

types of outliers MSLS, MIO, MAO, MLS and MTC1  and obtained power, size and 

empirical critical values using simulation and application on monthly time series data of 

Pakistan, and also checked their impact on the model parameter estimates, covariance 

matrix and standard error of the residuals. We have observed that multivariate SLS give 

good performance with large sample size in terms of power and size. Multivariate SLS is 

not much confusing with other types of outliers in VAR(0)(1)12 and VAR(1)(1)12 

processes. we have observed that multivariate SLS along with other types of outliers 

drastically affect all the estimates and J and J-maximum test statistics for MSLS along with 

other types of outlier depends on dimension, sample size, order and structure of the model.  

We have used real data example to detect outliers by using monthly time series data of 

temperature, rainfall and humidity for three stations of Pakistan and concluded that MSLS 

including other types of outliers in one series cause outlier in another series. We have also 

observed that estimates and standard error of the residuals have clear changes after 

adjusting the outliers in the series. At the end we have concluded that MSLS along with 

other types of outlier badly affect the estimates, analysis, results and decision taken on the 

 
1 MIO: Multivariate Innovative Outlier, MAO: multivariate Additive Outlier, MLS: multivariate level shift 
and MTC: multivariate transient shift and MSLS: multivariate seasonal level shift. 
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basis of these results. There is need to detect and adjust the MSLS along with other types 

of outliers in the data series to make the results reliable. 

Key Word: MSLS (multivariate seasonal level shift), MAO (multivariate additive outlier), 

MIO (multivariate innovative outlier), MLS (multivariate level shift), MTC 

(multivariate transient change), VAR (vector auto regressive), Pakistan, 

simulation, VAR(0)(1)12 and VAR(1)(1)12 . 
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CHAPTER 1 

INTRODUCTION 

Identification of multivariate outlier detection in time series has become important section 

of analysis, ignorance of which leads to misspecification of model and unreliable results of 

analysis. In seasonal modification and automatic time series modeling outlier detection also 

has an importance. For example, oscillating from banking deception to robotics as it allows 

anomaly detection in the system. Outliers do cause misleading conclusions, time series 

prediction and for this motive, numerous outlier detection techniques and robust estimation 

procedures have been anticipated previously for single level time series analysis, however, 

very limited are noted for vector time series. 

Various studies related to outlier identification in the time series analysis attentive on solo 

series but we work on more than one data series in multivariate time series analysis. Several 

reasons are the cause of multivariate outlier detection in time series, for example one series 

outlier may cause to the presence of outlier in another series and also an outlier of sensible 

size affecting all the series may be unheeded in univariate time series analysis because 

univariate methods fail to associate information about the outliers among the component 

series. These outliers can be more easily noticed in multivariate time series analysis. Model 

choice is then more intricate and longer and more vulnerable to errors, which then disturb 

estimate. 

By definition outliers are points that are distant from remaining observations. As a result, 

they can potentially skew or bias any analysis performed on the dataset. It is therefore 

very important to detect and effectively deal with outliers. They may indicate a variability 
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in a measurement, experimental errors or an innovation. In other words, an outlier is an 

observation that diverges from an overall pattern on a sample. Outliers do not need to be 

extreme values. In the process of producing, collecting, processing, and analyzing data, 

outliers can come from many sources and hide in many dimensions. Those which are not a 

product of an error are called novelties. Most common causes of outliers in a data set are 

data entry errors, measurement errors, experimental errors, intentional, data processing 

errors, sampling errors and natural. 

Multivariate outliers can be found in an n-dimensional space (of n-features). Looking at 

distributions in n-dimensional spaces can be very difficult for the human brain that is why 

we need to train a model to do it for us.  

The outliers are classified in few categories; the multivariate additive outliers (MAO) affect 

only individual observation of the sequence and not the upcoming values, the multivariate 

innovational outliers (MIO) have a passing influence on the series like an novelty, the 

multivariate level shift (MLS) rise or diminution of all the observations at a specified point 

of the series by a constant, the multivariate temporary change (MTC) rise or decline harshly 

the level of the series which speedily returns to its original level exponentially, the last type 

is multivariate seasonal level shift (MSLS). An unexpected change which disturb only 

specific season of a year are called the seasonal outliers. These can be divided into AO and 

SLS. SLS is considered as a specific kind of level shift. In general, the MAO and the MIO 

are considered as non-typical observations whereas the MTC and the MLS as structural 

changes. The problem of outlier detection in multivariate time series is a complex problem 

because the different components can be affected by different types of outliers. In this 

thesis we will study outlier detection directly in multivariate time series framework with 



3 
 

respect to different types of outliers and their impact on model selection and performance 

of other statistics in the presence of outliers. 

Via explanation outliers are points that are distant from remaining observations. As a 

result, they can possibly skew or bias any analysis done on the dataset. It is therefore 

very important to detect and effectively deal with outliers. They may indicate a variability 

in a measurement, experimental errors or an innovation. In other words, an outlier is an 

observation that diverges from an overall pattern on a sample. Outliers do not need to be 

extreme values. 

Multivariate outliers can be found in an n-dimensional space (of n-features). Looking at 

distributions in n-dimensional spaces can be very difficult for the human brain that is why 

we need to train a model to do it for us. 

Outliers can have a dramatic impact on the results of common multivariate statistical 

analysis. For example, they can distort correlation coefficients (Marascuilo and 

Serlin, 1988; Osborne and Overbay, 2004), and create problems in regression analysis, 

even leading to the presence of collinearity among the set of predictor variables in multiple 

regression (Pedhazur, 1997). Distortions to the correlation may in turn lead to biased 

sample estimates, as outliers artificially impact the degree of linearity present between a 

pair of variables (Osborne and Overbay, 2004). In addition, methods based on the 

correlation coefficient such as factor analysis and structural equation modeling are also 

negatively impacted by the presence of outliers in data (Brown, 2006). Cluster analysis is 

particularly sensitive to outliers with a distortion of cluster results when outliers are the 

center or starting point of the analysis (Kaufman and Rousseeuw, 2005). Outliers can also 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389806/#B12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389806/#B15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389806/#B16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389806/#B15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389806/#B1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389806/#B8
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themselves form a cluster, which is not truly representative of the broader array of values 

in the population. Outliers have also been shown to detrimentally impact testing for mean 

differences using ANOVA through biasing group means where they are present (Osborne 

and Overbay, 2004). 

While outliers can be problematic from a statistical perspective, it is not always advisable 

to remove them from the data. When these observations are members of the target 

population, their presence in the dataset can be quite informative regarding the nature of 

the population e.g. Mourao-Miranda et al. (2011).  

To remove outliers from the sample in this case would lead to loss of information about 

the population at large. In such situations, outlier detection would be helpful in terms of 

identifying members of the target population who are unusual when compared to the rest, 

but these individuals should not be removed from the sample Zijlstra et al. (2011). 

Outlier detection has become a field of interest for many researchers and practitioners and 

is now one of the main tasks of time series data mining. Outlier detection has been studied 

in a variety of application domains such as credit card fraud detection, intrusion detection 

in cybersecurity, or fault diagnosis in industry. In particular, the analysis of outliers in time 

series data examines anomalous behaviors across time [Gupta et al. 2014a]. 

Detecting outliers is of major importance for almost any quantitative discipline. In machine 

learning and in any quantitative discipline the quality of data is as important as the quality 

of a prediction or classification model. The univariate method does not always work well. 

The multivariate method tries to solve that by building a model using all the data available, 

and then cleaning those instances with errors above a given value. Much research work is 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389806/#B15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389806/#B14
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389806/#B26
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found in multivariate case for example, four types of outlier was explored by Tsay et al. 

(2000) in multilevel case Additive outlier, Innovative outlier, Level shift and Transient 

change by using multivariate ARIMA model and suggested two test statistics; Joint 

maximum test and component maximum test for detecting outliers. They have concluded 

that a multivariate outlier depends not only on its size and underlying model, but also on 

the interactions between the size and the dynamic structure of the model.  

In practical life outlier detection has a very important role. Such as abnormalities in climate 

change (rainfall, temperature, humidity, fog etc.), air pollution, water pollution, water level 

in sea seriously affect to ecosystem which may cause different diseases and agriculture 

sectors i.e. fluctuation in agriculture product prices. If outliers are not detected and adjusted 

in the data then the analysis becomes wrong and we cannot predict future in reliable 

manner. Hence, we cannot think about proper solution to deal with the problem of 

pollution, irregular rainfall, and extreme temperature etc. When outliers are detected and 

adjusted in the data and analysis become reliable resulting in effective policy implication 

and predictions work well.  

We have noted that seasonal patterns do exist in multivariate time series so there is needs 

of handling outliers in seasonal patterns in multivariate time series as well. One of the 

special kind of MLS is the MSLS which occurs in seasonal VAR (p)(Ps) at specific time 

point t such that for 1≤ t ≤ n, and reoccur in each year in the same season called S after 

occurence of the MSLS and the affect of MSLS remains up to consequential seasons. 

Much studies are found for detecting seasonal pattern in univariate time series in Pakistan 

and other countries including Kaiser and Maravall (2001) who have detected seasonal 



6 
 

outliers in univariate time series. Sidra et al. (2015) have detected Seasonal variation of 

fine particulate matter in residential microenvironments of Lahore, Pakistan. Asghar and 

Urooj (2017) have explored the correct identification of seasonal outliers using most 

commonly applied test statistics and evaluated the performance of seasonal level shift 

(SLS) by means of empirical level of significance, power of the test for sensitivity in 

detecting changes, and the vulnerability to masking of outliers by misspecification 

frequencies. Their empirical study based on Pakistan. 

It is noted that seasonal patterns may face seasonal outliers in multivariate time series too 

and therefore, needs handling of such outliers in seasonal patterns. Upto our knowledge, 

there is no such study guiding the insight about the multivariate seasonal outlier.  In this 

study we attempt to look at the impact of SLS in multivariate time series framework 

directly. 

1.1 Literature Gap 

In past single level outlier detection have Frequent focus. Previously exploration about 

existence of outliers in the multilevel time series and their detection was ignored may be 

due to its computational difficulties. However, Tsay et al. (2000) and some other have 

explored outliers and their detection in multivariate time series. Up to our knowledge, no 

one study is found for outlier detection in multivariate time in case of Pakistan, however, 

in case of other countries various studies are available for outlier detection in multivariate 

time series and some exploring their theoretical aspects,  however all these studies detect 

various types of outliers in multivariate time series but no one study is done for recognition 

of MSLS in multilevel time series around the world.  
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However, we have noted from existing literature the presence of  outlier in one series may 

cause outlier in another series so we can think that along other outliers seasonal outlier in 

one series may also cause seasonal or other type of outlier in another series and there may 

exist the possibility of seasonal level shift and it impacts series, model, estimates, inference 

and predictions and up to our knowledge no one study was found in the world for the 

detection of SLS in multivariate time series. So, it’s needed to be explored. Ignorance of 

all these may affect data analysis results and forecast. So, it is necessary to detect SLS 

along with other outliers in the vector time series. Therefore, we plan on the way to fill this 

gap by suggesting a method for detection of seasonal level shift in multivariate time series. 

We will also search for existence of multivariate outlier including SLS in case of Pakistan. 

1.2 Significance of the study 

Importance of our study is that, it attempts to provide a modified Tsay’s (2000) multivariate 

outlier’s detection method by including seasonal level shift (SLS). The seasonal level shift 

is not explored in multivariate structure up till now, we introduce seasonal level shift in 

multivariate time series using seasonal VAR model and apply the procedure as suggested 

by Tsay et al. (2000) based on one test statistics for detection of multivariate outliers i.e. 

joint maximum test statistics. 

We explore five types of outliers in multivariate time series framework named as 

multivariate additive outlier (MAO), multivariate innovative outlier (MIO), multivariate 

level shift (MLS), and multivariate transient change (MTC), multivariate seasonal level 

shift (MSLS). We plan to identify effect of the existence of MSLS on multivariate time 

series, suggest its detection procedure and examine the performance of the suggested 

method. 
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In many cases multivariable observations cannot be detected as outliers when each variable 

is considered independently. Outlier detection is possible only when multivariate analysis 

is performed, and the interactions among different variables are compared within the class 

of data. Here it is needed to detect and adjust MSLS along with other types of outliers in 

time series data to make results reliable. 

1.3 Objectives 

i. To study the Impact of SLS on multivariate time series in terms of effect on 

estimates and standard errors. 

ii. To suggest multivariate outlier’s detection method by including seasonal outliers 

(SLS) among other type of outliers. 

iii. To evaluate performance of suggested procedure in terms of power and size. 

iv. To examine the performance of suggested procedure for outlier detection in 

multivariate time series by using time series data of Pakistan. 

1.4 Framework of the Study 

Mostly techniques for outlier detection focus on each variable autonomously, meanwhile 

outliers can affect the estimated mean and standard deviation, However, using vigorous 

methods for outlier detection can decrease or eliminate the effect of outliers on estimates 

of location and spread. However, up to our knowledge there is no one method is present to 

detect SLS directly in multivariate time series. We provide a modified Tsay’s methods of 

multivariate outlier detection based on one test statistics joint test statistics by including 

SLS. We also used this modified method in simulation study to obtain empirical size, 

power and quantiles of the test statistics and to identify the impact on estimates and 
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standard errors and covariances matrix of the analysis. We have employed this method in 

real data example to obtain the significance results of SLS in real world data. 

1.5 Organization of the Study 

This study is organized in six chapters. In chapter 1 we included introduction, significance 

of the study, objectives of the study, framework of the study. in chapter 2 we introduce the 

concept of SLS in multivariate time series along with its impact. We would discuss the 

detection of multivariate outliers by adding AO, IO, LS, TC. in chapter 3 we modify and 

suggest an iterative procedure for estimating multivariate outliers in seasonal VAR model 

by using one test statistics, joint maximum test statistics. In chapter 4 we use simulation to 

obtain finite sample critical values and empirical power and empirical level of significance 

of the test statistics for all five type of outlier in our study and for overall test statistics 

named as joint maximum test statistics. In chapter 5 we included empirical analysis, we 

shall demonstrate a real-world example by using few monthly time series data series. In 

chapter 6 we included conclusion and policy recommendations. 
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CHAPTER 2 

LITERATUTRE REVIEW 

Most of the time series data is affected by outliers and structural breaks both in univariate 

and multivariate structure. These occurred due to unexpected shock which may be interna 

or external. The outlier effects in multivariate time series were ignored earlier due to 

complexities in detection and handling procedures, however, in recent times some studies 

have focused in designing methods for outlier detection in multivariate framework. We can 

use nowadays numerous outlier detection method to testing each type behavior. Yet, up to 

our knowledge Seasonal level shift is ignored in multivariate time series. Existing literature 

can be divided into three parts, 1st part of the literature covers the studies about detection 

and handling of outliers in univariate time series, while 2nd part of literature discusses the 

studies related to handling of outliers in multivariate time series and 3rd part includes 

seasonal time series.  

2.1 Case of Univariate time series 

Fox (1972) was adopted two models with two outliers types the AO and the IO and 

identified outlier and checked their impact on time series. Likelihood and approximate 

likelihood ratios criteria for the adopted models obtained and to compare the power 

function with the earlier approaches. 

.Hillmer (1984) and .Ledolter (1989) has explored effect of the AO on forecast. Both the 

forecast error for the period in which it occurs and the forecast error of subsequent periods 
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affected by an additive outlier. Suggestion of this study is the method for the observation 

adjustment, which remove the biasness of forecast due to the AO.  Ledolter (1989) study 

was concluded that AO near the forecast origin affect badly to forecast as compare to other 

condition.  

Tsay (1986.) in his research explored the problem of time series model specification in the 

existence of outliers. He proposed an iterative procedure for identifying the outliers, for 

removing their effects, and for specifying a tentative model for the underlying process. The 

procedure is basically grounded on the iterative estimation procedure of Chang and Tiao 

(1983) and the extended sample autocorrelation function (ESACF) model identification 

method of Tsay and Tiao (1984). An example is given. Properties of the proposed 

procedure are discussed. He used U.K spirits data to check the performance of method. 

While the projected method cannot reveal what caused the series to behave incoherently, 

it can often pinpoint those observations that deserve the special treatments. For spirits data, 

it not only recognized the two additive outliers but also led to the discovery of an 

intervention. Consequently, a substantial (75%) reduction in residual mean square was 

obtained. In conclusion, besides the parametric approach implemented in this article, there 

are many other methods for the treatment of outliers in time series. 

Tsay (1988) was identified a method for identifying and handling four types of outliers by 

univariate approach in time series, he has planned an efficient iterative method. For 

identifying known and unknown outliers and their location, iterative procedure with two 
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steps recommended by this study which contains estimation, specification, detection and 

removing cycle. This is the most common used method for outlier identification. 

Chang et al. (1988) in their study was used LR criteria for testing and existence of AO and 

IO and for distinguishing between them he was explored the criteria. An iterative procedure 

was adopted by this study for identifying and estimating the time series parameters using 

ARIMA models in the existence of these outliers. Conclusion of this study is that the 

proposed method earlier in the literature for AR (1) coefficient is favorable. 

Thury (1992) has imposed a seasonal adjustment study which is model grounded for 

identifying the impact of outliers, this study results was confirmed that outliers badly affect 

the seasonal modification which is model grounded and proposed that by exclusion of the 

outliers in the raw data, model grounded seasonal adjustment can be enhanced. 

Chen and Liu (1993) have directed a study, which explore in the existence of four outlier 

forecasting in time series, four outlier types are included. Conclusion of this study is that 

if outliers exist near the forecast origin the time series is most affected as compare to other 

condition this also recommend that removal of outlier can give better forecast. 

Balke (1993) was identified that, the procedure of Tsay.(1988) does not work pleasingly, 

when there is LS exist and established it with examples. He identified that estimation and 

specification of the initial ARMA process affected by LS, also, this problem affected the 

detection and exclusion step. Furthermore, the Tsay method for distinguishing between LS 
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and IO, misidentify level shifts. To deal with this problem given a simple extension of 

Tsay’s procedure was given by Balke (1993), who has specified and estimate an initial 

ARMA (0, 0), before the initial ARMA specification. One of the CR procedure is suggested 

based on two phases, first for disturbance search and the reduction phase. This extension 

was claimed to minimize many problems of Tsay’s procedure and easy to handle the 

possibility of level shift at the unknown period comparatively. 

Chen.and Liu (1993 ) was proposed a method for estimating of model parameters, outliers’ 

effect by the joint estimation technique in time series. For identification and adjustment of 

outliers he has proposed an Iterative procedure for all outlier types that is four. This Study 

was confirmed that the power and misidentification inversely related to critical value. The 

study also concluded that the AO, TC, and LS can cause substantial bias in the estimation 

of the model parameter and, while effect of IO is not as much of serious on the model 

parameters. 

Fomby and Balke (1994) was used a modified procedure for outliers as suggested by the 

Balke (1993) for identifying frequency, timing, and persistence of large shocks detection 

performance. They concluded that, outliers when related to business cycles then outliers 

are gathered together, therefore, there may exist incongruity between outlier’s behaviors in 

real versus nominal series. They found out the significant evidence that infrequent large 

shocks have an important contribution to the variability of the macroeconomic time series. 

Series with outliers indicate excess kurtosis and the skewness along with non-linearity in 

the data. 
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Trivez (1995) has steered a method to scrutinize the forecasts with the Level Shifts and the 

Temporary Changes in ARIMA models. Here results identified that prediction interval 

affected by the LS and TC and the inaccuracy of point forecast becomes meaningfully 

enlarged. It is also noted that this effect depends upon the distance of occurrence from the 

forecast origin and as well as on auto regressive integrated moving average process. 

Vaage (2000) has assessed two different procedures. Of the Tsay (1988) and the Balke 

(1993) respectively and has determined that the existence of level shift might lead to 

misidentification and loss of the test power. Study investigated that, how the model of 

Balke’s perform in both cases. Study confirmed that the Balke's procedure outperforms 

when the restrictions of Balke are removed. 

Kaiser and Maravall (2001) premeditated the automatic outlier recognition and adjustment 

by considering distinct types of outliers. Simulation and real example was imposed in this 

study for examining SLS in detailed. outlier types included are the additive, innovative, 

level shift, and transitory change outliers. Study results confirmed that SLS have important 

properties in the time series and declared it as important type of outlier and suggested to 

replace it the IO. They concluded that when we considered the automatic outlier detections 

therefore, the innovative outlier (IO.) must not be castoff from outliers list. 

Furusjo, et al. (2005) have employed QSAR models for four different environmental 

endpoints to demonstrate the importance of appropriate training set selection and how the 

reliability of QSAR predictions can be enlarged by outlier diagnostics. All models 
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displayed reliable results; test set prediction errors were very analogous in magnitude to 

training set estimation errors when prediction outlier diagnostics were used to perceive and 

remove outliers in the prediction data. Test set prediction errors for elements classified as 

outliers were much larger. The difference in the number of outliers amongst models with a 

randomly and analytically selected training demonstrates well the need of illustrative 

training data. 

Smith (2005) has steered a study, in which an extended STOPBREAK model of Engle and 

Smith (1999) was used named stochastic permanent breaks model by allowing for richer 

dynamics for forecasting in the existence of the level shift and displays that its forecasts is 

better than numerous alternatives. And said that the model STOPBREAK outpaces 

numerous alternative models. 

Charles (2004) and the Charles (2006) employed GARCH models with outliers in financial 

data. He was applied on real data an outlier recognition methodology which is based on the 

Franses (1999) and Chen and Liu (1993). The study approves that all the excess kurtosis is 

removed after the adjustment of outliers from two series. Therefore normality is not 

rejected. 

Nair et al (2006) have inspected the damage detection and localization algorithm based on 

time series and applied ARMA model. Study confirms that damage recognition and 

localization algorithms obtained from linear systems are effective for the stationary signals. 
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Galeano et al. (2006) and Baragona and Battaglia (2004) have used projection persuit 

method for detecting outlier in multivariate time series. Baragona and Battaglia (2007), 

have detected outliers in multivariate time series by Independent Component Analysis.  

Helbling and Cleroux (2009) in their study they have reviewed numerous methods for 

sleuthing outliers in vector time series and planned new method of detecting outliers in the 

multivariate time series model, an experimental method based on graph of the influence 

function and another consisting of testing for the presence of outliers. They have measured 

all the methods from a hypothetical point of view. 

Wang (2011) has projected an well-organized distance-based algorithm for noticing 

outlying samples in vector time series datasets. 

Emerson and Emerson (2011) have discovered the performance of the outlier-sum statistic 

(Tibshirani and Hastie; Biostatistics, 2007), a projected method for identifying genes for 

which only a subset of a group of samples or patients displays differential expression levels. 

This study engrossed on this method as an example of how inattentiveness to standard 

statistical theory can lead to methods that exhibit some thoughtful problems. Results 

showed that, the proposed method offers little benefit even in the most idealized scenarios, 

and grieves from various limitations including difficulty of calibration, high false positive 

rates owing to its asymmetric treatment of groups, poor power or discriminatory ability 

under many alternatives, and poorly defined application to one-sample settings. They were 
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incapable to reproduce their discoveries and conversed numerous unwanted and 

improbable features of their results. 

Karanjit and Upadhyaya (2012) have attempted to structure and present a extensive 

overview of the detailed research on outlier detection techniques in varied research areas 

and applications also trying to the highlight richness and difficulty connected with each 

application domain. They have distinguished simple outliers from the complex outliers and 

defined two types of complex outliers, contextual and the collective outliers. 

Zwilling and Wang (2014) have presented a general method for identifying outliers in 

vector time series grounded on a Voronoi diagram, which we call Multivariate Voronoi 

Outlier Detection (MVOD). 

Micenkov´a, et al. (2015) have planned BORE (a Bagged Outlier Representation 

Ensemble) which uses unconfirmed outlier scoring functions (OSFs) as features in a 

supervised learning framework. BORE is able to adapt to arbitrary OSF feature 

representations, to the imbalance in labeled data as well as to prediction-time constraints 

on computational cost. They have established the good performance of BORE compared 

to the variety of competing methods in the non-budgeted and the budgeted outlier 

recognition problem on 12 real-world datasets. Results exhibited that BORE is the only 

method capable of handling budget restraints at test time. They have showed that it 

effectively selects a subset of the features that provide upright overall outlier detection 

performance. 
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Urooj and Asghar (2017) was used Chen and Liu (1993) method to discovered the 

performance of the outlier detection test statistic. The results show that the sampling 

distribution of TC is the less concentrated as compare to additive innovative and level shift. 

Empirical critical values for 1% 5% 10% with AR (1) process are higher as compare to 

other. The study also determined that TC confused with IO and AO and at the extremes it 

become equal to IO and AO.  

Asghar and Urooj (2017 b) was used Kaiser and Maravall (2001) method and scrutinized 

the identification of seasonal level shift in SARIMA model. Study results confirms that for 

the identification of SLS detection in the case of SAR (1) and SMA (1) models the size of 

SLS affects the sampling distribution of test statistic. The empirical quantile is inversely 

related to sample size n and the coefficients of model. The small sample size and large 

coefficients values is not good for empirical power of the test. The study not recorded the 

impact of SLS on forecasts. 

From above literature we concluded that all five outlier’s types names AO, IO, LS, TC, 

SLS are explored for univariate time series in different studies and are applied on real world 

data in case of Pakistan and in case of other countries. These analyses have shown that 

there is significant impact of outliers on series, models, estimate, inferences and prediction. 

It is also shown that when these outliers are detected and adjusted in the data then analysis 

and future predictions become reliable. We now moved towards the literature covering the 

existence of outliers and their handling in multivariate time series. 
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2.2 Case of Multilevel Time series 

Tsay et al.(2000) have derived a method to detect the four outliers’ types directly in 

multivariate time series via simulation and empirical study by using multivariate ARIMA 

model. For detection of outliers they generated two statistics as joint maximum and 

component maximum test statistics. They highlighted difference amongst ingle level and 

multievel outliers and investigated dynamic effect of vector outliers on individual 

components. In empirical study they have used two real data examples. In simulation study, 

they have used multidimensional AR (6) and AR (1) models to obtains empirical critical 

values of the test statistics for bivariate and trivariate and sample size is 50, 100 and 200 

and generate 10,000 realizations. This study concluded that the multivariate outlier’s effect 

be subject to not only on its magnitude and the primary models but also on the collaboration 

between the magnitude and the dynamic structure of model. The later feature does not seem 

in univariate case. A multivariate outlier can bring various type of outliers for the single 

variable models. By associating result of univariate and multivariate outlier recognition 

one can gain awareness into the characteristic of an outlier. 

Pan, et al. (2000) have proposed a procedure to detect several outliers in multi-level data. 

Simulation based artificial data was generated for analysis. Gaussian approach was used 

for the analysis of high dimensional data Results showed that for multi-dimensional data, 

extra points scattered consistently on the sphere must be produced. Similarly, the number 

of these points should rise progressively up until a comparatively stable result was made. 

Both real-world data analysis and simulation study display that the projected procedure is 

suitable in exercise.  
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Pena and Prieto (2001) have projected a method to recognize outliers in multi-level 

samples, grounded on the analysis of single-level projections onto directions that resemble 

to extremes for the kurtosis coefficient. A thorough analysis has been directed on the 

possessions of the kurtosis coefficient in polluted univariate samples and on the affiliation 

between directions to outliers and extremes for the kurtosis in the multi-level case. They 

determined that a method that figures a huge set of random directions will be extra 

influential as compare to another one that calculates a small number of definite directions 

in case if we have a large set of random uniformly scattered outliers in multi dimension. In 

another way, when the outliers appear along definite directions, a method that we search 

for these directions is anticipated to be very beneficial. These results emphasize the returns 

of combining random and specific directions in the search for multi-level outliers. 

Tsay et al.(2006) developed a procedure for a multi-level approach to detect outliers in 

time series by using projection pursuit methods. They showed that through projection 

directions identification of outliers can be more influential than outlier identification 

directly in multilevel series. The optimal directions for the detecting outliers are found by 

numerical optimization of the kurtosis coefficient of projected series. They have planned 

an iterative procedure for detection and handling of multilevel outliers grounded on a single 

component search in these optimal directions. In contrast with the existing methods, the 

proposed procedure can identify outliers without prespecifying a vector ARMA model for 

the data. The Monte Carlo study and real data analysis results identified The good 

performance of the projected method. 

Helbling and Cleroux (2009) have detected the outliers in multi-level time series models 

based on the multilevel autocorrelation and VARMA process on a simulation based 
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generated data. They measured numerous methods in multilevel time series for detection 

of outliers. Some methods are based on the tests of hypotheses and others are based on the 

projection pursuit and ICA. They familiarized the coefficient of multilevel autocorrelation, 

gained its influence function together with its distribution. They also planned new methods 

of detecting outliers in the multilevel time series model, a heuristic method based on the 

graph of the influence function and another comprising of testing for the occurrence of 

outliers. All the methods measured in this paper have been seen from a theoretical point of 

view. Numerical comparisons would be interesting and remain to be done. 

Cheng, et al. (2009) have presented an anomaly sleuthing algorithm in noisy multilevel 

time series data. To capture the dependence relationships among variables, they employed 

kernel matrix alignment method based on simulation data. Time series data was used from 

2000 to 2005. They concluded that algorithm used in our study is effective which is 

explained from both real and artificial data sets. 

Baragona and Battagalia (2007) have detected the outliers in multilevel time series. For 

recognizing the positions of multiple outliers in vector time series, they have employed 

ICA as a implement. Model applied on both real and artificial data. For artificial data 

simulation-based method was used and for real data time series quarterly data was used 

from 1990 Q1 to 2000Q4. ARIMA and algorithmic technique was used. Findings showed 

that the projected method did best for single outlier recognition, as long as the outlier 

pattern is examined, even at the end of time series, and good performances were detected 

also for patches and LS.  
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Galeano, et al. (2011) have tracked multilevel outlier detection method in time series. Both 

time series and simulation-based data was used. For time series data was used from 1940 

to 2010. VARMA, ARMA was used for multivariate and univariate analysis. Results 

showed that the projected procedure can recognize outliers without prespecifying a vector 

ARMA model for the data. Both from the Monte Carlo study and real data analysis, the 

good performance of the proposed method was observed. 

Furwa (2017) work on outlier detection for skewed distribution: bivariate case and 

extended a technique for outlier detection SSSBB (Split Sample Skewness Adjusted) for 

the bivariate case and compared the result with the robust Mahalanobis distance technique 

considering various types of distributions. For comparing SSSBB and Mahalanobis 

distance, this study was used Monte Carlo Simulations. Four distributions are considered 

in this study named normal distribution, chi-square, gamma and beta distributions and 

different sample sizes are taken, to evaluate the performance of SSSBB for bivariate data 

and the study initiate that SSSBB does well as compared to Mahalanobis distance, in all 

the cases considered in the study. On the basis of the area of hurdle and outlier perceived 

ratio, the results show that SSSBB is a better method for normal as well as skewed data 

sets because SSSBB (Split Sample Skewness Adjusted) technique detects the possible 

outliers in the specified area of fence. 

2.3 Case of Seasonal Time Series 

Pal et al. (2013) have investigated the everchanging seasonality and increase in the 

frequency of precipitation by using wet and dry seasons data of the U.S. Mazzoni and 

Rezende, (2003) have investigated a tetragonopterinae from the ubatiba river, Brazil and 

identified a seasonal diet shift. Noonari et al. (2015) have used main vegetables prices of 
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Sindh Pakistan for examining the flexibility and seasonal variations. Imran et al. (2014) 

have investigated an analytical study of variations in the monsoon patterns over Pakistan. 

2.4 Summary 

From above literature we have noted that outliers in multivariate time series have 

significant impact on modeling, series, estimates, inferences and future prediction. When 

outliers are detected and adjusted in the data then analysis and future predictions become 

reliable. However, we also noted that detection of Seasonal level shift is totally ignored in 

multivariate time series, however numerous method can be used for outlier detection 

according to their type. So, we will fulfil this gap by detecting SLS in multivariate time 

series using monthly time series data of Pakistan. 
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CHAPTER 3 

DATA AND METHODOLOGY 

In this study we consider multivariate time series models with outliers using seasonal VAR 

(p)(Ps) model and study the effect of these outliers and their detection using Tsay et al. 

(2000) procedure by modifying the one test statistics namely joint maximum test for 

detecting five types of outliers. We explore all five types of outliers by using Simulation 

and empirical study. 

3.1 Seasonal Vector Auto Regressive Model 

For the multilevel time series analysis, the multilevel AR model is only the utmost 

effective, stretchy, and easy to use models. Particularly to describe the dynamic behavior 

of economic and financial time series and to predict, the vector AR model has confirmed 

to be valuable. The multilevel AR is a natural extension of the single level AR model to 

dynamic multivariate time series. It elaborates theory-based simultaneous equations 

models however often provides superior forecasts to those from univariate time series 

models. The VAR models can be made conditional on the potential future paths of specified 

variables in the model therefore Predictions from VAR models are quite flexible. 

furthermore, the vector AR model is also used for structural inference and policy analysis. 

In structural analysis, certain assumptions about the causal structure of the data under 

investigation are imposed, and the resulting causal impacts of unexpected shocks or 

innovations to specified variables in the model are summarized. These causal impacts are 

frequently summarized with IRF and forecast error variance decompositions, ARIMAX 
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requires MLE which is commonly slow therefore vector AR model can be estimated using 

OLS or GLS which are normally fast. 

Seasonality in macroeconomic data refers to systematic and recurrent variation in the data 

within the year. For example, monthly retail sales spike every year in December, as 

Christmas approaches, and airfares and motel rates increase during tourist season. 

Unmodeled seasonality tends to violate the constant parameter assumption of standard 

linear VAR models. There are a several remedies depending on the type of seasonal 

variation in the data. There are two types of seasonality i.e. deterministic seasonality and 

stochastic seasonality. 

It is necessary to distinguish between deterministic seasonal variation and stochastic 

seasonal variation. The most common form of deterministic seasonal variation involves 

adding seasonal dummies to the VAR model. For example, consider the stable auto 

regression 

A(L)yt = νi + ut, 

Where νi is the intercept associated with the ith season and ut is white noise error term. 

Quarterly models would typically include four seasonal dummies, and monthly models 

would include twelve seasonal dummies, where each dummy variable takes on a value of 

1 for the quarter (or month) in question and zero otherwise. While it is common to include 

one dummy for each quarter (or month), one dummy would obviously be enough if we 
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knew that there is no seasonality in the other quarters (or months). Models with seasonal 

dummies impart a deterministic pattern. Seasonality is perfectly predictable and, every 

year, the seasonal effect is the same. Although seasonal dummies are often used when 

modeling I (0) processes, it is worth stressing that it is equally possible for an I (1) process 

in levels to have deterministic seasonal. 

In Stochastic seasonality in VAR with stationary seasonal process, one can model seasonal 

effects as random, which allows seasonality to be less than perfectly predictable and 

permits seasonal effects to evolve over time. Such randomness is appealing because there 

is no reason to expect seasonality to be time-invariant. For example, one would expect 

seasonal patterns in airfares to evolve with changes in market structure and seasonal energy 

consumption patterns to evolve with new technologies. Some forms of stochastic 

seasonality are easy to model. For example, for a VAR process 

As (Ls) Yt = ν + ut, 

Where As(Ls) involves only seasonal lags(s). The autocorrelation function of Yt spikes at 

lags s, 2s, 3s, . . ., rs. The usually observed seasonal factor is s = 4 for quarterly data and s 

= 12 for monthly data. To allow for more sophisticated no seasonal auto covariance, a 

multiplicative model of the form 

A(L) As(Ls) Yt = ν + ut  

may be considered, where A(L) is a standard VAR operator of order p, say. Multiplying 

the operator show that a standard VAR process with sufficiently large lag order nests the 
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purely seasonal VAR or multiplicative model, if all roots of the VAR operator are out of 

the unit circle, however, some roots are the complicated pairs with periodic cyclicity. This 

means that even a standard VAR model may generate seasonality following a stationary 

stochastic process, provided, we include enough lags. One drawback of such model is that 

stationary seasonal processes tend not to exhibit the regularity commonly associated with 

seasonal effects unless the seasonal roots approach the unit circle. This observation 

suggests that this seasonal model without the addition of seasonal dummies will be of 

limited relevance for applied work. In this study we are considering VAR model with 

stochastic seasonality. 

Mercy & Kihoro (2015) have estimated a vector AR model for a reformed seasonal 

univariate time series for prediction by using seasonal univariate time series data. Blazsek, 

et al. (2018) have introduced the Seasonal-QVAR model for the global real economic 

activity and world crude oil production, that classifies unseen seasonality in linear VAR 

and VARMA models. Lof and Frances (2000) have conducted a study for an empirical 

forecasting y using periodic and seasonal cointegration models for bivariate quarterly 

observed time series and contain both the single and multiple equation methods. A 

multilevel AR model in first differences with and the without cointegration limitations is 

as well comprised in the analysis where it assists as benchmark.  

Both the seasonal and non-seasonal factors are included in the seasonal VAR model.  The 

generally used notation for seasonal VAR model is VAR(p)(P)s, With p : non-seasonal 

vector AR order,  P = seasonal vector AR order, S = seasonal frequency of VAR model. 

For stochastic seasonality, in formal the VAR model can be written as 

Seasonal VAR model: As(Ls) Xt = α + ut      with t = 1,··· ,n, 
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Yt = Xt  + α(B)ωi𝐼𝑡
(ℎ)

  i= AO, IO, LS, TC, SLS 

3.1.1 Multilevel outliers in timeseries 

Let Xt = (X1t,··· ,Xrt)
´ be a r-dimensional vector representing a multivariate VAR time 

series (vector autoregressive) 

A multivariate seasonal VAR model is given by 

A(L) As(Ls) Xt = α + ut      with t = 1,··· ,n,                                …. 3.1 

Where Xt = (X1t, X2t, X3t, …… Xrt)
′, 

α =( α11, α21, α31, ………., αr1)
′, 

ut = (u1t, u2t, u3t, ………., urt)
′ 

and L is the r × r and matrix backshift operator such that LXt = Xt−1 and 

Non seasonal lags of VAR: A(L) = I − A1L − ··· − ApL
p 

Seasonal lags of VAR: As(Ls)= 1 - A1L
S - ... - APLPS 

are matrix polynomials of orders p, α is a r-dimensional constant vector and ut = (u1t,··· 

,urt)
´ is a chain of autonomous white noise vectors of zero means and covariance matrices 

Σ. 

Given an observed multivariate time series in which we add outlier term At where At = 

α(B)ωi𝐼𝑡
(ℎ)

 and actual series Xt  then it becomes like observed series Yt , Y= �́�1, . . . , �́�𝑛 

with Yt = (Y1t,··· ,Yrt)
´, the existence of outliers can be modelized as: 
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Yt = Xt  + α(B)ωi𝐼𝑡
(ℎ)

  i= AO, IO, LS, TC, SLS                                    …. 3.2 

Where 𝐼𝑡
(ℎ)

 is an indicator variable which characterizing the outlier at time h that is 𝐼𝑡
(ℎ)

 = 

1 and 𝐼𝑡
(ℎ)

 = 0 if t ≠ h and ω = (ω1,··· , ωr)
´ is the initial impact on the data series and Xt 

follows. α(B) is the dynamic effect of outlier on the series and changed with the type of 

outlier. 

In this study we attempt to detect outliers in multivariate time series. We use seasonal VAR 

model and the method for detection of outliers as suggested by Tsay et al.(2000) by 

modifying it for four types of outliers. 

For stochastic seasonality, we can write seasonal vector AR model as 

(1)      A(L) As(Ls) Xt  = α + ut 

Xt = (X1t, X2t, X3t,……., Xrt)
′ 

α = (α11, α21, α31,……, αr1)
′ 

ut = (u1t, u2t, u3t,……, urt)
′  

The seasonal component is not supported by the basic VAR. Direct modeling of the 

seasonal component of the series supported by an extended VAR model which is known 

as Seasonal VAR. The non-seasonal terms simply multiplied by the seasonal terms. 

A(L) and As(L
s) are the matrix polynomials of finite degree p with order r × r, α is r-

dimensional constant vector, L is backshift and ut  =  (u1t, u2t, …….. ,urt  )ʹ is a classification of 
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autonomously and identically distributed the Gaussian random vectors with zero mean and 

positive fixed covariance matrix ∑ . 

Let assume that the observed series is Yt and the parameters are known but Yt series is 

affected by outliers at time h such that observed series is Yt = Xt + α (B) ω𝑖ε
h

t and Yt= (Y1t, 

Y2t, …… Yrt )
ʹ՜ and ωi= (ω1, ω2, ……… ωr )

ʹ՜ is the magnitude of outlier in series Xt , 𝐼h
t  is the 

indicator variable for time point h and equal 1 if t = h and equal 0 if t not = h. α(L) is 

changed with the type of outlier. In the below we will identify theocratically and 

mathematically five types of outliers directly in multivariate case, given as. 

VAR model with outliers can be written as 

Yt = Xt   +    α(L)ω𝑖𝐼
h
t  + ut 

Here Xt  is actual series without outlier and Yt is series with outlier which involves actual 

series Xt and error terms ut. Where ut = A(L)As(L
s) Xt, Xt = (π(L))-1 ut  and π(L) = 

A(L)As(L
s) which are the seasonal and non-seasonal roots of the VAR model. 

αIO(L) = π(L)𝐼  for multivariate innovational outlier and αAO(L)= I for multivariate 

Additive outlier and αLS(L) = (1 – L)-1I for multilevel level shift and αTC(L) = { D(δ)}-1 for 

multilevel transient change. D(δ) is r × r diagonal matrix with diagonal elements [(1- δ 1 

L), ( 1- δ 2 L), …………, (1- δ r L )
 ] And 0 < δ < 1 and for easiness we will assume that δ 1 = 

….= δ r= δ. For multivariate seasonal level shift αsls(L) = 
1

∇s
 - 

1

s∇
  where ∇= 1-L and ∇s = 1- 

Ls and s=4, s=12 for quarterly and monthly data respectively. 
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3.1.2 Lag Selection in VAR (p)(P)s Model 

In case of time series data with seasonal frequency 4 and 12, we have to estimate VAR 

model with 4th and 12th lags respectively. In case of annual time series data, we faced the 

problem of enough observation for VAR model, we need to take a lag length, which is 

neither too small nor too large, however to eradicate residual autocorrelation in VAR 

models’ lags are imperative. For optimal lag length, lag length criteria specify a positive 

way of choosing the optimal lag after estimating the initial VAR model. Mostly used lag 

selection criteria established by econometricians are HQ, SIC, AIC, LR and BIC, etc. 

Usually, we preferred that lag length for which the values of most of these lag length 

criteria are diminished. But this is not enough for lag selection, there is need to checked 

the residual autocorrelation of the estimated VAR model, finally for lag length selection. 

Additionally, VAR models are over parameterized and lags corrode the degrees of freedom 

and declines the strength of diagnostic tests because of multiple lags, therefore, to select 

the minimum lags that eradicates VAR residual autocorrelation we need to perform the lag 

exclusion tests. 

Generally, the preferred lag selection criteria are AIC because it is favorable for small 

sample forecasting structures. However, for large sample size the BIC and HQ works well 

and preferred the true order of the VAR model by comparing to the order. r+pr2 is used to 

calculate the number of coefficients in a VAR (p) (P)s model for r time series is, r is the 

number of intercepts, each lag p adds an r×r matrix of coefficients. 
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3.2 Detection Procedure of Outliers 

Distant data may be frequently observed that, it does not fit the common pattern in 

multilevel time series. Manifestations of outliers and shifts are impulsive measures that 

may harshly distort the analysis of the multilevel time series. For occasion, the undetected 

outliers and shifts badly affects the model building, seasonal valuation, and forecasting. 

Structure dependence of the multilevel time series gives increase to the well-known 

swamping and masking effect that misinform using most outliers credentials techniques. 

3.2.1 Steps for Detection of Outliers 

i. We will Assume no outlier at the start of analysis and build a Seasonal VAR 

model. 

ii. Calculate ât as residuals and π̂i is the vector of estimated coefficients of VAR 

(Vector Autoregressive) model. 

iii. Calculate the effect of each type of outlier at each time point. Estimate the vector 

ω̂i, h. where i= IO, AO, LS, TC, SLS. 

iv. Then we will test the implication of multivariate outlier at time index h, we 

consider the null hypothesis ω=0 versus the alternative ω ≠ 0. One test statistic 

used is J-maximum which treats components of ω jointly. Joint maximum test 

statistic follow noncentral 𝜒𝑘
2(𝜂𝑖) distribution with noncentrality parameters 

𝜂𝑖 = ω′Σi,h
−1ω . by the null hypothesis Ho : ω = 0, the Ji,h follow the chi-squared 

distribution with the degrees of freedom r, following Tsay et al.(2000). 

Ji,h = ω̂i,h
´  Σi,h

−1 ω̂i,h   where i= IO,AO, LS, TC, SLS                       … 3.3 
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Here ω is magnitude of outlier on the series Σi,h
−1 is the covariance matrix. We 

define general test statistics as  

Jmax(i, hi) = max
h

ji,h                                                  

Wherever hi represents the time index where the extreme of test statistics happens, 

hi shows the maximum of test statistics among all the five test for AO, IO, LS, TC, SLS, 

for example if the joint test statistics value of SLS is greater than the other four then here 

we write it as  jmax(SLS, hSLS) = max
h

jSLS,h.  

We detect outlier in multilevel time series by using joint test statistics, if we detect IO in 

MVTS then by the null hypothesis that there is no outlier in the sample and supposition 

that model of Xt is acknowledged the value  𝑗𝑚𝑎𝑥(𝐼𝑂, ℎ𝐼𝑂) is the extreme value of a random 

sample, sample size=n with a chi-square distribution with r degree of freedom IO= 

innovative outlier. Consequently, the asymptotic distribution of  𝑗𝑚𝑎𝑥(𝐼𝑂, ℎ𝐼𝑂) can be 

gained by using the extreme value distribution, however, for other all of the four joint test 

statistics  named MAO, MLS, MTC and MSLS is the maximum of a dependent sample 

with chi square distribution with r degree of freedom, therefore their asymptotic 

distributions are more complex, because it is depending on the serial dependence of { 𝐽𝑖,ℎ}. 

Tsay’s et al. (2000) identified that “when we estimate the outlier size ω, we can see that 

the serial correlation is of { 𝑗𝐿𝑆,ℎ}ℎ=1
𝑛  are tougher than those of  { 𝑗𝑖,ℎ} for i= MIO, MAO, 

MTC this is because of nondecaying factor persuaded by the operator (1-B)-1 therefore 

ω̂𝐿𝑆,ℎ  comprises all the filtered values of �̂�𝑡  for t ≥h. Accordingly, the asymptotic 

distribution of  𝐽𝑚𝑎𝑥(𝐿𝑆, ℎ𝐿𝑆) is more focused as compare to other joint test statistics. The 
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degree of attention depends on cumulative π values therefore, the critical value of 

𝐽𝑚𝑎𝑥(𝐿𝑆, ℎ𝐿𝑆) generally lesser as compare to other joint test statistics.”  

In case of univariate time series analysis if a single 𝑗𝑚𝑎𝑥(𝑖, ℎ𝑖) is substantial at time poin 

ℎ𝑜 , we categorize a multilevel outlier of the type i at ℎ𝑜, where i= MAO, MLS, MTC, 

MSLS. For multiple significant 𝑗𝑚𝑎𝑥(𝑖, ℎ𝑖), we recognize the type of outlier grounded on 

the test statistics which has the minimum detected p-value at time index ℎ𝑜 and probability 

of that test statistics is lesser than 0.05 level of significance then we declared that type of 

the outlier at time index  ℎ𝑜 at the 5% level of significance. When outlier is declared then 

its impact on the real time series is removed by using the results for detected series and 

adjusted series is preserved as a new data set and the detection procedure is repeated, we 

dismiss the detection practice when there is no significant outlier is noticed. 

3.2.2 Derivation of Equations with and without Outliers 

VAR model equation without outliers (Actual series) 

A (Ls) A(L) Xt  = α + ut,  

This equation shows the main structure of VAR model with seasonal and non-seasonal lags 

 Xt = (X1t, X2t, X3t…. Xrt)
′ 

Xi is i × j matrix where each column is k× 1 vector. 

α = (α11, α21, α31……. α r1)
′ 

ut = (u1t, u2t, u3t…… urt)
′ 
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Xt = (π(L))-1ut and π(L)= A(L)As(L
s) which are the seasonal and non-seasonal roots of the 

VAR model. 

3.2.2.1 Observed series for Additive outlier 

An Additive outlier denotes a surprising variation in one of the observations. It can appear 

because of a recording or measurement error or other single effect. The observed series for 

AO and its impact on residuals is given below: 

Outlier term At= ωi,h αi(L) 𝐼h
t  and i = AO, IO, LS, TC, SLS 

Yt  = Xt + ωAO,h αAO(L) 𝐼h
t                                                      ……. 3.5 

Xt= Xt = (π(L))-1ut  , αAO(L) = 1,           Xt= (X1t. X2t, X3t…. Xrt)
′ 

Yt  = (π(L))-1ut  + ωAO,h αAO(L) 𝐼h
t   

Yt  = (π(L))-1 ut  + ωAO, h 𝐼h
t  

For in terms of residuals Multiply π(L) on both side  

π(L) Yt  = ut  + ωAO,h π(L) 𝐼h
t ,         π(L) Yt  = at   

at   = ut  + ωAO,h π(L) Ih
t ,     π(L) = (1 - π(L) )  

For multivariate at   = (1- ∑ π𝑖
∞
i=1  (Li)ωAO, h 𝐼h

t  + ut   

at   = (𝐼h
t - ∑ π𝑖

∞
i=1  𝐼h

t-i)ωAO, h + ut                          … 3.6 

ut ~ N(0, ∑ ) from GLS ( Generalized least square estimators) ωAO,h 
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Therefore, when π(L)≠1, an AO at time index h for a vector AR(P) model, it will affect at 

for t = h, h + 1,··· ,h + p. 

ω̂AO,h = - (∑ π𝑖
՜n−h

i=0  Σ−1 π𝑖 )
-1  ∑ π𝑖

՜n−h
i=0  Σ−1 ah+i ,       πo = 1.                 …. 3.7 

Where ω is the magnitude of MAO on the data series and this impact finished after the 

time period of outlier, π𝑖  is the coefficient matrix for all lags of VAR model. Σ is the 

covariance matrix and L is the backshift lag operator LX= Xt-1. 

3.2.2.2 Observed series for Level shift 

When a surprising move occurs in all the observations of the multilevel detected time series 

after some time point, we call it as MLS. Multivariate level shifts distressing all the 

components of a multilevel time series, sometimes we called it structural breaks, because 

it yield a permanent effect on the multilevel series. The observed series in case of LS and 

its impact on residuals is given below: 

Yt  = Xt + ωLS, h αLS(L) 𝐼h
t                                                                 ……. 3.8 

Xt = (π(L))-1ut  , αLS(L) = (1 – L)-1,      Yt= (Y1t. Y2t, Y3t……. Yrt)
′ 

Yt  = (π(L))-1ut  + ωLS,h αLS(L) 𝐼h
t  

Yt  = (π(L))-1 ut  + ωLS, (1 – L)-1
 h 𝐼h

t  

For in terms of residuals Multiply π(L) on both side  

π(L) Yt  = ut  + ωLS,h π(L) (1 – L)-1 𝐼h
t ,         π(L) Yt  = at   

at   = ut  + ωLS,h π(L)(1 – L)-1 Ih
t ,       π(L) = (1 - π(L) )  
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For multivariate at   = (1- π𝑖 (L
i) )ωLS, h (1 – L)-1 𝐼h

t  + ut  

at   = (1 – L)-1 (𝐼h
t - ∑ π𝑖

∞
i=1  𝐼h

t-i)ωLS,h + ut                                             …. 3.9 

ut ~ N(0, ∑ ) from GLS ( Generalized least square estimators) ωLS,h 

Here it is clear that a LS at time index h affects all filtered values of at for t ≥ h. 

ω̂ LS,h = - (1 – L)-1 ( ∑ π𝑖
՜n−h

i=0  Σ−1  π𝑖  )-1  ∑ π𝑖
՜n−h

i=0  Σ−1  ah+i ,        πo = 1. 

 3.10 

Where ω is the size of LS on the data series and this impact is same for all the observations 

after the time period of its occurrence, π𝑖  is the coefficient matrix for all lags of VAR 

model. Σ is the covariance matrix and L is the backshift lag operator LX= Xt-1. 

3.2.2.3 Observed series for Transient change outlier 

When an unexpected change occurs on the specific values of a time series that vanishes 

after a short period of time, we call it as MTC. A MTC can become an MAO or an MLS 

depending on the value of δ, if δ equals zero, the TC can be considered as an AO. When δ 

is one, the TC takes the property of a LS. In our study we took δ =0.6, which allows around 

ine periods of decreasing effects because O. 6^9=0.010. The observed series with TC and 

its impact on residuals is given below: 

Yt  = Xt + ωTC,h αTC(B) 𝐼 h
t         …

 3.11 

Xt=(π(L))-1ut  , αTC(L) = (1 – δL)-1,    Yt= (Y1t. Y2t, Y3t….Yrt)
′ 
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Yt  = (π(L))-1ut  + ωTC,h αTC(L) 𝐼h
t  

Yt  = (π(L))-1ut  + ωTC,h (1 – δL)-1
  𝐼h

t  

For in terms of residuals Multiply π(L) on both side  

π(L) Yt  = ut  + ωTC,h π(L) (1 – δL)-1 𝐼h
t ,          π(L) Yt  = at   

at   = ut  + ωTC,h π(L)(1 – δL)-1 Ih
t ,     π(L) = (1 - π(L) )  

For multivariate at   = (1- ∑ π𝑖
∞
i=1  (Li) )ωTC,h (1 – δL)-1 𝐼h

t  + ut  

at   = ((1 – δL)-1𝐼h
t - (1 – δL)-1 ∑ π𝑖

∞
i=1  𝐼h

t-i)ωTC,h + ut  

at  = (1 – δL)-1 (𝐼h
t - ∑ π𝑖

∞
i=1  𝐼h

t-i)ωTC,h + ut                                                        …..

 3.12 

ut ~ N(0, ∑ ) from GLS ( Generalized least square estimators) ωTC,h 

Because we took δ=0.6 which is less than 1, it makes cleared that a MTC at time index h 

affects all error term values for t ≥ h, but the effects falloff gradually as t - h rises. 

ω̂ TC,h = - (1 – δL)-1 ( ∑ π𝑖
՜n−h

i=0  Σ−1  π𝑖  )-1  ∑ π𝑖
՜n−h

i=0  Σ−1  ah+i,   πo = 1. 

 3.13 

Where ω is the initial impact of TC o the series and this impact falloffs gradually with time 

at the rate δ, where 0 < δ < 1. π𝑖 is the coefficient matrix for all lags of VAR model. Σ is 

the covariance matrix and L is the backshift lag operator LX= Xt-1.  
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3.2.2.4 Multivariate Seasonal level shift with VAR model 

MSLS affect only specific months or the quarters of each year in data after its occurrence. 

One of the special kinds of multilevel level shift is known as MSLS which occurs in 

seasonal VAR (0)(1)s at specific time point and repeated its pattern in the every year at 

same time period, its effect caries up to the subsequent seasons. Observed series with the 

MSLS and its impact on residuals is given below: 

Xt = (π(L))-1 ut, and π(L)= A(L)As(L
s)    Xt = (X1t. X2t, X3t…. Xrt)

′ 

𝐴s(L
s) = 1 - 𝐴1L

s - 𝐴2L
s2 - …… - 𝐴pL

sp  are the seasonal roots of VAR model. 

𝐴(L) = 1 - 𝐴1L - 𝐴2L
2 - …… - 𝐴pL

p are the non-seasonal roots of the VAR model 

Now observed series for SLS is  

Yt = Xt + At 

At = ωSLS,h αSLS(L) 𝐼h
t, αSLS(L) = (

1

1−Ls −
1

s(1−L)
),        Yt =(Y1t, Y2t, Y3t….Yrt)

′ 

𝐼h
t is a variable we can say it indicator variable, that is , 𝐼h

t =1 for t=h and 0 elsewhere. For 

j= SLS, the magnitude of jth. outlier is ωj, dynamics of outliers is determent by αj(L). Yt is 

the detected series with MSLS which is given below 

Yt = Xt  t < h, Yt = Xt + At t ≥ h , h is the time point when SLS occurs and t is time. 

Yt =Xt + ωSLS,h αSLS(L) 𝐼h
t    

Yt  = (π(L))-1 ut  + ωSLS,h αSLS(L) 𝐼h
t,         αSLS(L) = S(L) 
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S(L) computes the dynamic effect of SLS on the series by using a lag operator on the (π(L))-

1 roots. Kaiser and Maravall (2001) was suggested the basic SLS, that is charted by taking 

S(L)= 
1

1−Ls and this make an impact on trend for removing this a dynamic weights are 

defined as S(L) = (
1

1−Ls −
1

s(1−L)
) Therefore purely a seasonal effect was produces by the 

SLS defined, though, this dynamic factor S (L) = [(1 + Ls + L2s + L3s +· ··) – 1/S(1 + L + 

L2 + L3 +· · ·)] 

S(L) = ( 1- 
1

S
 .) – 

L

S
 – 

L2

S
 . - ….. + ( 1- 

1

S
 . ) LS - 

LS

S
 -- 

L.S+1

S
 - …..+  ( 1- 

1

S
 ) L2S - 

L2S+1

S
 - …. 

does not yield So (L) = 1, therefore there is need to stabilize to dynamic impact, which is 

completed as recommended by Palate (2006), that is, we have to multiply .S(L) by the 

feature 
S.

S−1
 as S(L) = 

S

S−1
 (

1

1−Ls −
1

s(1−L)
) simplifying gives S (L) = 

1− 
S

S−1
L+ 

1

S−1
Ls

(1−Ls)( (1−L)
  where S 

= number of observations per year. Therefore, Equation in univariate time series becomes 

Yt = Xt + ωSLS,h  
1− 

S

S−1
L+ 

1

S−1
Ls

(1−Ls)( (1−L)
  𝐼h

t    

The observed series which specifies the existence of SLS effects in univariate time series 

for numerous seasons at same months or quarter in each year with outlier magnitude ωsls. 

Is shown in the above equation. 

Now in multivariate case this equation for observed series is written as 

Yt  = (π(L))-1 ut  + ωSLS,h[{(1 – Ls)-1
 (1-L)-1 }{1 − S(S − 1)−1L + (S − 1)−1Ls}] 𝐼h

t …. 

 3.14 
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Xt = (π(L))-1ut,        Xt = (X1t, X2t , X3t….Xrt)
′ 

Yt = (Y1t, Y2t, Y3t….Yrt)
′ 

The outlier is introduced in the model by generating a variable following Urooj and 

Asghar( 2017) 

νt
T = αSLS(L) εh

t , = 0 for t < T , 1 for for t = T + Sj, − (S − 1)−1 for  t= (T + Sj  + 1),….,  

(T+Sj+S-1) ; j= 0, 1 , 2, 3,…..                                 ……

 3.15 

Effect of outliers on residuals:- 

For in terms of residuals Multiply π(L) on both side  

π(L) Yt  = ut  + ωSLS,h π(L) νt
T 

π(L) Yt  = at   

at   = ut  + ωSLS, h π(L) ( − (S − 1)−1 )  εh
t   for t= (T + Sj  + 1),…., (T+Sj+S-1);    j= 0, 1 , 

2, 3,….. 

 at   = ut  for t < T  

at   = ut  + ωSLS,h π(L) for t = T + Sj 

π(B) = (1 - π(L) )  

For multivariate at   = (1- ∑ π𝑖
∞
i=1  (Li) )ωTC, h (− (S − 1)−1) + ut  

at    = {( − (S − 1)−1) – (− (S − 1)−1 )∑ π𝑖(𝐿
𝑖)∞

i=1 ]ωSLS,h + ut   
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at    = − (S − 1)−1{ 1 – ∑ π𝑖
∞
i=1 (Li)]ωSLS,h + ut                                                                     …..

 3.16 

ut ~ N(0, ∑ ) from GLS ( Generalized least square estimators) ωSLS,h 

Here it is clear that a SLS at time index h affects all filtered values at some specific season 

in each year for t ≥ h. 

ω̂SLS,h = − (S − 1)−1  [(∑ π𝑖
՜n−h

i=0  Σ−1  π𝑖  )-1  ∑ π𝑖
՜n−h

i=0  Σ−1  ah+i ],     πo = 1.     ……

 3.17 

Where ω is magnitude of MSLS on the data series and this impact is same for all the 

observations occurs on the same season in every year after the time period of its occurrence, 

π𝑖 is the coefficient matrix for all lags of VAR model. Σ is the covariance matrix and L is 

the backshift lag operator LX= Xt-1. 

3.2.2.5 Observed series for Innovative outlier 

For a MIO at time point of outlier h, all the impact of the outliers is confined in âh therefore 

we evaluate the MIO outlier magnitude by using ω̂ih = âh where i shows multivariate 

innovational outliers. 

Yt  = Xt + ωIO,h αIO(L) 𝐼 h
t ,            αIO(L) = π(L)  …….

 3.18 

For in terms of residuals 

at = 𝐼h
t ωIO,h + ut 
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Therefore, an IO only affects a one filtered value at time of the existence, and we calculate 

the initial impact of innovative outlier by using ω̂ih = âh 

The covariance matrix of estimator is 

 ∑𝑖,ℎ = ∑ �̂�𝑖
 ́𝑛−ℎ

𝑖=0 ∑−1�̂�𝑖 , i=AO, IO, LS, TC, SLS    …..

 3.19 

To check the worth of outlier at time point h we took the null hypothesis Ho: ω𝐼𝑂=0 versus 

the substitute HA: ω𝐼𝑂≠0. If IO is in the current error or shock therefore Innovation outliers 

can affect future values of the series. On the other hand, AO can affect only the present 

observation and may result from dictation errors Fox (1972). An IO can affect subsequent 

observations, and therefore it has lesser impact on parameter estimators and the model 

selection s compare to additive outlier, the resultant estimators, parameters and the 

particular model can be quite changed from the true ones with AO. 

We shall demonstrate detection of these five types of outliers by an example from real 

world on the climatic data of Pakistan. 

3.2.3 Joint test 

Joint tests are often the most appropriate test to use in multivariate hypothesis testing, it 

considers the all the coefficient of independent component in regression equal zero, if the 

p-value becomes less than 0.05 at 5% critical value then we reject this hypothesis and 

concluded that these coefficients are not equal to zero there is some relationship exist 

among dependent and independent variables. 
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For example, in our study for detecting SLS in multivariate time series data, we run a 

multivariate regression through generalized least square estimators for calculating ωSLS 

initial impact of SLS on the filtered series at, given below 

at    = − (S − 1)−1{ 1 – ∑ π𝑖
∞
i=1 (Li)]ωSLS,h + ut                                                                      

ut ~ N(0, ∑ ) from GLS ( Generalized least square estimators) ωSLS,h 

at   = a1t , a2t , a3t , residuals obtained from a multivariate VAR model for trivariate case of 

model 3.1. 

S=12 and S=4, for monthly and quarterly data respectively 

π𝑖 are the coefficient matrix for all lags in VAR model, ω𝑆𝐿𝑆  are the size of SLS for all 

three variables in VAR model at time period h. 

We will obtain ω𝑆𝐿𝑆  of seasonal level shift from this regression then we test the 

significance of ω𝑆𝐿𝑆 through joint test statistics for checking the presence of SLS in our 

data series. ω𝑆𝐿𝑆= ω𝑆𝐿𝑆1, ω𝑆𝐿𝑆2, ω𝑆𝐿𝑆,3. Null and alternative hypothesis is given below: 

H𝑜: ω𝑆𝐿𝑆1 = ω𝑆𝐿𝑆2= ω𝑆𝐿𝑆3=0 

H𝐴: ω𝑆𝐿𝑆1 ≠ ω𝑆𝐿𝑆2≠ ω𝑆𝐿𝑆3≠0 

Now the joint test statistic which we use to test this hypothesis is given below 

J𝑆𝐿𝑆,ℎ = ω̂SLS,h
´  ΣSLS,h

−1  ω̂SLS,h  
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Here ω is initial impact of SLS on the series ΣSLS,h
−1  is its covariance matrix, J𝑆𝐿𝑆 follow chi-

square distribution with “r” degree of freedom, r= number of variables used in VAR model. 

J𝑆𝐿𝑆 takes all ω jointly, If the p-value of J𝑆𝐿𝑆 becomes less than significance level at 5%, 

then we reject null hypothesis and confirms the presence of SLS in time series data. J𝑆𝐿𝑆,ℎ is 

the modified test statistics of Tsay’s et al. (2000) test statistics which we have provide in 

our thesis. some example for joint test in multivariate analysis are given below: 

Uriel, E. (2013) impose hypothesis testing in the multiple regression model by using joint 

test statistics, Smyth, G. K. (2004) used the Joint null criterion for multiple hypothesis 

tests, Kodde & Palm (1986) was tested jointly  to the equality and inequality restrictions 

by using wald criteria, Hossain & Majumder (2018) proposed a joint test to test hypothesis, 

Srivastava & Khatri (2009) discussed joint tests statistics in an introduction to multivariate 

statistics, Wang & Weiss (2018) was used joint test in the methods of multilevel hypothesis 

testing and evaluated the significant individual change, Xia et al. (2018) have detected  

false discovery rate control in high-dimensional multivariate regression by using Joint test, 

Pratikno, B. (2012) was used joint test statistics to test the hypothesis in analysis. 

For the case of IO at time point of outlier call h, all information related to outlier is confined 

in aℎ.  ω𝐼𝑂,ℎ= aℎ, thus, joint test statistics becomes like: 

J𝐼𝑂,ℎ = ω̂IO,h
´  ΣIO,h

−1  ω̂IO,h  

Null and alternative hypothesis is given below: 

H𝑜: ω𝐼𝑂1 = ω𝐼𝑂2= ω𝐼𝑂3=0 

H𝐴: ω𝐼𝑂1 ≠ ω𝐼𝑂2≠ ω𝐼𝑂3≠0 
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IO indicates innovative outlier, ω𝐼𝑂,ℎ is the size of outlier, Σ𝐼𝑂,ℎ is the covariance matrix. 

Joint test statistics treats all the components of ω𝐼𝑂,ℎ  as a multivariate measure. The J𝐼𝑂,ℎ 

follow the chi-square distribution with r degrees of freedom for a given time h. 

For the case of AO at time index h, for calculating ω𝐴𝑂,ℎ, we used filtered series a𝑡 by 

using GLS estimators which is explained in section 3.2.2.1, joint test statistics for AO 

becomes like: 

J𝐴𝑂,ℎ = ω̂AO,h
´  ΣAO,h

−1  ω̂AO,h  

Null and alternative hypothesis is given below: 

H𝑜: ω𝐴𝑂1 = ω𝐴𝑂2= ω𝐴𝑂3=0 

H𝐴: ω𝐴𝑂1 ≠ ω𝐴𝑂2≠ ω𝐴𝑂3≠0 

AO indicates additive outlier, ω𝐴𝑂,ℎ is the size of AO, Σ𝐴𝑂,ℎ is the covariance matrix. Joint 

test statistics treats all the components of ω𝐴𝑂,ℎ   as a multivariate measure. The J𝐴𝑂,ℎ 

follow the chi-square distribution with r degrees of freedom for a given time h. 

For the case of LS at time index h, for calculating ω𝐿𝑆,ℎ, we used filtered series a𝑡 by using 

GLS estimators which is explained in section 3.2.2.2, joint test statistics for LS becomes 

like: 

J𝐿𝑆,ℎ = ω̂LS,h
´  ΣLS,h

−1  ω̂LS,h  

Null and alternative hypothesis is given below: 

H𝑜: ω𝐿𝑆1 = ω𝐿𝑆2= ω𝐿𝑆3=0 
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H𝐴: ω𝐿𝑆1 ≠ ω𝐿𝑆2≠ ω𝐿𝑆3≠0 

LS indicates level shift, ω𝐿𝑆,ℎ is the size of LS, Σ𝐿𝑆,ℎ is the covariance matrix. Joint test 

statistics treats all the components of ω𝐿𝑆,ℎ  as a multivariate measure. The J𝐿𝑆,ℎ follow the 

chi-square distribution with r degrees of freedom for a given time h. 

For the case of TC at time index h, for calculating ω𝑇𝐶,ℎ, we used filtered series a𝑡 by using 

GLS estimators which is explained in section 3.2.2.3, joint test statistics for TC becomes 

like: 

J𝑇𝐶,ℎ = ω̂TC,h
´  ΣTC,h

−1  ω̂TC,h  

Null and alternative hypothesis is given below: 

H𝑜: ω𝑇𝐶1 = ω𝑇𝐶2= ω𝑇𝐶3=0 

H𝐴: ω𝑇𝐶1 ≠ ω𝑇𝐶2≠ ω𝑇𝐶3≠0 

TC indicates transient change, ω𝑇𝐶,ℎ is the size of TC, Σ𝑇𝐶,ℎ is the covariance matrix. Joint 

test statistics treats all the components of ω𝑇𝐶,ℎ   as a multivariate measure. The J𝑇𝐶,ℎ 

follow the chi-square distribution with r degrees of freedom for a given time h. 

Framework of the study 

The study will comprise of two main parts simulation experiment and empirical study. 

3.2.4 Simulation experiment 

We intend to study the existence of various types and outliers including the SLS in 

multivariate time series its location detection and impact are our main focus. We will use 
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simulation to find out the power of the proposed joint test statistics in detection of MSLS. 

In this chapter we investigate finite sample empirical critical values and empirical power 

of the test statistics using simulation and use seasonal VAR(0)(1)12  models for obtaining 

observed quintiles of the joint test statistics for trivariate case and sample size is n= 150 

and 200. We generate 1000 realizations. Here number of parameters in VAR model = r + 

r2p here, r is number of components and p is lag numbers, in this study we use 3 number 

of variables and 12th lag only to compute a seasonal VAR model. We will estimate a VAR 

model for each realization with proper order by OLS, then will obtain the residuals and 

covariance matrix and then we will calculate the joint test statistics by using the estimated 

parameters, their results, then used it to identify the location, magnitude and effect of five 

types of outliers. Although we will calculate the 𝛼 and empirical power of the joint test 

statistics for the case of multivariate SLS. 

We employ the VAR (0)(1)12 model to obtain the empirical quantiles for sample n=150, 

200 and VAR (1)(1)12 model to obtain the empirical quantiles for sample=200 for r=3 “r” 

is number of variables. We took δ=0.6 generally in most studies δ value taken is 0.6. Two 

vectors VAR (0)(1)12 and VAR (1)(1)12 models for trivariate case are given below: 

For VAR (0)(1)12 

X1t= A′
1,1,12. X1,t-12 + A′

1,2,12. X2,t-12 + A′
1,3,12. X3,t-12 + u1t 

X2t= A′
2,1,12. X1,t-12 + A′

2,2,12. X2,t-12 + + A′
2,3,12. X3,t-12 + u2t 

X3t= A′
3,1,12. X1,t-12 + A′

3,2,12. X2,t-12 + + A′
3,3,12. X3,t-12 +u3t 
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[
𝑥1𝑡
𝑥2𝑡
𝑥3𝑡

] = [
A. 1,1,12   A. 1,2,12  A. 1,3,12 
A. 2,1,12   A. 2,2,12  A. 2,3,12 
A. 3,1,12   A. 3,2,12  A. 3,3,1 2

] [

X1,t−12 

X2,t−12 

X3,t−12 
]  + [

u1t
u2t
u3t

] 

For VAR(1)(1)12 

𝑋1𝑡 = 𝐴′
1,1,1𝑋1,𝑡−1 + 𝐴′

1,2,1𝑋2,𝑡−1 + 𝐴′
1,3,1𝑋3,𝑡−1 + 𝐴′

1,1,12𝑋1,𝑡−12 + 𝐴′
1,2,12𝑋2,𝑡−12

+ 𝐴′
1,3,12𝑋1,𝑡−12 + 𝑢1𝑡  

𝑋2𝑡 = 𝐴′
2,1,1𝑋1,𝑡−1 + 𝐴′

2,2,1𝑋2,𝑡−1 + 𝐴′
2,3,1𝑋3,𝑡−1 + 𝐴′

2,1,12𝑋1,𝑡−12 + 𝐴′
2,2,12𝑋2,𝑡−12

+ 𝐴′
2,3,12𝑋2,𝑡−12 + 𝑢2𝑡  

𝑋3𝑡 = 𝐴′
3,1,1𝑋1,𝑡−1 + 𝐴′

3,2,1𝑋2,𝑡−1 + 𝐴′
3,3,1𝑋3,𝑡−1 + 𝐴′

3,1,12𝑋1,𝑡−12 + 𝐴′
3,2,12𝑋2,𝑡−12

+ 𝐴′
3,3,12𝑋1,𝑡−12 + 𝑢1𝑡  

[
𝑥1𝑡
𝑥2𝑡
𝑥3𝑡

]  = [
A. 1,1,1   A. 1,2,1  A. 1,3,1 
A. 2,1,1   A. 2,2,1  A. 2,3,1 
A. 3,1,1   A. 3,2,1  A. 3,3,1

]  [

X1,t−1 

X2,t−1 

X3,t−1 
] + [

A. 1,1,12   A. 1,2,12  A. 1,3,12 
A. 2,1,12   A. 2,2,12  A. 2,3,12 
A. 3,1,12   A. 3,2,12  A. 3,3,1 2

] 

[

X1,t−12 

X2,t−12 

X3,t−12 
]  + [

u1t
u2t
u3t

] 

 

3.3 Empirical analysis 

In Empirical analysis we use one real data example on monthly time series data with three 

variables of Pakistan. We use rainfall, temperature and “Precipitation and Humidity 

Altitude” data from 2008 to 2020 for Lahore, Faisalabad, and Karachi Pakistan and here 

we have 151 observations in the data. It is observed that seasonality in temperature of these 
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cities is associated with the seasonality in rainfall and humidity which intern affects badly 

to the ecosystem of these cities. 

Pakistan is situated in a region which is prone to climate change where both summer and 

winter rainfalls occurred. Seasonality exist in climatic data of Pakistan there may exist the 

possibility of SLS and detection of SLS in this data is very useful if predicted well in time. 

Issuing of accurate forecast of seasonal rainfall might be very useful. The abnormalities in 

rainfall, temperature and humidity at any area seriously affect the ecosystem of that area. 

The duration of summer season in Pakistan is about six months comprising of two major 

sub seasons pre-monsoon (April-June) and Monsoon (July-September) and the duration of 

winter season in Pakistan is about five months (November to march). Various studies are 

found whose work on ecosystem, climate change like SR khan (2001), Kiran and Ain 

(2006), Akram and Hamid (2015), Iqbal et al. (2014), Hussain and Mustafa (2016), 

Saifullah (2017), worked on climate change in Pakistan, Inalizadeh et al. (2011) worked 

on importance of outlier detection in spatial analysis of wind erosion in Iran, Asghar and 

Urooj (2012), have detected structural breaks by using automatic model selection and 

forecasted the wheat and rice prices for Pakistan, Irshad and Hussain (2017) worked on 

analysis of ecological efficiency and its influencing factors in developing countries, Shah 

et al. (2017), worked on minimum temperature analysis and trends in Pakistan, Rahman 

and Hasan (2017) worked on modeling and forecasting of carbon dioxide emissions in 

Bangladesh but no one worked for detecting seasonal level shift in multivariate time series. 

In this study we will detect seasonal level shift in multivariate time series by using rainfall, 

temperature and humidity data of Lahore, Faisalabad and Karachi. Then we will explore 

the location, magnitude, size and impact of seasonal level shift in rainfall, temperature and 
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humidity and its impact on ecosystem of Lahore by linking all these with each other. We 

will apply the modified Tsay et al. (2000) technique for detection of outliers. The technique 

is modified for the inclusion of SLS in multivariate time series and we will use seasonal 

VAR model.  

Detection of SLS may play an important role in seasonal data analysis, as like in pas we 

can see that changing seasons affected the air quality as a result of the increased or 

decreased diffusion of Impurities Li and Lin (2003); Ramachandran et al. (2003); Hanninen 

et al. (2011). Variation in the concentration of particulates over the seasons also caused by 

the disparity in the wind swiftness, comparative humidity and temperature. 

Climate change significantly affects the water possessions, agriculture, forests, 

biodiversity, environment, and health sectors which eventually affect the socio-economic 

of a country. Climate has great effect on the construction for its electricity ingesting and 

building performance. During summer and winter season the overall heating and cooling 

necessities in the buildings is measured by climate. 

climate change has the most significant impact on Pakistan out of the all countries. A UK-

based worldwide risk accessing firm named Verisk Maplecroft, has graded Pakistan on 

22nd number in the word, who is most affected by the Climate Change, by Vulnerability 

Index 2016 (CCVI); and three cities of Pakistan are amongst the 69 well thought-out highly 

affected by climate change named Lahore on 7th place, Faisalabad on 22nd and Karachi on 

25th. 

these weather conditions harmfully affected the agriculture system of the Pakistan. Climate 

change impacts includes high temperatures, seasonal droughts, hefty rains, torrents, 
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infrequent rains, lacking seasonal rainfall, viruses, scarcity of fresh drinking water and 

allergy, he said, water sector, agriculture sector, tourism sector and health sectors etc. 

affected by these climate changes. 

Lahore faced huge level of the seasonal discrepancy in monthly rainfall. Also, Lahore 

experiences dangerous seasonal discrepancy in the supposed humidity. changes in climate 

badly affected the Pakistan. This condition of Pakistan is due to two reasons. 1st is 

geological location of Pakistan is on the world map and 2nd is due to changing climate. 

Several sectors and aspects of Pakistan are under serious danger. Ali (2013) was explored 

that climate change affected the agricultural sector in terms of fluctuation in temperature 

and rainfall, population sensitivity depends on water, human migration crisis, food and 

shelter, coastal belts occurs due to rise in level of sea, glaciers are melted because of rise 

in temperature etc. 

 Data Description 

Here we attempt to measure SLS in rainfall due to SLS in humidity and temperature which 

causes disturbances in ecosystem of Lahore, Faisalabad and Karachi. In light of the above 

deliberations, this study aims to detect seasonal level shift and non-seasonal outliers in 

climate change (temperature, rainfall, humidity) and to examine the cause of these outlier 

and give suggestion that how to deal with these outliers. 

We took data from a website world weather. Online 
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1TABLE 3.1 DATA DESCRIPTION 

Variables Frequency Source 

Rainfall mm/ month CDPC of PMD/ world 

weather. Online 

Temperature °𝐶  / month CDPC of PMD/ 

worldweather. online 

Humidity Percentage / month CDPC of PMD/ 

worldweather. online 
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CHAPTER 4 

SIMULATION EXPERIMENT 

In this study our aim is to provide a modified Tsay’s multivariate outlier’s detection method 

by including seasonal level shift s (SLS). Different researchers have built various models 

and techniques to detect multivariate outlier in time series but up to our knowledge the 

seasonal level shift is not explored in multivariate structure up till now, we familiarized 

seasonal level shift in multivariate time series using seasonal VAR model and applied the 

procedure as suggested by Tsay et al. (2000) grounded on one test statistics for detection 

of multivariate outliers i.e. joint maximum test statistics. 

In simulation analysis we use statistical outlier detection method which rely on the 

statistical approaches that assume a distribution or probability model to fit the given 

dataset. Under the distribution assumed to fit the dataset, the outliers are those points that 

do not agree with or conform to the underlying model of the data. By using simulation, we 

will test the power and size of test statistics for different order and sample size, we will 

check that how much work good used test statistics for outlier detection. 

We explored five types of outliers in multivariate time series framework named as 

multivariate additive outlier (MAO), multivariate innovative outlier (MIO), multivariate 

level shift (MLS), multivariate transient change (MTC) and multivariate seasonal level 

shift (MSLS). We have identified the effect of existence of multivariate SLS on 

multivariate time series, suggested its detection procedure and examined the performance 

of the suggested method in terms of power and size impact on estimates using simulation 

and calculated the critical values for all five types of outlier for sample size 150, 200 using 



55 
 

seasonal and non-seasonal VAR. Power is a theoretical concept and we see it in repeated 

sample and used for checking the performance of test. The power of a statistical 

test measures the test's ability to detect a specific alternate hypothesis. In general, 

the power of a test is the probability that the test will reject the null hypothesis when a 

specified alternative is true. In case of real world when we use test statistic to detect the 

outliers and this test detected outlier in the real-world data then we compare the detected 

outlier in the data and history of real world. If in real world this unusual observation exists, 

it means that our test performance is good if outliers not exist in that time period in real 

world scenario then it means that this is the weakness of test statistics and here test statistic 

detected outlier erroneously. We explored all five types of outlier including seasonal level 

shift (SLS) by using one real data example on climatic data of Pakistan. 

While by modifying the Tsay’s et al. (2000) technique for multivariate outlier detection, 

we will explore five types of outlier named AO, IO, LS, TC, SLS directly in multivariate 

time series, also examined the presentation of suggested procedure for outlier recognition 

in multivariate time series by using simulation and time series data of Pakistan. We used 

data of rainfall, temperature and humidity for three stations Lahore, Faisalabad and Karachi 

of Pakistan, applied seasonal model and Tsay’s et al. (2000) technique to detect outlier in 

multivariate time series. Data will be taken from January 2008 to July 2020, we have 151 

total number of observations. 

Seasonal VAR model structure following “time series analysis and its applications” third 

edition by robert H. shumway & david S. stoffer  

(1 − πL12) 𝑥𝑡 = 𝑢𝑡            …. 4.1 

http://en.wikipedia.org/wiki/Statistical_power
http://en.wikipedia.org/wiki/Statistical_power
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𝑥𝑡-  π𝑥𝑡−12 = 𝑢𝑡 

𝑥𝑡 = π𝑥𝑡−12 + 𝑢𝑡         

For multivariate 

 (1- ∑ π𝑖
∞
i=1  L𝑖) 𝑥𝑡 ,= 𝑢𝑡    

𝑥𝑡= ∑ π𝑖
∞
i=1  L𝑖) 𝑥𝑡  + 𝑢𝑡              ……. i=s, s=12 for monthly data  

𝑥𝑡= (∑𝜋12 L12) 𝑥𝑡  + 𝑢𝑡             ….𝑥𝑡=.𝑥1𝑡 , 𝑥2𝑡, 𝑥3𝑡                 … 4.2 

4. Simulation Results 

In simulation we estimated a seasonal and no seasonal VAR model to obtain the empirical 

significance level, empirical power, test statistics empirical critical values and we checked 

the impact of outliers on estimates and residuals with different sample size, and also 

provide a modified a Tsay’s multivariate outlier detection method based on one test 

statistics join test statistics by including SLS in multivariate structure. The detailed analysis 

is given below: 

4.1 For Sample size 150 

In the below, we have generated 1000 realization for trivariate case with n=150 by normal 

distribution. 

 

4.1.1 Simulation when no outlier in the series  

In start, assuming there is no outlier we have estimated a multivariate seasonal 

VAR(0)(1)12 with 12th lag only model then obtained residuals uit and covariance matrix ∑ 

and coefficient matrix π then we have estimated outlier size ω  and covariance matrix of 
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estimators then we have calculated joint test statistics and then we have calculated joint 

maximum test statistics for all five types of outliers. These series are free of outliers 

because we have generated them from normal distribution, we have done all these process 

on these series by using seasonal VAR(0)(1)12 for calculating the empirical significance 

level/size. First of all, we have calculated joint test statistics for five types of outliers AO, 

TC, LS, SLS and then compare their results by joint maximum test and then finalized the 

results. 

Type I error: rejecting true null = α 

Empirical level of significance=size=number of detected outlier when there is no chance 

of outlier/total number of iterations 

2TABLE 4.1 EMPIRICAL LEVEL OF SIGNIFICANCE 

Empirical level of significance  

Sample size: 150 

realization: 1000 

  AO IO LS TC SLS 

No of outlier detected 19 55 14 555 147 

Empirical level of 

significance 

joint test statistic 0.019 0.055 0.014 0.555 0.147 

For overall joint 

maximum test statistics 0.547 

Note: (detailed tables of these results will be provided on demand) 

Here this table show the erroneously detection of outlier when there is no outie in the series. 

4.1.2 Simulation with outlier  

We have generated 3 data series of sample n=150 by normal distribution in RStudio and 

make 1000 realization of trivariate then we have added five types of outlier on same time 

point at t=85. We have calculated seasonal VAR(0)(1)12 model for each realization and 
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obtained residuals, covariance matrix, coefficient matrix for each equation then we 

calculated initial impact of outlier named as 𝜔𝐴𝑂 ,  𝜔𝐿𝑆 , 𝜔𝑇𝐶 , 𝜔𝑆𝐿𝑆  by using 

GLS(generalized least square) estimators and calculated 𝜔𝐼𝑂,ℎ = 𝑎𝑡,ℎ  as suggested in 

procedure above in chapter 3, and their covariance matrix and then we have calculated joint 

test statistics following chi-square distribution for five types of outliers names 𝑗𝐴𝑂, 𝑗𝐼𝑂, 𝑗𝐿𝑆, 

𝑗𝑇𝐶, 𝑗𝑆𝐿𝑆 for each realization, at which time point p-value of test statistic value is minimum 

and probability of that statistic value is less than 0.05 we considered it as outlier in the 

series, then we have compare these four type outliers statistics with each other by the rule 

of joint maximum test statistic, in each realization which one outlier statistic is greater than 

other statistic value we declared that type of outlier in this realization. 

Joint test statistic results 

Null hypothesis. Ho: there is no outlier in the series 

Alternative hypothesis. HA: there is outlier in the series 

This is false null because there is outlier in the series which we have added on the specific 

time point for checking the test statistic for detection of outlier. Therefore, in this test there 

is a possibility of committing  

Type II error: rejection of false null.  

The Significance level used is  α=0.05.  

This Joint test is following the chi-square distribution, when calculated value is larger than 

critical value or probability is less than 0.05, we have reject the null and declared that there 
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is outlier in the series, at which time point p-value of test statistic is minimum and less than 

0.05 that time point is considered as outlier as suggested by Tsay et al. (2000). 

1TABLE 4.2 POWER OF THE FIVE JOINT TEST STATISTICS 

Empirical power of the test statistics  

sample size: 150 

significance level: 0.05 

realization: 1000 

  AO IO LS TC SLS 

No of outlier 

detected  605 998 730 683 623 

Empirical power  

joint test statistic 60.5% 99.8% 73% 68.3% 62.3% 

For overall joint maximum 

test statistics 99.8% 

β = no outlier 

detected when 

there is outlier in 

the series 

joint test statistic 0.395 0.002 0.27 0.317 0.377 

For overall joint maximum 

test statistics 0.002 

 

2TABLE 4.3 EMPIRICAL QUANTILES OF THE FIVE JMAX (I, HI ) STATISTICS 

Sample Test Probabilities 

Size  50% 75% 90% 95% 97.5% 99% 

Trivariate case VAR(0)(1)12 

150 Jmax (AO, hAO) 17.8499 26.469 42.335 50.287 60.118 74.769 

Jmax (IO, hIO) 38.1253 44.989 

 

50.753 54.954 57.424 60.565 

Jmax (LS, hLS) 13.566 17.495 21.403 28.1 26.483 30.939 

Jmax (TC, hTC) 18.42  33.49 53.59 63.79 75.12 90.64 

Jmax (SLS, hSLS) 16.5737 27.564  46.443  64.514  76.444  99.776 

Here i= AO, IO, LS, TC, SLS defined above in chapter 3, based on 1000 realizations the 

model used are seasonal VAR (0)(1)12 given above in chapter 3. 

From this table we make this explanation. First as usual, empirical critical values of 

Jmax(LS, hLS) are lesser as compare to other four joint test. The Jmax (.i, hi .) for i= MAO, 

MIO are nearer to each other retaining that a common critical value we can use for these 

two test. Jmax(.i, hi .) for i= TC, SLS are closer retaining that a common critical value we 
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can use for these test for AO and IO, for TC and SLS. Our simulations suggest that 52.62 

for AO and IO, 64.152 for TC and SLS with 5% level of significance can be used as 

estimated critical value for sample n=150. In short, the empirical quantile of joint test 

statistics, particularly for Jmax (LS, hLS) depends on the sample size, dimension and the 

model structure. From these results we obtained that both the Theory and practice for this 

test statistics needed more work. Here we can see clearly that for sample size 150 with 

seasonal VAR model, the multivariate IO critical values are not much confused with 

multivariate SLS critical values these are have a significance difference. The same concept 

was observed for univariate SLS by Asghar and Urooj (2017) that, in SAR (1) SLS is 

generally not confused with other types of outliers. 

Note: (detailed results will be provided on demand)  

4.1.2.1 Coefficient matrix for VAR (0)(1)12 with and without outliers 

These results are based on 1000 times estimated parameters of model, by sampling 

distribution, the matrix of expected coefficient, expected (π) matrix, expected covariance 

matrix, eigen values vector, with and without outliers in trivariate case. VAR is used for 

multilevel time series. The structure of VAR is that each component of VAR model is a 

linear function of its past lags and the past lags of other variables. In the covariance matrix 

the diagonal entries are the variances and the other entries are the covariances. Hence, the 

covariance matrix is sometimes called the variance-covariance matrix. The covariance 

matrix can be also expressed as 

∑= [

𝜎. (𝑥1, 𝑥1) 𝜎. (𝑥1, 𝑥2) 𝜎. (𝑥1, 𝑥3)
𝜎. (𝑥2, 𝑥1) 𝜎. (𝑥2, 𝑥2) 𝜎. (𝑥2, 𝑥3)
𝜎. (𝑥3, 𝑥1) 𝜎. (𝑥3, 𝑥2) 𝜎. (𝑥3, 𝑥3)

] 
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When diagonal elements are equal 1and off diagonal elements are equal 0, this means that 

our data series are white noise and variables are independent of each other in case of 

residuals we can say that the error term are independent of each other. 

4.1.2.1.1 Coefficient and covariance matrix for VAR (0)(1)12 model without outliers 

Covariance matrix of residuals 

 ∑=[
0.975 0.003 0.0003
0.003 0.976 −0.002
0.0003 −0.002 0.977

] 

Π12 matrix (with 12th lag) 

Π12=[
−0.00165 −0.00104 −0.00176
−0.00358 0.000367 −0.00288
−0.00799 −0.00291 −0.0000644

] 

Covariance matrix of estimators for Transient change outlier 

∑=[
0.949 − 0.00078 − 0.000307

− 0.000786 0.998 0.0233
− 0.000307 0.0233 1.0087

]  

Covariance matrix of estimators for Level Shift 

∑=[
0.948 0.0019 − 0.00148

0.00193 1.00131 0.0241
− 0.00148 0.0241 1.0032

] 

Covariance matrix of estimators for Additive outlier 

∑=[
0.951 0.0025 − 0.00051
0.0025 0.999 0.0215

− 0.000510 0.0215 1.00048
] 
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Covariance matrix of estimators for Seasonal Level Shift 

∑=[
0.951 − 0.000017 − 0.00167

− 0.000017 1.00023 0.0232
− 0.00167 0.0232 1.00383

] 

The coefficients matrix has eigen values (-0.00636, 0.00353, 0.00148,) 

Here these results show that all diagonal entries of covariance matrix entries are almost 

equal 1 and off diagonal entries are almost equal to zero this show the white noise of data, 

in coefficient matrix for 12th lag of the model are closer to zero this means that in this 

multivariate data all the variables not depending on its own lag value and  lag value of other 

variable in data this also show the normality of data. 

In the below we show the results of seasonal VAR model with outliers. 

4.1.2.1.2 Coefficient and covariance matrix for VAR (0)(1)12 model with outliers 

For additive outlier 

Coefficient matrix 

Π12=[
− 0.0027 0.00556 − 0.00391
− 0.0021 0.00646 − 0.0037
− 0.00164 0.0054 − 0.00544

] 

Covariance matrix of residuals for Additive outlier 

∑=[
9.402 8.423 8.434
8.423 9.415 8.439
8.434 8.434 9.429

] 

Covariance matrix of estimators for Additive outlier 
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∑=[
9.946 8.986 8.997
8.986 9.994 9.01
8.997 9.01 10.009

] 

The coefficient matrix Π12 have eigen values (-0.00398, 0.003357, -0.00105). 

Here these results show that all diagonal entries of covariance matrix entries are not  equal 

1, have a large value as compare to results of normal data and off diagonal entries are not 

equal to zero this show that our data series are not white noise, coefficient matrix for 12th 

lag of the model are closer to zero  but have a little difference than the results with normal 

data this means that  additive outlier have a little bit impact on coefficient of VAR model 

but badly affects the covariance matrix. 

For Innovative outlier 

Coefficient matrix 

Π12=[
− 0.367 0.037 − 0.0409
− 0.0404 0.367 − 0.0403
− 0.0411 0.037 − 0.366

] 

Covariance matrix of residuals for Innovative outlier 

∑=[
1.094 0.117 0.121
0.117 1.096 0.1207
0.121 0.1207 0.1207

] 

Covariance matrix of estimators for Innovative outlier 

∑=[
1.094 0.117 0.121
0.117 1.096 0.1207
0.121 0.1207 0.1207

] 

The coefficient matrix Π12 have eigen values (0.446, 0.329, 0.325). 
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Here these results show that all diagonal entries of covariance matrix entries are not  equal 

1, have a small difference as compare to results of normal data and off diagonal entries are 

not equal to zero this show that our data series are not white noise but it show that 

innovative outlier have little bit impact on covariance matrix than AO, coefficient matrix 

for 12th lag of the model are closer to zero  but have a little difference than the results with 

normal data this means that  IO have a little bit impact on coefficient of VAR model. 

For Level Shift 

Coefficient matrix 

Π12=[
0.327 0.333 0.329
0.327 0.329 0.331
0.331 0.333 0.324

] 

Covariance matrix of residuals for Level Shift 

∑=[
7.65 6.67 6.65
6.67 7.66 6.66
6.65 6.66 7.61

] 

Covariance matrix of estimators for Level Shift 

∑=[
8.585 7.639 7.613
7.639 8.659 7.651
7.613 7.651 8.603

] 

The coefficient matrix Π12 have eigen values (0.989, -0.0059, -0.0025). 

Here these results show that all diagonal entries of covariance matrix entries are not  equal 

1, have a large value as compare to results of normal data and off diagonal entries are not 

equal to zero this show that our data series are not white noise, coefficient matrix for 12th 
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lag of the model have a large difference and show the significantly dependence of variables 

on its own lag value and the lagged value of other variables. This means that level shift has 

a huge impact on coefficient of VAR model, also badly affects the covariance matrix. 

For Transient Change 

Coefficient matrix 

Π12=[
0.226 0.229 0.254
0.230 0.222 0.257
0.229 0.228 0.254

] 

Covariance matrix of residuals for Transient Change outlier 

∑=[
25.098 24.128 24.103
24.128 25.102 24.1006
24.103 24.1006 25.059

] 

Covariance matrix of estimators for Transient Change outlier 

∑=[
29.054 28.113 28.078
28.113 29.123 28.106
28.078 28.106 29.049

] 

The coefficient matrix Π12 have eigen values (0.711, -0.006, -0.0013). 

Here these results show that all diagonal entries of covariance matrix entries are not  equal 

1, have a large value as compare to results of normal data and off diagonal entries are not 

equal to zero this show that our data series are not white noise, coefficient matrix for 12th 

lag of the model have a large difference and show the significantly dependence of variables 

on its own lag value and the lagged value of other variables. This means that TC have a 

huge impact on coefficient of VAR model, also badly affects the covariance matrix. 
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For Seasonal level shift  

Coefficient matrix 

Π12=[
0.3003 0.310 0.3061
0.3036 0.3031 0.3097
0.3039 0.310 0.302

] 

Covariance matrix of residuals for Seasonal level shift Level Shift 

∑=[
1.981 1.0003 1.0127
1.0003 1.971 1.0009
1.0127 1.0009 1.993

] 

Covariance matrix of estimators for Seasonal Level Shift 

∑=[
1.966 1.0062 1.0151
1.0062 2.001 1.028
1.0151 1.028 2.016

] 

The coefficient matrix Π12 have eigen values (0.916, -0.00712, -0.00373). 

Here these results show that all diagonal entries of covariance matrix entries are not  equal 

1, have a small difference as compare to results of normal data and off diagonal entries are 

not equal to zero this show that our data series are not white noise, coefficient matrix for 

12th lag of the model have a large difference and show the significantly dependence of 

variables on its own lag value and the lagged value of other variables. This means that SLS 

have a huge impact on coefficient of VAR model, small effect on covariance matrix. 

From these results we make these observations, firstly, Π weights of  VAR(0)(1)12 model 

with n=150 for data series with outliers becomes much larger  than the Π weights of 

VAR(0)(1)12 for data series without outlier and have changed sign, this difference clearly 
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identified that all five types of outliers badly and significantly affects the estimation and 

estimated parameters of VAR model and also affects results which can make our results 

doubtful. Π weights of VAR (0)(1)12 with seasonal level shift also have clearly much larger 

weights than the Π weights with normal data series, this means that with other types of 

outliers there is necessary to detect and adjust the SLS in the data series in another case 

this can distort the whole analysis and can make results doubtful. 

Secondly, for sample size Π weights with additive outlier have very small difference than 

the Π weights with normal data this is less sensitive for our analysis results than those of 

other four types of outliers, Π weights with LS outlier are much larger than the Π weights 

with normal data and also much larger than the Π weights with other four types of outliers. 

Hence LS outlier is much sensitive for our analysis, results, estimates and make results 

doubtful than other types of outlier. SLS, IO and TC have much larger Π weights than the 

Π weights with normal data but have less than the LS Π weights, SLS, IO and TC also 

much sensitive for our analysis, estimates and results but less sensitive than the LS outlier 

with sample size n=150. However, there is clearly seen that estimated coefficient and 

covariance matrix of innovational outlier are not much closer to seasonal level shift we can 

say that for sample size n=150 with seasonal VAR model we are not confused in 

innovational outlier and SLS. For making results clearer further, we will use large sample 

size for these outliers in multivariate structure. As mentioned by Asghar and Urooj (2017) 

univariate SLS detection give more better results for large sample size. 

Thirdly, the eigen vectors of Π weights with AO have less difference than with the normal 

data, this also identified that AO is less sensitive for analysis than other type of outliers. 

The eigen vectors for Π weights with LS have large difference than with the normal data 
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and also larger than the eigen vectors for Π weights with other type of outlier, this also 

clarify that LS is highly sensitive for our analysis and results. SLS, IO and TC outlier eigen 

vectors for Π weights also have significant difference than with normal data these are also 

much sensitive for our results of analysis but less sensitive than the level shift. 

Fourthly, covariance matrix of residuals and covariance matrix of estimators for all five 

types of outliers have much larger difference than for the normal data. Outliers also badly 

affects the covariance structure and make results doubtful. 

In the below we have simulated the data with seasonal 𝑉𝐴𝑅(0)(1)12 model and sample 

size n=200. 

4.2 For Sample size 200 with VAR (0)(1)12 

In the below, we have generated 1000 realization for trivariate case with n=200 by normal 

distribution. 

 

4.2.1 Simulation when no outlier in the series  

In start assuming there is no outlier we have estimated a multivariate seasonal VAR(0)(1)12 

with 12th lag only model then obtained residuals uit and covariance matrix of residuals ∑ 

and coefficient matrix π then I have estimated outlier size ωi  and covariance matrix of 

estimators then we have calculated joint test statistics and then we have calculated joint 

maximum test statistics for all five types of outliers. These series are free of outliers 

because we have generated them from normal distribution, we have done all these process 

on these series by using seasonal VAR (0)(1)12 for calculating the empirical significance 
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level/size. First of all, we have calculated joint test statistics for five types of outliers AO, 

IO, TC, LS, SLS and then compare their results by joint maximum test and then  

Type I error: rejecting true null 

Empirical level of significance=size=no of detected outlier when there is no chance of 

outlier/total number of iterations. 

3TABLE 4.4 EMPIRICAL LEVEL OF SIGNIFICANCE  

Sample size: 200 

Level of significance: 0.05 

realization: 1000 

  AO IO LS TC SLS 

no of outlier 

detected  65 45 3 445 50 

Empirical level of 

significance  

joint test statistic 0.065 0.045 0.003 0.445 0.05 

For overall joint 

maximum test 

statistics 0.493 

By comparing these results with the results of 4.2.1 we have observed that empirical level 

of significance has decline for all types of outliers except AO, by increasing sample size 

for seasonal VAR (0)(1)12 model. We have concluded that empirical level of significance 

for SLS and all other four types of outliers heavily depends upon the sample size. 

(detailed tables of these results will be provided on demand) 

4.2.2 Simulation with outliers 

We have generated 3 data series of sample n=200 by normal distribution and make 1000 

realization of trivariate then we have added five types of outlier on same time point at t=85. 

We have calculated seasonal VAR(0)(1)12 model for each realization and obtained 

residuals, covariance matrix, coefficient matrix for each equation then we calculated  
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𝜔𝐴𝑂 , 𝜔𝐿𝑆 , 𝜔𝑇𝐶 , 𝜔𝑆𝐿𝑆  by using GLS(generalized least square) estimators and calculated 

𝜔𝐼𝑂,ℎ= 𝑎𝑡,ℎ as suggested in procedure above in chapter 3 and their covariance matrix and 

then we have calculated joint test statistics following chi-square distribution for four types 

of outliers names 𝑗𝐴𝑂, 𝑗𝐼𝑂, 𝑗𝐿𝑆, 𝑗𝑇𝐶, 𝑗𝑆𝐿𝑆  for each realization, at which time point p-value 

of test statistic value is minimum and probability of that statistic value is less than 0.05 we 

considered it as outlier in the series at that time point, then we have compare these four 

type outliers statistics results with each other by the rule of joint maximum test statistic, in 

each realization which one outlier statistic is greater than other statistic value we declared 

that type of outlier in this realization. 

Joint test statistic results 

Null hypothesis. Ho : there is no outlier in the series 

Alternative hypothesis. HA : there is outlier in the series 

This is fall null because there is outlier in the series which we have added on the specific 

time point for checking the test statistic for detection of outlier. 

Type II error: rejection of false null. 

Significance level α=0.05 

Joint test statistics follow chi-square distribution, when calculated value is larger by 

comparing the critical value or probability value is less than 0.05 then we will reject the 

null and there is outlier in the series, at which time point p-value of test statistic is minimum 

that time point is considered as outlier as suggested by Tsay et al. (2000). 
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4TABLE 4.5 POWER OF THE FIVE JOINT TEST STATISTICS 

sample size: 200 

significance level: 0.05 

realization: 1000 

  AO IO LS TC SLS 

no of outlier detected  745 1000 894 983 899 

Empirical level of 

significance of test 

joint test statistic 74.5% 100% 89.4% 98.3% 89.9% 

for over joint 

maximum test 

statistics 100%     

β = no outlier 

detected when there 

is outlier in the series 

joint test statistic 0.255 0 0.106 0.017 0.101 

for over joint 

maximum test 

statistics 0 

From this table comparing with table 4.2 we observed that β, power of the J test depends 

on sample size with increasing sample size therefore power of the test statistics increased 

and β value declined. We have also clearly observed that empirical power of test statistics 

of multivariate joint test statistics for SLS have much difference for large sample size and 

have 89.9% empirical power, therefore we can say that joint test statistics for multivariate 

SLS is a good test with large sample size. 

5TABLE 4.6 EMPIRICAL QUANTILES OF THE FIVE JMAX (I, HI ) STATISTICS  

Sample Test Probabilities 

Size  50% 75% 90% 95% 97.5% 99% 

Trivariate case VAR(0)(1)12 

200 Jmax (AO, hAO) 28.11 35.909 50.02 58.43  59.67 89.87 

Jmax (IO, hIO) 39.013 45.425 51.805 55.294 58.424 61.177 

Jmax (LS, hLS) 20.14 23.49 28.44 30.84 32.16 35.54 

Jmax (TC, hTC) 22.15  36.99 53.65 69.24  76.58  91.23  

Jmax (SLS, hSLS) 24.776  42.923  70.469  85.687  109.26  120.67 
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Here i= AO, IO, LS, TC, SLS defined above based on 1000 realizations the model used are 

seasonal VAR (0)(1)12 given above in chapter 3. 

 From this table we make this explanation. 1st as usual, empirical critical values of 

Jmax(.LS, hLS) are lesser as compare to other four joint test. Jmax.(.i, hi) for i= AO, IO are 

closer, retaining that a common critical value we can use for these two test. Jmax.(i, hi.) for 

i= TC, SLS are closer, retaining that a common critical value we can use for these two test, 

our simulations suggest that 56.862 for AO and IO, 77.46 for TC and SLS can be used as 

estimated critical value for sample n=200. This approximate critical value increases with 

increasing the sample size and also mostly the empirical critical values are increased with 

increase in sample size, in short the empirical critical values of the J test statistics, 

especially for Jmax.(.LS, hLS.) depends on the sample size, dimension and the model 

structure. From these results we have observed that both the Theory and practice of this 

test needed attention. Here we can see clearly that for sample size 200 with seasonal VAR 

model, the multivariate IO critical values are not much confused with multivariate SLS 

critical values these are have a significance difference. The same concept was observed for 

univariate SLS by Asghar and Urooj (2017) that, in SAR (1) SLS is generally not confused 

with other types of outliers. 

Therefore, we concluded that SLS with large sample size and with seasonal VAR model 

for monthly seasonal frequency is not much confused with other types of outlier and have 

significant impact on all estimates. 



73 
 

4.2.2.1 Coefficient matrix for VAR (0)(1)12 with and without outliers 

These results are based on 1000 times estimated parameters of model, by average sampling 

distribution, we have taken expected matrix of 1000 matrix for coefficient matrix/π matrix, 

covariance matrix, eigen values vector, before and after adding outliers in trivariate case. 

4.2.2.1.1 Coefficient and covariance matrix for VAR (0)(1)12 model without outliers 

Covariance matrix of residuals 

 ∑=[
0.984 −0.0027 −0.0021

−0.0027 0.985 −0.0013
−0.0021 10.0013 0.987

] 

Π12 matrix (with 12th lag) 

Π12=[
0.00101 0.0011 0.0015
0.00023 0.00105 −0.00058
0.00205 −0.0023 −0.00108

] 

Covariance matrix of estimators for Transient change outlier 

∑=[
1.07 0.04 0.09
0.04 1.07 0.09
0.09 0.09 1.08

] 

Covariance matrix of estimators for Level Shift 

∑=[
0.967 − 0.00204 − 0.00027

− 0.00204 1.00322 0.0164
−0.00027 0.0164 1.0051

] 

Covariance matrix of estimators for Additive outlier 
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∑=[
0.968 − 0.00251 − 0.00022

− 0.00251 1.0009 0.01509
− 0.000228 0.01509 1.0041

] 

Covariance matrix of estimators for Seasonal Level Shift 

∑=[
0.967 − 0.0030 0.00062

− 0.0030 1.0004 0.0151
0.00062 0.0151 1.0054

] 

Here these results with large sample size also show that all diagonal entries of covariance 

matrix entries are almost equal 1 and off diagonal entries are almost equal to zero this show 

the white noise of data, in coefficient matrix for 12th lag of the model are closer to zero this 

means that in this multivariate data all the variables not depending on its own lag value and  

lag value of other variable in data this also show the normality of data. 

In the below we show the results of seasonal VAR model with outliers. 

4.2.2.1.2 Coefficient and covariance matrix for VAR (0)(1)12 model with outliers 

For additive outlier 

Coefficient matrix 

Π12=[
− 0.00379 0.000242 0.00272
− 0.00908 0.00065 0.00763
− 0.00899 − 0.00138 0.0101

] 

Covariance matrix of residuals for Additive outlier 

∑=[
5.72 4.73 4.73
4.737 5.70 4.73
4.73 4.73 5.72

] 

Covariance matrix of estimators for Additive outlier 
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∑=[
5.99 5.01 5.02
5.01 6.01 5.03
5.02 5.03 6.02

] 

The coefficient matrix Π12 have eigen values (0.0062, 0.0016, -0.00091). 

Here these results show that all diagonal entries of covariance matrix entries are not  equal 

1, have a large value as compare to results of normal data and off diagonal entries are not 

equal to zero this show that our data series are not white noise, coefficient matrix for 12th 

lag of the model are closer to zero  but have a little difference than the results with normal 

data this means that  additive outlier have a little bit impact on coefficient of VAR model 

but badly affects the covariance matrix. 

For Innovative outlier 

Coefficient matrix 

Π12=[
− 0.0009 0.0057 − 0.000203
0.000767 0.000644 0.00501
− 0.00708 0.0054 − 0.00186

] 

Covariance matrix of residuals for Innovative outlier 

∑=[
1.069 0.082 0.083
0.083 1.061 0.082
0.083 0.0826 1.061

] 

Covariance matrix of estimators for Innovative outlier 

∑=[
1.069 0.082 0.083
0.083 1.061 0.082
0.083 0.0826 1.061

] 

The coefficient matrix Π12 have eigen values (-0.00845, 0.00639, 0.00639). 
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Here these results show that all diagonal entries of covariance matrix entries are not  equal 

1, have a small difference as compare to results of normal data and off diagonal entries are 

not equal to zero this show that our data series are not white noise but it show that 

innovative outlier have little bit impact on covariance matrix than AO, coefficient matrix 

for 12th lag of the model are closer to zero  but have a little difference than the results with 

normal data this means that  IO have a little bit impact on coefficient of VAR model. 

For Level Shift 

Coefficient matrix 

Π12=[
0.328 0.330 0.334
0.329 0.328 0.334

− 0.333 0.329 0.328
] 

Covariance matrix of residuals for Level Shift 

∑=[
6.09 5.11 5.10
5.11 6.10 5.11
5.10 5.11 6.09

] 

Covariance matrix of estimators for Level Shift 

∑=[
6.48 5.52 5.52
5.52 6.53 5.54
5.52 5.54 6.52

] 

The coefficient matrix Π12 have eigen values (0.992, -0.00576, -0.00188). 

Here these results show that all diagonal entries of covariance matrix entries are not  equal 

1, have a large value as compare to results of normal data and off diagonal entries are not 

equal to zero this show that our data series are not white noise, coefficient matrix for 12th 
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lag of the model have a large difference and show the significantly dependence of variables 

on its own lag value and the lagged value of other variables. This means that level shift has 

a huge impact on coefficient of VAR model, also badly affects the covariance matrix. 

For Transient Change 

Coefficient matrix 

Π12=[
0.268 0.273 0.283
0.269 0.266 0.289
0.272 0.271 0.281

] 

Covariance matrix of residuals for Transient Change outlier 

∑=[
20.19 19.19 19.20
19.19 20.18 19.19
19.20 19.19 20.17

] 

Covariance matrix of estimators for Transient Change outlier 

∑=[
22.34 21.36 21.36
21.36 22.36 21.38
21.36 21.38 22.36

] 

The coefficient matrix Π12 have eigen values (0.825332, -0.0017, -0.0017). 

Here these results show that all diagonal entries of covariance matrix entries are not  equal 

1, have a large value as compare to results of normal data and off diagonal entries are not 

equal to zero this show that our data series are not white noise, coefficient matrix for 12th 

lag of the model have a large difference and show the significantly dependence of variables 

on its own lag value and the lagged value of other variables. This means that level shift has 

a huge impact on coefficient of VAR model, also badly affects the covariance matrix. 
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For Seasonal level shift 

Coefficient matrix 

Π12=[
0.3064 0.3136 0.3131
0.3089 0.3104 0.317
0.3116 0.3147 0.3074

] 

Covariance matrix of residuals for Seasonal level shift Level Shift 

∑=[
1.715 0.754 0.744
0.754 1.576 0.762
0.744 0.762 1.744

] 

Covariance matrix of estimators for Seasonal Level Shift 

∑=[
1.815 0.841 0.830
0.841 1.829 0.835
0.830 0.835 1.817

] 

The coefficient matrix Π12 have eigen values (0.934, -0.0069, -0.0032). 

Here these results show that all diagonal entries of covariance matrix entries are not  equal 

1, have a small difference as compare to results of normal data and off diagonal entries are 

not equal to zero this show that our data series are not white noise, coefficient matrix for 

12th lag of the model have a large difference and show the significantly dependence of 

variables on its own lag value and the lagged value of other variables. This means that SLS 

have a huge impact on coefficient of VAR model, small effect on covariance matrix. 

From these results we make these remarks, firstly, Π weights of  VAR(0)(1)12 model for 

data series with outliers becomes much larger  than the Π weights of VAR(0)(1)12 for data 

series without outlier and have changed sign, this difference clearly identified that all five 



79 
 

types of outliers badly and significantly affects the estimation and estimated parameters of 

VAR model and also affects results which can make our results doubtful. Π weights of 

VAR (0)(1)12 with seasonal level shift also have clearly much larger weights than the Π 

weights with normal data series, this means that with other types of outliers there is 

necessary to detect and adjust the SLS in the data series in another case this can distort the 

whole analysis and can make results defective. 

Secondly, Π weights with multivariate innovative and additive outlier have very small 

difference than the Π weights with normal data this is less sensitive for our analysis results 

than those of other three types of outliers, Π weights with LS are much larger than the Π 

weights with normal data and also much larger than the Π weights with other four types of 

outliers. Hence LS is much sensitive for our analysis, results, estimates and make results 

doubtful than other types of outlier. SLS and TC have much larger Π weights than the Π 

weights with normal data but have less than the LS Π weights, SLS and TC also much 

sensitive for our analysis, estimates and results but less sensitive than the LS outlier. 

However, there is clearly seen that estimated coefficient and covariance matrix of 

innovational outlier have huge difference from seasonal level shift we can say that for 

sample size n=200 with seasonal VAR model we are not confused in innovational outlier 

and SLS. By comparing the results with 2.2.1 we have observed that by increasing sample 

size we have more clarity between MIO (multivariate innovative outlier) and MSLS 

(multivariate seasonal level shift) results and empirical power and empirical level of 

significance of the test statistics also improved, as mentioned by Asghar and Urooj (2017) 

univariate SLS detection give more better results for large sample size. 
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Thirdly, the eigen vectors of Π weights with IO, AO have less difference than with the 

normal data, this also identified that IO and AO are less sensitive for analysis than other 

type of outliers with seasonal VAR model for sample size n=200. The eigen vectors for Π 

weights with LS have large difference than with the normal data and also larger than the 

eigen vectors for Π weights with other type of outlier, this also clarify that LS is highly 

sensitive for our analysis and results. SLS and TC outlier eigen vectors for Π weights also 

have significant difference than with normal data these are also much sensitive for our 

results of analysis but less sensitive than the level shift. 

Fourthly, covariance matrix of residuals and covariance matrix of estimators for all five 

types of outliers have much larger difference than for the normal data. Outliers are also 

badly affecting the covariance matrix and make results doubtful. 

Fifthly by comparing results of 4.2.1. and 4.2.2 we have detected that Π weights, ∑ weights, 

eigen values, empirical quantiles for Jmax (i, hi), power of the test statistics, β value, 

empirical level of significance all depends on sample size also with increasing sample size 

all these values are departs. 

In the below we have simulated the data with 𝑉𝐴𝑅(1)(1)12 model and sample size n=200. 

4.3 For Sample size 200 with VAR (1)(1)12   

In the below, we have generated 1000 realization for trivariate case with n=200 by normal 

distribution. 

4.3.1 Simulation when no outlier in the series  

In start assuming there is no outlier we have estimated a multivariate VAR(1)(1)12 with 1st 

and 12th lag only model then obtained residuals uit and covariance matrix of residuals ∑ 
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and coefficient matrix π then I have estimated outlier size ωi  and covariance matrix of 

estimators then we have calculated joint test statistics and then we have calculated joint 

maximum test statistics for all five types of outliers. These series are free of outliers 

because we have generated them from normal distribution, we have done all these process 

on these series by using VAR (1)(1)12 for calculating the empirical significance level/size. 

First of all, we have calculated joint test statistics for five types of outliers AO, IO, TC, LS, 

SLS and then compare their results by joint maximum test and then finalized the results. 

Type I error: rejecting true null 

Empirical level of significance=size=no of detected outlier when there is no chance of 

outlier/total number of iterations 

6TABLE 4.7 EMPIRICAL LEVEL OF SIGNIFICANCE  

Sample size: 200 

Level of significance: 0.05 

realization: 1000 

  AO IO LS TC SLS 

No of outlier 

detected  178 50 130 177 14 

Empirical 

level of 

significance  

joint test statistic 

0.17

8 0.05 0.13 

0.17

7 

0.01

4 

For overall joint 

maximum test 

statistics 0.294 

From these results by comparing 4.2.1, 4.2.2 and 4.2.3 we have observed that empirical 

level of significance of SLS along with all other four types of outliers also depend on 

sample size, dimension and model structure, has oscillate by increasing sample size and 

changed model structure and dimension for VAR model. 

(detailed tables of these results will be provided on demand) 
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In the below we provided a simulation results when there is outlier in the series. 

4.3.2 Simulation with outlier 

We have generated 3 data series of sample n=200 by normal distribution in RStudio and 

make 1000 realization of trivariate then we have added five types of outlier on same time 

point at t=85. We have calculated VAR(1)(1)12 model for each realization and obtained 

residuals, covariance matrix, coefficient matrix for each equation then we calculated 𝜔𝐴𝑂 ,

𝜔𝐿𝑆, 𝜔𝑇𝐶 , 𝜔𝑆𝐿𝑆  by using GLS(generalized least square) estimators and 𝜔𝐼𝑂,ℎ = 𝑎𝑡,ℎ  as 

explained in chapter 3, their covariance matrix and then we have calculated joint test 

statistics following chi-square distribution for five types of outliers names 𝑗𝐴𝑂 , 𝑗𝐼𝑂 ,

𝑗𝐿𝑆, 𝑗𝑇𝐶 , 𝑗𝑆𝐿𝑆  for each realization, at which time point p-value of test statistic value is 

minimum and probability of that statistic value is less than 0.05 we considered it as outlier 

in the series at that time point, then we have compare these four type outliers statistics 

results with each other by the rule of joint maximum test statistic, in each realization which 

one outlier statistic is greater than other statistic value we declared that type of outlier in 

this realization. 

Joint test statistic results 

Null hypothesis. Ho : there is no outlier in the series 

Alternative hypothesis. HA : there is outlier in the series 

This is false null because there is outlier in the series which we have added on the specific 

time point for checking the test statistic for detection of outlier. 

Type II error: rejection of false null. 
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Significance level α=0.05 

Joint test statistics follow chi-square distribution, when calculated value is larger by 

comparing with critical value or probability is less than 0.05 then we reject the null and 

there is outlier in the series, at which time point p-value of test statistic is minimum that 

time point is measured as outlier as suggested by Tsay et al. (2000). 

7TABLE 4.8 POWER OF THE FIVE JOINT TEST STATISTICS 

Empirical power of the test statistics  

sample size: 200 

significance level: 0.05 

realization: 1000 

  AO. IO. LS. TC. SLS. 

No of outlier detected  582 999 500 401 784 

Empirical level of 

significance.  

joint test statistic 58.2% 99.9% 50% 40.1% 78.4% 

For overall joint 

maximum test 

statistics 100% 

β = no outlier 

detected when there is 

outlier in the series 

joint test statistic 0.418 0.001 0.5 0.599 0.216 

For overall joint 

maximum test 

statistics 0 

From this table comparing with table 4.2, 4.5 we observed that empirical β and empirical 

power of the 𝐽(𝑆𝐿𝑆, ℎ𝑆𝐿𝑆) test statistics along with other all four types of outlier not only 

depends on sample size but also on the dimension and model structure, with increasing 

sample size and changing model structure empirical power of the test statistics and β value 

deviates. 
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8TABLE 4.9 EMPIRICAL QUANTILES OF THE FIVE JMAX (I, HI ) STATISTICS 

Sample Test Probabilities 

Size  50% 75% 90% 95% 97.5% 99% 

Trivariate case VAR(1)(1)12 

200 Jmax (AO, 

hAO) 

27.62 41.025 54.93 67.01  80.36 101.60 

Jmax (IO, 

hIO) 

39.19 44.895 51.312 55.434 58.258 62.523 

Jmax (LS, 

hLS) 

20.37 30.7 37.452 44.184 51.093 57.3664 

Jmax (TC, 

hTC) 

16.7  20.8 26.38  35.34  41.74  46.812  

Jmax (SLS, 

hSLS) 

20.97  33.195  54.352  70.256  83.945  99.6376 

Here i= AO, IO, LS, TC, SLS defined above based on 1000 realizations the model used are 

seasonal VAR (1)(1)12 given above in chapter 3. 

From this table we make this observation. 1st against the expectation, empirical quantiles 

of Jmax.(.TC, hTC) are lesser as compare to other four joint test. Jmax.(.i, hi) for i= AO, IO, 

SLS are closer, retaining that a common critical value we can use for these three test 

statistics. Our simulations suggested that 64.23 can be used as estimated critical value for 

additive outlier, innovative outlier and seasonal level shift for sample n=200 with VAR 

(1)(1)12. This approximate critical value changed with increasing the sample size and also 

changed with changing the model structure and also all the critical values are increased 

with increase in sample size and changed with change in model structure, In short, the 

empirical critical values of the joint test statistics, especially for  Jmax.(LS, hLS.) depends on 

the sample size, dimension and the model structure. From these results we have concluded 

that both the theory and practice of this test statistics needed attention.  
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4.3.2.1 Coefficient matrix for VAR (1)(1)12 with and without outliers in the series 

These results are based on 1000 times estimated parameters of model, by average sampling 

distribution, we have taken expected matrix of 1000 matrix for coefficient matrix/π matrix, 

covariance matrix, eigen values vector, before and after adding outliers in trivariate case. 

4.3.2.1.1 Coefficient and covariance matrix for VAR (1)(1)12 model without outliers 

Covariance matrix of residuals 

 ∑=[
0.969 0.003 0.003
0.003 0.969 0.003
0.003 0.003 0.969

] 

Π1 matrix (with 1st lag) 

Π1=[
0.0012 0.0025 0.0055
0.0005 −0.0039 −0.0035
0.0044 −0.0022 0.0074

] 

Π12 matrix (with 12th lag) 

Π12=[
0.001 0.002 0.001
0.0069 −0.0037 −0.0001
0.0019 −0.0015 0.0012

] 

Covariance matrix of estimators for Transient change outlier 

∑=[
0.949 − 0.0001 0.001
0.0001 0.986 0.02
0.001 0.02 0.987

] 

Covariance matrix of estimators for Level shift 
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∑=[
0.949 − 0.0001 0.001
0.0001 0.986 0.02
0.001 0.02 0.987

] 

Covariance matrix of estimators for Additive outlier 

∑=[
0.951 − 0.0007 0.001
0.0007 0.984 0.018
0.001 0.018 0.986

] 

Covariance matrix of estimators for Seasonal level shift  

∑=[
0.952 − 0.002 0.001
0.002 0.985 0.018
0.001 0.018 0.984

] 

Here these results with large sample size also show that all diagonal entries of covariance 

matrix entries are almost equal 1 and off diagonal entries are almost equal to zero this show 

the white noise of data, in coefficient matrix for 12th lag of the model are closer to zero this 

means that in this multivariate data all the variables not depending on its own lag value and  

lag value of other variable in data this also show the normality of data. 

In the below we show the results of seasonal VAR model with outliers. 

4.3.2.1.2 Coefficient and covariance matrix for VAR (1)(1)12 model with outliers 

With additive outlier 

Coefficient matrix 

Π1=[
0.0143 − 0.0082 − 0.0077
0.0112 − 0.00321 − 0.0079
0.0144 − 0.00739 − 0.0079

] 
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Π12=[
0.00145 − 0.00077 0.0001

− 0.00178 − 0.00158 0.00422
0.00079 − 0.00216 0.00056

] 

Covariance matrix of residuals for Additive outlier 

∑=[
9.336 8.327 8.319
8.327 9.314 8.337
8.319 8.337 9.292

] 

Covariance matrix of estimators for Additive outlier 

∑=[
9.828 8.836 8.824
8.836 9.839 8.859
8.824 8.859 9.807

] 

The two-coefficient matrix Π1 and Π12 have eigen values (0.00345, -0.00222, 0.001958) 

and (0.002077, -0.00296, 0.001314) respectively. 

Here these results show that all diagonal entries of covariance matrix entries are not  equal 

1, have a large value as compare to results of normal data and off diagonal entries are not 

equal to zero this show that our data series are not white noise, coefficient matrix for 12th 

lag and 1st lag of the model are closer to zero  but have a little difference than the results 

with normal data this means that  additive outlier have a little bit impact on coefficient of 

VAR model but badly affects the covariance matrix. 

With Innovative outlier 

Coefficient matrix 

Π1=[
0.000203 − 0.00285 0.00226
0.00128 − 0.00128 − 0.00225
0.00164 0.000851 − 0.000778

] 
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Π12=[
− 0.00302 − 0.0016 0.00029
− 0.00102 − 0.00042 0.000046
− 0.00464 − 0.00182 − 0.0003

] 

Covariance matrix of residuals for Innovative outlier 

∑=[
1.054 0.0832 0.0802
0.0832 1.055 0.085
0.0802 0.0852 1.046

] 

Covariance matrix of estimators for Innovative outlier 

∑=[
1.054 0.0832 0.0802
0.0832 1.055 0.085
0.0802 0.0852 1.046

] 

The two-coefficient matrix Π1 and Π12 have eigen values (0.0041,-0.00404, 0.00176) and 

(-0.00302, -0.00079, 0.000068) respectively. 

Here these results show that all diagonal entries of covariance matrix entries are not  equal 

1, have a small difference as compare to results of normal data and off diagonal entries are 

not equal to zero this show that our data series are not white noise but it show that 

innovative outlier have little bit impact on covariance matrix than AO, coefficient matrix 

for 12th lag of the model are closer to zero  but have a little difference than the results with 

normal data this means that  IO have a little bit impact on coefficient of VAR model.  

For Level Shift 

Coefficient matrix 

Π1=[
0.333 0.323 0.340
0.341 0.316 0.339
0.342 0.323 0.332

] 
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Π12=[
− 0.004 0.003 0.002
− 0.003 − 0.002 0.008
− 0.002 − 0.0006 0.005

] 

Covariance matrix of residuals for Level shift 

∑=[
14.328 13.317 13.308
13.317 14.328 13.346
13.308 13.346 14.304

] 

Covariance matrix of estimators for Level shift 

∑=[
16.177 15.181 15.171
15.181 16.205 15.223
15.171 15.223 16.181

] 

The two-coefficient matrix Π1 and Π12 have eigen values (0.997766740, -0.008489779, -

0.007211160) and (0.003249, -0.00094,0.00428) respectively. 

Here these results show that all diagonal entries of covariance matrix entries are not  equal 

1, have a large value as compare to results of normal data and off diagonal entries are not 

equal to zero this show that our data series are not white noise, coefficient matrix for 12th 

lag of the model have a large difference and show the significantly dependence of variables 

on its own lag value and the lagged value of other variables. This means that level shift has 

a huge impact on coefficient of VAR model, also badly affects the covariance matrix. 

For Transient Change 

Coefficient matrix 

Π1=[
0.325 0.331 0.333
0.338 0.321 0.331
0.336 0.331 0.322

] 



90 
 

Π12=[
− 0.0062 − 0.015 0.001
− 0.0026 − 0.015 0.0007
− 0.0015 − 0.015 − 0.00043

] 

Covariance matrix of residuals for Transient Change outlier 

∑=[
10.55 9.52 9.51
9.52 10.50 9.52
9.51 9.52 10.48

] 

Covariance matrix of estimators for Transient Change outlier 

∑=[
11.85 10.84 10.82
10.84 11.83 10.84
10.82 10.84 11.80

] 

The two-coefficient matrix Π1 and Π12 have eigen values (0.990739, -0.01029, -0.01145) 

and (-0.01821, -0.00159, -0.00253) respectively. 

Here these results show that all diagonal entries of covariance matrix entries are not  equal 

1, have a large value as compare to results of normal data and off diagonal entries are not 

equal to zero this show that our data series are not white noise, coefficient matrix for 12th 

lag of the model have a large difference and show the significantly dependence of variables 

on its own lag value and the lagged value of other variables. This means that TC have a 

huge impact on coefficient of VAR model, also badly affects the covariance matrix. 

with Seasonal level shift  

Coefficient matrix 

Π1=[
0.00143 0.00201 − 2.402
− 0.0027 0.0013 − 3.123
0.00077 − 0.0017 5.0205

] 
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Π12=[
0.402 0.422 0.342
0.294 0.287 0.294
0.295 0.295 0.282

] 

Covariance matrix of residuals for Seasonal level shift Level shift 

∑=[
1.63 0.54 0.53
0.54 1.50 0.54
0.53 0.54 1.50

] 

Covariance matrix of estimators for Seasonal level shift  

∑=[
1.525 0.462 0.453
0.462 1.455 0.489
0.453 0.489 1.456

] 

The two-coefficient matrix Π1 and Π12 have eigen values (0.004846, -0.00113, -0.00048) 

and (0.855719063,0.123519265, -0.006321527) respectively. 

Here these results show that all diagonal entries of covariance matrix entries are not  equal 

1, have a small difference as compare to results of normal data and off diagonal entries are 

not equal to zero this show that our data series are not white noise, coefficient matrix for 

12th lag of the model have a large difference and show the significantly dependence of 

variables on its own lag value and the lagged value of other variables. This means that SLS 

have a huge impact on coefficient of VAR model, small effect on covariance matrix. 

From these results we make these remarks, firstly, Π weights of  VAR(1)(1)12 model for 

data series with outliers becomes much larger  than the Π weights of VAR(1)(1)12 for data 

series without outlier and have changed sign, this difference clearly identified that all five 

types of outliers badly and significantly affects the estimation and estimated parameters of 

VAR model and also affects results which can make our results doubtful. Π weights of 
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VAR (1)(1)12 with seasonal level shift also have clearly much larger weights than the Π 

weights with normal data series, this means that with other types of outliers there is 

necessary to detect and adjust the SLS in the data series in another case this can distort the 

whole analysis and can make results defective. 

Secondly, Π weights with additive and innovative outlier have very small difference than 

the Π weights with normal data this is less sensitive for our analysis results than those of 

other three types of outliers on the other hand we can say that that in large sample size 

MIO(multivariate innovative outlier) are not confusing with other types of outliers, in 

addition we observed that MIO in large sample size with VAR model less affect the 

estimates than MAO(multivariate additive outlier), Π1 weights with LS outlier are much 

larger than the Π1 weights with normal data and also much larger than the Π1 weights with 

other four types of outliers however Π12 weights with SLS are much larger than the Π12 

weights with normal data and also much larger than the Π12 weights with other four types 

of outliers. Hence SLS is much sensitive for our analysis, results and estimates, make 

results doubtful than other types of outlier with 12th lag and LS is much sensitive with 1st 

lag than other for VAR (1)(1)12 . LS and TC have much larger Π12 weights than the Π12 

weights with normal data but have less than the SLS Π12 weights, LS and TC also much 

sensitive for our analysis, estimates and results but less sensitive than the SLS for VAR 

(1)(1)12. 

Thirdly, the eigen vectors of Π weights with MAO and MIO have less difference than with 

the normal data, this also identified that MAO and MIO are less sensitive for analysis than 

other type of outliers. The eigen vectors for Π1 weights with LS have large difference than 

with the normal data and also larger than the eigen vectors for Π1 weights with other type 
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of outlier, this also clarify that LS is highly sensitive for our analysis and results with 1st 

lag. The eigen vectors for Π12 weights with SLS have large difference than with the normal 

data and also larger than the eigen vectors for Π12 weights with other type of outlier, this 

also clarify that SLS is highly sensitive for our analysis and results with 12th lag, TC outlier 

eigen vectors for Π weights also have significant difference than with normal data these 

are also much sensitive for our results of analysis but less sensitive than the seasonal level 

shift and Level shift. 

Fourthly, covariance matrix of residuals and covariance matrix of estimators for all five 

types of outliers have much larger difference than for the normal data. Outliers are also 

badly affecting the covariance and make results doubtful. 

Fifthly by comparing results of 4.2.1 and 4.2.2 and 4.2.3 we have detected that Π weights, 

∑ weights, eigen values, empirical quantiles for Jmax (i, hi), power of the test statistics, β 

value, empirical level of significance all depends on sample size and dimension and model 

structure also with increasing sample size and changing dimension and structure of model 

all these values are departs. 

4.4 On Average Residuals Standard Error Based on 1000 Realization 

4.4.1 150 sample, seasonal VAR (0)(1)12 

For sample size 150 with seasonal VAR (0)(1)12 model residual standard error for 1st 

equation is equal to 0.926, for 2nd equation is 0.901, for 3rd equation 0.9901, when series is 

generated from normal distribution, free of outlier. 

For sample size 150 and data series with outlier residual standard error values becomes 

larger, when there is additive outlier in series, on average residual standard error values 
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with seasonal VAR (0)(1)12 for 1st equation 3.145, for 2nd equation 3.396, for 3rd equation 

3.254. when there is innovative outlier in the series on average residual standard error 

values with seasonal VAR (0)(1)12 for 1st equation 0.975, for 2nd equation 1.205, for 3rd 

equation 0.987. when there is level shift in the series on average residual standard error 

values with seasonal VAR (0)(1)12 for 1st equation 3.005, for 2nd equation 2.856, for 3rd 

equation 2.904. when there is transient change outlier in the series on average residual 

standard error values with seasonal VAR (0)(1)12 for 1st equation 5.345, for 2nd equation 

5.106, for 3rd equation 5.804.  

when there is seasonal level shift in the series on average residual standard error values 

with seasonal VAR (0)(1)12 for 1st equation 1.435, for 2nd equation 1.345, for 3rd equation 

1.283.  

4.4.2 200 sample, seasonal VAR (0)(1)12 

For sample size 200 with seasonal VAR (0)(1)12 model residual standard error for 1st 

equation is equal to 0.996, for 2nd equation is 0.991, for 3rd equation 1.001, when series is 

generated from normal distribution, free of outlier. 

For sample size 200 when there is an outlier in the data series, residual standard error values 

become larger, when there is additive outlier in series, on average residual standard error 

values with seasonal VAR (0)(1)12 for 1st equation 2.556, for 2nd equation 2.396, for 3rd 

equation 2.754. when there is innovational outlier in series, on average residual standard 

error values with seasonal VAR (0)(1)12 for 1st equation 1.023, for 2nd equation 0.956, for 

3rd equation 1.011. when there is level shift in the series on average residual standard error 

values with seasonal VAR (0)(1)12 for 1st equation 2.665, for 2nd equation 2.356, for 3rd 
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equation 2.204. when there is transient change outlier in the series on average residual 

standard error values with seasonal VAR (0)(1)12 for 1st equation 4.545, for 2nd equation 

4.606, for 3rd equation 4.704.  

When there is seasonal level shift in the series on average residual standard error values 

with seasonal VAR (0)(1)12 for 1st equation 1.335, for 2nd equation 1.245, for 3rd equation 

1.323.  

4.4.3 200 sample, seasonal VAR (1)(1)12 

For sample size 200 with seasonal VAR (1)(1)12 model residual standard error for 1st 

equation is equal to 1.016, for 2nd equation is 1.001, for 3rd equation 0.991, when series is 

generated from normal distribution, free of outlier. 

For sample size 200 when there is outlier in the data series, residual standard error values 

become larger, when there is additive outlier in series, on average residual standard error 

values with seasonal VAR (1)(1)12 for 1st equation 3.556, for 2nd equation 3.396, for 3rd 

equation 3.254. when there is innovative outlier in series, on average residual standard error 

values with seasonal VAR(1)(1)12 for 1st equation 0.982, for 2nd equation 1.021, for 3rd 

equation 0.991.when there is level shift in the series on average residual standard error 

values with seasonal VAR(1)(1)12 for 1st equation 3.965, for 2nd equation 3.756, for 3rd 

equation 3.804. when there is transient change outlier in the series on average residual 

standard error values with seasonal VAR (1)(1)12 for 1st equation 3.545, for 2nd equation 

3.606, for 3rd equation 3.204.  
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When there is seasonal level shift in the series on average residual standard error values 

with seasonal VAR (0)(1)12 for 1st equation 1.335, for 2nd equation 1.245, for 3rd equation 

1.223.  

From these results of residuals standard error of VAR model, we have observed that all 

outliers affect badly to the standard error of residuals, there is no universally acceptable 

threshold for the residual standard error. This should be decided based on experience 

in the domain. In general, the smaller the residual standard error, the better the 

model fits the data. Firstly, series with outlier have larger standard error than the 

normal data series, standard error are less affected by the seasonal level shift and 

highly affected by the transient change outlier. Secondly, by changing the order LS 

standard error seriously affected here we can say that LS outlier is more sensitive 

to order of the VAR model than other outliers. 
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CHAPTER 5 

EMPIRICAL ANALYSIS 

In Empirical analysis we use one real data example on monthly time series data with three 

variables of Pakistan. We use rainfall, temperature and “Precipitation and Humidity 

Altitude” data from 1991 to 2018 for Lahore, Faisalabad and Karachi Pakistan and here we 

have 204 observations in the data. It is observed that seasonality in temperature of these 

cities is associated with the seasonality in rainfall and humidity which intern affects badly 

to the overall weather conditions of these cities. 

Outlier recognition in multilevel time series held by employing a trivariate seasonal VAR 

(0)(1)12 model for average monthly climatic data of three stations of Pakistan Faisalabad, 

Islamabad and Karachi for three variables temperature in degree centigrade, rainfall in milli 

meter and humidity in percentage from time period January 2008 to July 2020. We have 

151 total number of observations. We modified joint maximum test statistics for outlier 

detection of Tsay et al. (2000) technique by adding seasonal level shift in multivariate time 

series and apply on real data series example. Figure 5.1, 5.2, 5.3 show the average of 

monthly time series climatic data for Faisalabad, Lahore and Karachi respectively. 
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1FIGURE 5.1. 

 
Figure 5.1: for monthly time series climatic data of Faisalabad 

 

2FIGURE 5.2.  

 

Figure 5.2: for monthly time series climatic data of Lahore 



99 
 

3FIGURE 5.3.  

 

Figure 5.3: for monthly time series climatic data of Karachi 

The seasonal VAR (0)(1)12 model for climatic data is formed as: - 

𝑡𝑒𝑚𝑝𝑡 = A′
1,1,12  𝑡𝑒𝑚𝑝𝑡−12  + A′

1,2,12  𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑡−12   + A′
1,3,12  ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑡−12  +𝑢1𝑡     …

 5.1 

𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑡  = A′
2,1,12   𝑡𝑒𝑚𝑝𝑡−12   + A′

2,2,12   𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑡−12 + A′
2,3,12   ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑡−12 +𝑢2𝑡    

… 5.2 

ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑡=A′
3,1,12 𝑡𝑒𝑚𝑝𝑡−12 + A′

3,2,12 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑡−12 + A′
3,3,12 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑡−12  +𝑢3𝑡    …

 5.3 

Seasonal VAR (0)(1)12 model in matrix form 
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[

𝑡𝑒𝑚𝑝𝑡

𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑡
ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑡

] = [

𝐴.1,1,12     𝐴.1,2,12 𝐴.1,3,12 

𝐴.2,1,12   𝐴.2,2,12  𝐴.2,3,12 

𝐴.3,1,12   𝐴.3,2,12  𝐴.3,3,12

] [

𝑡𝑒𝑚𝑝𝑡−12

𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑡−12

ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑡−12

]  + [

𝑢1𝑡

𝑢2𝑡

𝑢3𝑡

]    . . …  5.4 

The detection results are conceded in table 5.3, 5.7, 5.11 based on 5% empirical critical 

value from table 4.3 for a seasonal VAR (0)(1)12 model and sample size 150. There is only 

one outlier is noticed for Faisalabad at t=134, two outliers are perceived for Lahore at t= 

134 and only one outlier is noticed at t=140, on one occasion, an outlier identified, we 

adjusted the its impact on the data and re-estimated the seasonal VAR (0)(1)12 model. The 

estimated outlier size �̂� =  (�̂�1, �̂�2, �̂�3)
⸝ of all outliers are given in table 5.4, 5.8, 5.12 for 

Faisalabad, Lahore and Karachi respectively along with t ratios of estimates. The parameter 

estimates of the model 5.4 with and without outlier adjustment are given away in table 5.2, 

5.6, 5.10 for Faisalabad, Lahore and Karachi respectively. The perceived outlier has 

noticeable effect on the seasonal parameters of the VAR model and residuals covariance 

matrix. 

“An outlier in the single element may be persuaded by another element outlier and when 

we detect that outlier separately for each individual series, by using a marginal model it 

can result in overspecification of number of outliers. The multivariate joint detection of 

outlier could be more powerful than the univariate method.’’ Tsay et al. (2000). 

Firstly, the detected outlier SLS at t=134 for Faisalabad affects all the three-variable 

temperature, rainfall and humidity, this time point was the 11th season with monthly data 

according to February and that is February 2019. In feburary 2019 there is highly maximum 

rainfall(83.8mm), temperature(19Co) and humidity (54%) was recorded than the past and 

in feburary 2020 again this pattern is recorded this make a seasonal level shift in this data.  
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Rainfall reaches this extreme point due to high level of humidity and temperature at t=134 

than the t<134, this make clear to this point that outlier in one series may be cause by outlier 

in another series this may ignored in univariate outlier detection. Secondly, the positive 

and significant estimates �̂� of SLS for Faisalabad at time point 134 shows that the high 

temperature and humidity caused extremeness in rainfall or seasonal level shift in rainfall. 

This information is not reliable if one wants to detect univariate outliers, finally the 

significance of �̂� at t=134 also specifies a probable combined structural break of the series 

at that time point. The negative estimated outlier affect shows the negative relation of input 

and output series with a delay of 11th time periods 

Firstly, the detected outlier TC and SLS at t=134 in iteration 1 and iteration 2 respectively 

for Lahore clearly affects all the three-variable temperature, rainfall and humidity, this time 

point was the 11th season with monthly data according to feburary and that is feburary 

2019. In feburary 2018 there is highly extreme rainfall (182 mm), temperature(18Co) and 

humidity (60%) was recorded than the past and in feburary 2020 again this pattern is noted 

this highly affect the time series data analysis and future prediction may go to unreliable if 

we don’t realize this outlier during the data analysis.  Rainfall reaches this extreme point 

due to high level of humidity and temperature at t=134 as compare to the t<134, this make 

clear to this point that outlier in one series may cause by outlier in another series this may 

ignored in univariate outlier detection. Secondly, the positive and significant estimates �̂� 

of TC & SLS for Lahore at time point 134 shows that the high temperature and humidity 

caused extremeness in rainfall in rainfall. This information is not reliable if one wants to 

detect univariate outliers, finally the significance of �̂� at t=134 also specifies a probable 

combined structural break of the series at that time point. 
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The detected outlier AO at t=140 in iteration 1 for Karachi clearly affects two of the three-

variable rainfall and humidity, this time point was the 11th season with monthly data 

according to august and that is august 2019. In august 2019 there is highly extreme rainfall 

(181.9 mm), and humidity (76%) was recorded than all the past values, this highly affected 

the time series data analysis and future prediction may go to unreliable if we don’t realize 

this outlier during the data analysis.  Rainfall reaches this extreme point due to high level 

of humidity at t=140 as compare to the t<140, this make clear to this point that outlier in 

one series may cause by outlier in another series this may ignored in univariate outlier 

detection. Secondly, the positive and significant estimates �̂� of AO for karachi at time 

point 140 shows that the high level of humidity caused extremeness in rainfall. Such 

information is not reliable if one wants to univariate outlier detection, finally the 

significance of �̂� at t=140 also specifies a probable combined structural break of the series 

at that time point. 

5.1 Multivariate Outlier Detection for Faisalabad 

This real data example based on trivariate case on the monthly climatic data of Faisalabad, 

Pakistan from january 2008 up to July 2020. In very initial stage we selected lags of VAR 

model through VARselect command in R. 

9TABLE 5.1. LAG SELECTION FOR VAR 

AIC.(n) HQ.(n) SC.(n) FPE.(n) 

12 5 5 12 

Here AIC and FPE select the lag 12 for VAR model hence we preferred the results of 

AIC and took the seasonal VAR model with 12th lag. 
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10TABLE 5.2. REGRESSION RESULTS OF SEASONAL VAR MODEL  

Before outlier adjustment 

Equation # 1 of model 5.4 

for temperature 

Equation # 2 of model 5.4 

for rainfall 

Equation # 3 of model 

5.4 for humidity 

Coefficient

s  
Estimates 

Coefficient

s  
Estimates 

Coefficient

s 

Estimate

s 

𝐴.1,1,12 
0.98481 

(0.02144) 𝐴.2,1,12 
0.311893 

(0.0819) 𝐴.3,1,12 
0.1907 

(0.048) 

𝐴.1,2,12 
0.00223 

(0.02515) 𝐴.2,2,12 
0.4253 

(0.096) 𝐴.3,2,12 
-0.142 

(0.056) 

 

𝐴.1,3,12 
0.03149 

(0.01641) 𝐴.2,3,12 
-0.0073 

(0.062) 

 

𝐴.3,3,12 
0.873 

(0.037) 

After outlier adjustment 

Equation # 1 of model 5.4 

for temperature 

Equation # 2 of model 5.4 

for rainfall 

Equation # 3 of model 

5.4 for humidity 

Coefficient

s  
Estimates 

Coefficient

s  
Estimates 

Coefficient

s 

Estimate

s 

𝐴1,1,12 
-1.0540 
(0.655) 𝐴2,1,12 

-1.16 
(0.412) 𝐴3,1,12 

-1.782 
(0.65) 

𝐴1,2,12 
3.936 
(1.09) 𝐴2,2,12 

3.28 
(0.68) 𝐴3,2,12 

3.66 
(1.08) 

 

𝐴1,3,12 
0.155 

(0.151) 𝐴2,3,12 
0.074 

(0.095) 
 

𝐴3,3,12 
0.992 

(0.150) 

Parameters estimate of model 5.4 before and after multivariate outlier detection, the value 

in parenthesis are standard error. 

11TABLE 5.3.  RESULTS FOR MULTIVARIATE OUTLIER DETECTION FOR FAISALABAD  

 Joint maximum test results Outlier 

Iterations 𝐽𝑚𝑎𝑥(AO, ℎ𝐴𝑂) 𝐽𝑚𝑎𝑥(IO, ℎ𝐼𝑂) 𝐽𝑚𝑎𝑥(LS, ℎ𝐿𝑆) 𝐽𝑚𝑎𝑥(TC, ℎ𝑇𝐶) 𝐽𝑚𝑎𝑥(SLS, ℎ𝑆𝐿𝑆) Time type 

1 <50.287 <54.954 <28.10 144.05(134) 185.462(134) 134 SLS 

2 <50.287 79.43(134) <28.10 <63.79 72.307(134) 134 IO 

3 <50.287 112.23(146) <28.10 168.64(146) 162.358(146) 146 TC 

4 <50.287 65.34(146) <28.10 <63.79 <64.154 146 IO 

5 <50.287 <54.954 <28.10 <63.79 <64.154   

Criticeal.value 50.287 54.954 28.10 63.79 64.154   
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Multilevel additive outlier, MAO, Multilevel innovative outlier, MIO, Multilevel level 

shift , MLS, Multilevel transient change, TC, multilevel seasonal level shift, SLS. 

These are the results for multivariate outlier detection for monthly climatic data of 

Faisalabad at 5% critical value from January 2008 to July 2020, the number in brackets for 

joint tests is the corresponding time index. 

In the above results we have adopted an iterative procedure for outlier detection, once we 

have identified an outlier in the series then we adjusted that type of outlier in the series and 

repeated the process until when there is no outlier is declared. 

We iterated the outlier detection procedure five times in 1st iteration we identified only two 

outliers TC and SLS on time point t=134, however by the rule of joint maximum test 

statistics, J (SLS, ℎ𝑆𝐿𝑆) outlier value is greater than the TC therefore in iteration one we 

have declared SLS. Then we adjusted the data series with SLS then repeated the same 

process in iteration 2, in 2nd iteration we declared an IO at time point t=134. Then we 

adjusted the data series with IO and repeat the same process on this adjusted series in 

iteration 3, in 3rd iteration we declared TC at time point t=146, Then we adjusted the data 

series with TC and repeat the same process on this adjusted series in iteration 4, in 4th 

iteration we declared IO at time point t=146, Then we adjusted the data series with IO and 

repeat the same process on this adjusted series in iteration 5, in 5th iteration we did not 

identified any outlier. Now this series is considered as outlier free data series. 
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12TABLE 5.4. 𝛚𝑺𝑳𝑺 , 𝛚𝑨𝑶, 𝛚𝑳𝑺, 𝛚𝑻𝑪 RESULTS  

Iterations ω𝑆𝐿𝑆1(t) ω𝑆𝐿𝑆2(t) ω𝑆𝐿𝑆3(t) 

1 30.84(2.22) 16.13(1.99) 29.33(2.31) 

2 19.87(0.031) 7.655(0.022) 40.97(0.077) 

3 61.064(0.0079) 29.079(0.0073) 78.97(0.012) 

4 23.58(0.11) 12.088(0.115) 0.853(0.0047) 

5 17.004(0.047) 8.648(0.049) 10.817(0.035) 

Iterations ω𝐴𝑂1(t) ω𝐴𝑂2(t) ω𝐴𝑂3(t) 

1 0.732(0.359) -1.11(-0.44) -1.53(-1.9) 

2 -1.889(1.13) -3.294(-1.41) -1.115(-1.28) 

3 -1.685(-0.75) -2.719(-0.65) 1.182(-0.63) 

4 2.129(1.16) 2.235(0.802) -4.88(-1.92) 

5 -1.406(-0.55) -2.15(-0.45) -1.101(-0.53) 

Iterations ω𝐿𝑆1(t) ω𝐿𝑆2(t) ω𝐿𝑆3(t) 

1 -1.205(0.702) 1.549(0.62) -2.038(-2.48) 

2 -1.037(-0.78) -2.005(-0.63) -0.402(-0.62) 

3 -0.873(-0.38) -1.969(-0.35) -0.475(-0.22) 

4 1.702(0.59) 0.993(0.15) -3.386(-1.18) 

5 4.055(0.73) 3.209(0.26) 8.194(-1.49) 

Iterations ω𝑇𝐶1(t) ω𝑇𝐶2(t) ω𝑇𝐶3(t) 

1 22.290(2.97)  -24.851 (-2.94) -1.094(-0.68) 
2 17.036(1.51) -17.16 (-1.47) -1.15 (-0.41) 

3 17.502(0.896) -17.235(-0.86)) -1.329(-0.27) 

4 -2.647(-0.72) 7.049(1.56) -4.427(-0.87) 

5 -4.822(-1.204) 4.303(-0.94) 0.319(-0.08) 

Iterations ω𝐼𝑂1(t) ω𝐼𝑂2(t) ω𝐼𝑂3(t) 

1 0.148  75.346 21.03 

2 31.724 48.044 36.867 

3 63.22 45.98 60.74 

4 34.35 23.96 36.045 

5 59.851 38.891 58.987 

These results are for monthly climatic data of Faisalabad from January 2008 to July 2020, 

there is t-value of matching ω𝑆𝐿𝑆 , ω𝐴𝑂, ω𝐿𝑆, ω𝑇𝐶 value in parenthesis respectively. 

5.1.1 Residuals standard error before and after outlier adjustment 

We have sample size 151 and use seasonal VAR (0)(1)12 model, residual standard error 

for 1st equation is equal to 3.647, for 2nd equation is 13.94, for 3rd equation 8.234. 

By multivariate outlier detection in the data using joint test statistics we identified here 

SLS after adjusting this outlier in the series residual standard error become smaller, residual 
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standard error for 1st equation is equal to 15.28, for 2nd equation is 9.165, for 3rd equation 

15.15. 

Here an image taken from world weather website is shown below: 

 

In this image we can see that in feburary 2019 very extreme level of rainfall was recorded 

and in 2020 again this pattern was recorded, which show the shift of seasonal level for low 

level of rainfall to extreme level of rainfall for Faisalabad, this confirmed that SLS detected 

by out=r test statistics in time series data of Faisalabad is existed in real world data, which 

show the correct detection of SLS. 

5.2 Multivariate outlier detection for Lahore 

These results are for trivariate case on the average monthly climatic data of Lahore, 

Pakistan from January 2008 up to July 2020. In very initial stage we selected lags of VAR 

model through VARselect in R 
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13TABLE 5.5. LAG SELECTION 

AIC.(n) HQ.(n) SC.(n) FPE.(n) 

12 12 10 12 

Here AIC and FPE select the lag 12 for VAR model hence we preferred the results of 

AIC and took the seasonal VAR model with 12th lag. 

14TABLE 5.6. REGRESSION RESULTS OF SEASONAL VAR MODEL  

Before outlier adjustment 

Equation # 1 of model 5.4 

for temperature 

Equation # 2 of model 5.4 

for rainfall 

Equation # 3 of model 5.4 

for humidity 

Coefficients  Estimates Coefficients  Estimates Coefficients Estimates 

𝐴.1,1,12 
1.00307 

(0.0115) 𝐴.2,1,12 
0.3772 

(0.1446) 𝐴.3,1,12 
0.17541 

(0.0544) 

𝐴.1,2,12 
0.00655 

(0.00727) 𝐴.2,2,12 
0.2799 

(0.096) 𝐴.3,2,12 
-0.10084 

(0.0344) 

 

𝐴.1,3,12 
0.008674 

(0.008027) 𝐴.2,3,12 
0.09424 

(0.10079) 

 

𝐴.3,3,12 
0.922 

(0.0379) 

After outlier adjustment 

Equation # 1 of model 5.4 

for temperature 

Equation # 2 of model 5.4 

for rainfall 

Equation # 3 of model 5.4 

for humidity 

Coefficients  Estimates Coefficients  Estimates Coefficients Estimates 

𝐴.1,1,12 
0.491 
(0.024) 𝐴.2,1,12 

0.636 
(0.034) 𝐴.3,1,12 

0.914 
(0.131) 

𝐴.1,2,12 
0.990 
(0.046) 𝐴.2,2,12 

-0.363 
(0.063) 𝐴.3,2,12 

-0.785 
(0.244) 

 

𝐴.1,3,12 

-0.103 
(0.014) 𝐴.2,3,12 

0.218 
(0.0202) 

 

𝐴.3,3,12 
0.704 

(0.078) 

In above these are Parameters estimate of model 5.4 model, these are the results for before 

and after multivariate outlier detection, the value in parenthesis are standard error. 
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15TABLE 5.7. RESULTS FOR MULTIVARIATE OUTLIER FOR LAHORE 

 Joint maximum test results outlier 

Iterations 𝐽𝑚𝑎𝑥(AO,

 ℎ𝐴𝑂) 

𝐽𝑚𝑎𝑥(IO,

 ℎ𝐼𝑂) 

𝐽𝑚𝑎𝑥(LS,

 ℎ𝐿𝑆) 

𝐽𝑚𝑎𝑥(TC,

 ℎ𝑇𝐶) 

𝐽𝑚𝑎𝑥(SLS,

 ℎ𝑆𝐿𝑆) 

Ti

me 

ty

pe 

1 <50.287 <54.95 <23.130 96.078(13

4) 

83.997(134

) 

134 T

C 

2 <50.287 <54.95 <23.130 44.992(13

4) 

125.785(13

4) 

134 SL

S 

3 <50.287 90.342(1
34) 

<23.130 <29.035 56.429(134

) 

134 IO 

4 <50.287 113.89(1
34) 

<23.130 <29.035 69.112(14
6) 

134 IO 

5 <50.287 <54.954 <23.130 <29.035 <47.600   

Critical.v

alue 

50.287 54.954 23.130 29.035 47.600   

These results are for the detection of outliers for monthly climatic data of Lahore at 5% 

critical value from January 2008 to July 2020, the number in parenthesis for joint tests is 

the corresponding time index. 

In above results we have adopted an iterative procedure for outlier detection, once we have 

identified an outlier in the series then we adjusted that type of outlier in the series and 

repeated the process until when there is no outlier is declared. 

We iterated the outlier detection procedure five times in 1st iteration we identified only two 

outliers TC and SLS on time point t=134, however by the rule of joint maximum test 

statistics J(TC, ℎ𝑇𝐶) outlier value is greater than the SLS therefore in iteration one we have 

declared TC outlier. Then we adjusted the data series with TC outlier as suggested above 

in chapter no 3, then repeated the same process in iteration 2, in 2nd iteration we declared a 

SLS at time point t=134. Then we adjusted the data series with seasonal level shift and 

repeat the same process on this adjusted series in iteration 3, in 3rd iteration we declared IO 
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at time point t=134. Then we adjusted the data series with IO and repeat the same process 

on this adjusted series in iteration 4 then again, we declared IO in the series now again we 

adjust the series with IO as suggested above in chapter 3, again we repeated the process in 

5th iteration now we did not identify any outlier. Now this series is considered as outlier 

free data series. 

16TABLE 5.8. 𝛚𝑺𝑳𝑺 , 𝛚𝑨𝑶, 𝛚𝑳𝑺, 𝛚𝑻𝑪 RESULTS  

Iterations ω𝑆𝐿𝑆1(t) ω𝑆𝐿𝑆2(t) ω𝑆𝐿𝑆3(t) 

1 15.386(0.393) 11.026(0.406) 8.7409(0.199) 

2 23.293(2.2902) 17.479(2.3079) 39.331(0.383) 

3 -21.337(-1.406) -8.648736(-1.2231) 17.9298(0.2492) 

4 -40.48(-0.0086) -31.59(-0.0101) -70.59(-0.121) 

5 14.92(0.131) 8.37(0.108) 19.45(0.122) 

Iterations ω𝐴𝑂1(t) ω𝐴𝑂2(t) ω𝐴𝑂3(t) 

1 -1.815(-1.65) -3.212(-1.209) 6.629(1.6003) 

2 -1.211(-1.205) -2.383(-1.187) 0.0127(0.0158) 

3 -0.5993(-0.562) -2.035(-0.967) -0.466(-0.499) 

4 -0.709(-0.55) -2.088(-0.81) -0.482(-0.441) 

5 -0.683(-0.617) -2.015(-0.859) -0.602(-0.652) 

Iterations ω𝐿𝑆1(t) ω𝐿𝑆2(t) ω𝐿𝑆3(t) 

1 0.696(0.276) -2.749(-0.705) -0.8711(-0.903) 

2 -1.471(-1.674) 0.2009(0.1049) -0.373(-0.401) 

3 -1.154(-1.256) -0.188(-0.086) -0.403(-0.385) 

4 -1.236(-1.149) -0.0408(-0.015) -0.497(-0.406) 

5 -1.291(-1.396) 0.193(0.081) -0.586(-0.614) 

Iterations ω𝑇𝐶1(t) ω𝑇𝐶2(t) ω𝑇𝐶3(t) 

1 16.362(2.47) -20.651(-2.64) 1.315(0.953) 

2 17.703(1.754) -22.248(-1.877) 1.31340(0.623) 

3 15.103(1.324) -18.213(-1.359) 0.684(0.283) 

4 15.801(1.231) -19.153(-1.269) 0.656(0.2304) 

5 7.68(0.69) -6.128(-0.526) 0.041(0.017) 

Iterations ω𝐼𝑂1(t) ω𝐼𝑂2(t) ω𝐼𝑂3(t) 

1 -0.458 168.477 24.913 

2 17.177 28.950 7.352 

3 39.45 32.023 42.89 

4 62.199 44.395 81.007 

5 9.435 15.65 83.201 
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These results are for monthly climatic data of Lahore from January 2008 to July 2020, there 

is t-value of corresponding ω𝑆𝐿𝑆 , ω𝐴𝑂, ω𝐿𝑆, ω𝑇𝐶 value in parenthesis respectively. 

5.2.1 Residuals Standard Error before and after Outlier Adjustment 

we have sample size 151 and use seasonal VAR (0)(1)12 model, residual standard error for 

1st equation is equal to 1.936, for 2nd equation is 24.31, for 3rd equation 9.16. 

By multivariate outlier detection in the data using joint test statistics, we identified here 

TC, IO & SLS after adjusting this outlier in the series residual standard error become 

smaller, residual standard error for 1st equation is equal to 2.953, for 2nd equation is 4.057, 

for 3rd equation 15.63. decline in standard error show the good performance of model. 

5.3 Multivariate outlier detection for Karachi 

In very initial stage we selected lags of VAR model through VAR select in R 

17TABLE 5.9. LAG SELECTION 

AIC.(n) HQ.(n) SC.(n) FPE.(n) 

12 11 4 12 

Here AIC and FPE select the lag 12 for VAR model hence we preferred the results of 

AIC and took the seasonal VAR model with 12th lag. 
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18TABLE 5.10. REGRESSION RESULTS OF SEASONAL VAR MODEL  

Before outlier adjustment 

Equation # 1 of model 5.4 for 

temperature 

Equation # 2 of model 5.4 

for rainfall 

Equation # 3 of model 5.4 

for humidity 

Coefficients  Estimates Coefficients  Estimates Coefficients Estimates 

𝐴.1,1,12 
0.97275 

(0.0336) 𝐴.2,1,12 

-1.176 
(0.343) 𝐴.3,1,12 

0.384 
(0.122) 

𝐴.1,2,12 
-0.01368 

(0.01245) 𝐴.2,2,12 

0.310 
(0.127) 𝐴.3,2,12 

0.048 
(0.045) 

 

𝐴.1,3,12 
0.01726 

(0.01707) 𝐴.2,3,12 

0.694 
(0.174) 

 

𝐴.3,3,12 
0.805  

(0.062) 

After outlier adjustment 

Equation # 1 of model 5.4 for 

temperature 

Equation # 2 of model 5.4 

for rainfall 

Equation # 3 of model 5.4 

for humidity 

Coefficients  Estimates Coefficients  Estimates Coefficients Estimates 

𝐴.1,1,12 
0.973 

(0.1101) 𝐴.2,1,12 

-1.169 
(0.464) 𝐴.3,1,12 

0.320 

(0.37) 

𝐴.1,2,12 
-0.013 

(0.053) 𝐴.2,2,12 

-1.169 
(0.223) 𝐴.3,2,12 

0.033  

(0.17) 

 

𝐴.1,3,12 
0.0175 

(0.062) 𝐴.2,3,12 

0.695  

(0.261) 

 

𝐴.3,3,12 
0.841 

(0.208) 

These are Parameters estimate of model 5.4 before and after multivariate outlier detection, 

the values in parenthesis are standard error. 

19TABLE 5.11. RESULTS FOR MULTIVARIATE OUTLIER DETECTION FOR KARACHI 

In the below results we have adopted an iterative procedure for outlier detection, once we 

have identified an outlier in the series then we adjusted that type of outlier in the series and 

repeated the process until when there is no outlier is declared. 
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 Joint maximum test results outlier 

Iterations 𝐽𝑚𝑎𝑥(AO,

 ℎ𝐴𝑂) 

𝐽𝑚𝑎𝑥(IO,

 ℎ𝐼𝑂) 

𝐽𝑚𝑎𝑥(LS,

 ℎ𝐿𝑆) 

𝐽𝑚𝑎𝑥(TC,

 ℎ𝑇𝐶) 

𝐽𝑚𝑎𝑥(SLS,

 ℎ𝑆𝐿𝑆) 

Tim

e 

typ

e 

1 64.314(140) <54.945 <23.130 <29.035 <47.600 140 AO 

2 <50.287 <54.945 <23.130 <29.035 <47.600   

Critical.val

ue 

50.287 54.945 23.130 29.035 47.600   

These results are for monthly climatic data of Karachi at 5% significance level from 

January 2008 to July 2020, the number in parenthesis is for the joint tests is the matching 

time index. 

We iterated the outlier detection procedure two times in 1st iteration we identified only one 

outliers AO outlier on time point t=140, Then we adjusted the data series with AO outlier 

as suggested above in chapter no 3, then repeated the same process in iteration 2, in 2nd 

iteration now we did not identified any type of outlier out of all four types of outlier in our 

study. Now this series can be treated as outlier free data series. 

20TABLE 5.12. 𝛚𝑺𝑳𝑺 , 𝛚𝑨𝑶, 𝛚𝑳𝑺, 𝛚𝑻𝑪 RESULTS  

Iterations ω𝑆𝐿𝑆1(t) ω𝑆𝐿𝑆2(t) ω𝑆𝐿𝑆3(t) 

1 -5.111 (-0.0251) 5.9578(0.0716) -2.656(-0.0062) 

2 -7.927(-0.074) -8.125(-0.184) -25.571(-0.115) 

Iterations ω𝐴𝑂1(t) ω𝐴𝑂2(t) ω𝐴𝑂3(t) 

1 11.371(1.457) 0.1767(2.314) -1.1625(-2.145) 

2 3.454(0.331) 2.247(0.345) -3.439(-0.483) 

Iterations ω𝐿𝑆1(t) ω𝐿𝑆2(t) ω𝐿𝑆3(t) 

1 -0.378(0.276) -0.455(-0.916) 0.355(0.395) 

2 -0.553(-0.873) -0.491(-0.784) 0.155(0.136) 

Iterations ω𝑇𝐶1(t) ω𝑇𝐶2(t) ω𝑇𝐶3(t) 

1 -0.739 (-0.4601) -1.10302(-0.8495) 0.555(0.464) 

2 -0.8215(-0.393) -1.536(-0.925) 0.816(0.533) 

Iterations ω𝐼𝑂1(t) ω𝐼𝑂2(t) ω𝐼𝑂3(t) 

1 1.664 158.275 4.102 

2 -0.303 48.867 22.604 

These are results for monthly climatic data of Karachi from January 2008 to July 2020, 

there is t-value of corresponding ω𝑆𝐿𝑆 , ω𝐴𝑂, ω𝐿𝑆, ω𝑇𝐶 value in parenthesis respectively. 
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5.3.1 Residuals Standard Error before and after Outlier Adjustment 

We have sample size 151 and use seasonal VAR (0)(1)12 model, residual standard error 

for 1st equation is equal to 1.751, for 2nd equation is 17.89, for 3rd equation 6.378. 

By multivariate outlier detection in the data using joint test statistics we identified here AO 

outlier after adjusting this outlier in the series residual standard error become smaller, 

residual standard error for 1st equation is equal to 1.721, for 2nd equation is 7.258, for 3rd 

equation 5.868, decline in standard error show the good performance of model. 

From all the results of standard error of residuals for real time series for three stations 

explained above, we have observed that outliers badly affected the standard error of 

residuals and standard error of estimators also, after adjusting outlier there is significant 

decline in standard error occurs, more lesser the standard error improve the model 

performance. It is noted that standard error for rainfall equation is observed very high as 

compare to other equations, this is because of highest level of rainfall in 2019 and 

2020which cause the presence of outlier in the series. 

In above all the results show that, if we analyze this data without considering these outliers 

in the model the results are totally changed and doubtful. We cannot rely on these results 

for any purpose like policy implication, future planning based on the current results 

because the unusual observation occurs after 2018 and analysis of data gives results as 

whole, did not take the unusual observations as separate and results are not reliable if we 

consider these outliers during our data analysis and adjust in the model this procedure will 

consider these unusual observation and gives results by considering this unusual 

observation. 
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In conclusion from all the results we have concluded that in the presence of MSLS 

estimated coefficients of temperature, rainfall and humidity with seasonal VAR model for 

monthly frequency contains that these are less affected by each other but according to 

theory and previous literature we can see that these variables are heavily depending on each 

other, however when we have adjusted the data series by adopting an iterative procedure 

and re-estimated the model on adjusted data series this gave much different results, mostly 

equations results shows that temperature, rainfall and humidity heavily depending on each 

other. Hence, we identified that if there is MSLS along with other types of outlier exist in 

the data the results are not reliable and cannot make any decision based on these results 

without adjusting MSLS in the model. MSLS also depends on the sample size, order and 

structure of the VAR model therefore if anyone wants to use empirical critical values 

obtained from these results for outlier detection with any other order of VAR model, this 

may be not reliable. 

In the current study we suggested a modified method of outlier detection in multivariate 

time series by incorporating seasonal level shift in multivariate time series. Basically, our 

focus is not on forecasting, but our focus was introducing a modified multivariate outlier 

detection method and to check its performance in terms of power and size via simulation 

and also detect outlier in real world scenario. And we suggested the study for forecasting 

in case of covariate determination. 

Here some studies are found for forecasting with outliers in time univariate series, Ledolter 

(1989) find out that, the additive outlier affect forecasts from ARIMA models. Shio etal. 

(1993) in their study found that, Reallocation outliers often have little effect on forecasts, 

except for a few time points for which forecasts give large weight to observations that are 
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affected by the reallocation. According to Galeano et al. (2006) the existence of even few 

outliers usually leads to inaccurate models and not satisfactory forecasts, according to 

Carnero et al. (2007) outlier may deeply influence the estimates that classical methods 

propose. According to chen and liu (1993) an outlier occurring at the forecast origin has 

the greatest impact on forecasts. As an outlier occurs further away from the forecast origin, 

its effect on forecasts becomes smaller. 

All the studies above mentioned confirms the effect of outliers on forecast, I this study we 

did not moved towards forecasting but in future we will make a study on forecasting with 

outliers in multivariate time series. 
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CHAPTER 6 

CONCLUSION AND STRATEGY COMENDATION 

6.1 Conclusion 

The main focused of our study is that, to obtain a modified Tsay et al. (2000) multivariate 

outlier detection method by adding multivariate seasonal level shift (MSLS) in vector time 

series analysis using the seasonal VAR model for monthly time series data by including 

four other outliers used in Tsay et al. (2000) study for multivariate outlier detection in time 

series named AO, IO, LS and TC outlier. We have used simulation to obtain power, size 

of the proposed test statistics and investigate the influence of multivariate SLS along with 

other types of outliers on estimates and covariance matrix. we also calculated empirical 

critical values for SLS along with other four types of outliers for different sample size and 

order of the VAR model from simulation. We use sample size for seasonal VAR, n=150 

and 200, we have detected all of outlier by using one real data example of Pakistan for 

climatic data of three stations Faisalabad, Lahore and Karachi including three variables 

temperature, rainfall, humidity. 

In simulation results, we have observed that empirical power, empirical level of 

significance, β values, the empirical quantiles of the joint maximum test for MSLS depends 

on sample size, dimension and structure of the VAR model and other four outliers AO, IO, 

LS, TC have a significant impact on all of these results. With the sample size 150 using 

seasonal VAR for the monthly time series data, we have observed that the overall size of 

the joint maximum test statistic is 0.547, however if we see separately for JSLS, there we 

observed 0.147 empirical level of significance J(SLS, hSLS ). For Sample size 200 with 

VAR (0)(1)12 overall value of α=0.493 and separately for J(SLS, hSLS ) α= 0.05, For Sample 
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size 200 with VAR(1)(1)12 overall value of α=0.294 and separately for J (SLS, hSLS) α= 

0.014. Power of the overall j-max test with VAR(1)(1)12 for n=200 is 99.9% and specific 

for 𝑗𝑆𝐿𝑆 = 78.5%, Power of the overall j-max test with VAR(0)(1)12 for n=200 is 100% and 

specific for 𝑗𝑆𝐿𝑆 = 89.9%, Power of the overall j-max test with VAR(0)(1)12 for n=150 is 

99.8% and specific for 𝑗𝑆𝐿𝑆   = 62.2%. These all of the results concluded that α-value, 

empirical power and empirical critical value of 𝑗𝑆𝐿𝑆  and overall joint-max test statistics 

depends on sample, dimension and structure of the model and as well as for all types of 

outliers. From this study we also concluded that multivariate SLS have clear and significant 

impact on estimates, covariance matrix and standard errors. From all of the simulation 

results we concluded that seasonal level shift along with other four types of outlier 

drastically affect our analysis and make results unreliable which may lead to defective 

future predictions also based on this analysis and give wrong estimate of the model. We 

also identified that the larger the outlier size contains large empirical critical value of the 

joint test statistics this also identified that 𝑗𝑆𝐿𝑆  test not only depends on outlier size 𝜔𝑆𝐿𝑆 

but also depend on the interaction between them and also depend on covariance matrix.  

�̂�𝑆𝐿𝑆 = (𝜔1𝑆𝐿𝑆, 𝜔2𝑆𝐿𝑆, 𝜔3𝑆𝐿𝑆). 

In real data series, we found that existence of seasonal level shift along with other types of 

outliers in the multivariate time series climatic data seriously affect the estimates and 

standard error of residuals and standard error of estimates. Which may lead to wrong 

decisions based on these results, erroneous weather forecast can create major problems 

specially for formers because Pakistan is mostly agriculture-based country. There must be 

need to detect and adjust the seasonal level shift in multivariate time series analysis along 

with other types of outliers. 
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In empirical analysis we have identified three outliers, IO,TC and SLS on time point 134 

and 146 for Faisalabad, three outliers are identified at t=134 for Lahore in 1st iteration TC 

and in 2nd iteration SLS and in third iteration IO, one AO identified at t=140 for karachi, 

we can see durable difference in all the estimates with seasonal VAR model for all three 

stations after outlier adjustment. Standard error of estimates and residuals have significant 

change after outlier adjustment in the data series. SLS recorded for Faisalabad at t=134 that 

is feburary 2019, the reason behind the outlier on that time point is that in feburary 2019  

there is extreme level of humidity was recorded because of which an extreme level of 

rainfall was recorded and the same pattern of rainfall and humidity was recorded in 2020, 

this conclude that extreme rainfall and high level of humidity in 2019 And 2020 in the 

same season make a seasonal level shift in the weather of Pakistan.  this also clarify that 

outlier in one series may cause outlier in another series. 

We also identified that larger value at time index of outlier in data series also caused the 

large �̂� (size of outlier). Positive and significant �̂�  show that the outlier significantly 

affects the series. In addition, we have concluded in our study that SLS and innovative 

outlier is not confused with other types of outlier with seasonal VAR model for large 

sample size.  

Hereafter, our study determined that extra material confined by these outliers which 

disturbs estimates and forecasting is beneficial for all statistical analysis. Main contribution 

of our study in literature is that we introduced multivariate seasonal level shift directly in 

vector time series in terms of both theory and practice. From all the results of simulation 

and real data analysis we observed that MSLS have a significant impact on estimates, 
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covariance matrix, standard error of the residua of seasonal VAR model. Without detecting 

and adjusting MSLS along with other types of outlier’s results are not reliable. 

6.2 Strategy Commendation 

On the basis of results following policy is recommend that, there is need to detect seasonal 

level shift  in multivariate times series  in all the fields which follow seasonal patterns, this 

will improve their analysis and make results reliable and help to make right decision on the 

basis of results and also it is necessary for improving analysis on climatic data which helps 

to Pakistan formers for making right decision about their land cultivation and all agriculture 

business. 

This study also suggests forecasting with outliers in multivariate time series and we 

suggested the study for forecasting in case of covariate determination. 
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APPENDIX 

APPENDIX A 

This appendix related to chapter number 3 

A VAR (p) (P) s model with r dimension and p number of lags in matrix form can be 

written as: 

X1t= α11 + A′
1,1,1. X1,t-1 + A′

1,2,1. X2,t-1 + A′
1,3,1. X3,t-1 +……+A′

1,r,1. Xr,t-1 +…..+ A′
1,1,p. 

X1,t-p + A′
1,2,p. X2,t-p + A′

1,3,p. X3,t-p +……+ A′
1,r,p. Xr,t-p +u1t 

X2t= α21 + A′
2,1,1. X1,t-1 + A′

2,2,1. X2,t-1 + + A′
2,3,1. X3,t-1 +…..+ A′

2,r,1. Xr,t-1 +…..+ 𝐴′
2,1,p. 

X1,t-p + A′
2,2,p. X2,t-p + A′

2,3,p. X3,t-p +…..+A′
2,r,p. Xr,t-p +u2t 

X3t= α31 + A′
3,1,1. X1,t-1 + A′

3,2,1. X2,t-1 + + A′
3,3,1. X3,t-1 +…..A′

3,r,1. Xr,t-1 +…..+ A′
3,1,p. 

X1,t-p + A′
3,2,p. X2,t-p + A′

3,3,p. X3,t-p +…...+A′
3,r,p. Xr,t-p +u3t 

: 

Xrt= αR1 + A′
r,1,1. X1,t-1 + A′

r,2,1. X2,t-1 + + A′
r,3,1. X3,t-1 +…..A′

r,r,1. Xr,t-1 +…..+ A′
r,1,p. X1,t-

p + A′
r,2,p. X2,t-p + A′

r,3,p. X3,t-p +…...+A′
r,r,p. Xr,t-p +urt 
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[
 
 
 
 
 
X1t
X2t
X3t
.
.

Xrt]
 
 
 
 
 

 = 

[
 
 
 
 
 
α11
α21
α31

.

.
αr1]

 
 
 
 
 

 + 

[
 
 
 
 
 
A1,1,1   A1,2,1  A1,3,1.. .A1, r, 1 
A2,1,1   A2,2,1  A2,3,1…  A2, r, 1
A3,1,1   A3,2,1  A3,3,1…  A3, r, 1
.                .                .                 .        
.                .                .                 .        
Ar, 1,1   Ar, 2,1  Ar, 3,1…  Ar, r, 1]

 
 
 
 
 

 

[
 
 
 
 
 
X1,t−1 

X2,t−1 

X3,t−1

.

.
Xr,t−1 ]

 
 
 
 
 

 + - - - 

+

[
 
 
 
 
 

A1,1, p   A1,2, p  A1,3, p… A1, r, p
A2,1, p   A2,2, p  A2,3, p…  A2, r, p
A3,1, p   A3,2, p  A3,3, p…  A3, r, p
   .                     .            .        …        .       
 .                    .            .        …        .      
Ar, 1, p   Ar, 2, p  Ar, 3, p…  Ar, r, p ]

 
 
 
 
 

[
 
 
 
 
 
X1,t−p 

X2,t−p 

X3,t−p

.

.
Xr,t−p ]

 
 
 
 
 

 + 

[
 
 
 
 
 
u1t
u2t
u3t
.
.

urt]
 
 
 
 
 

 

Appendix B 

These are the figures of simulated data with outliers which is explained in chapter 4. 

4FIGURE4.1. SERIES WITH ADDITIVE OUTLIER 
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5FIGURE4.2. SERIES WITH SEASONAL LEVEL SHIFT 

 

6FIGURE4.3. SERIES WITH LEVEL SHIFT 
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7FIGURE4.4. SERIES WITH INNOVATIVE OUTLIER 

 

8FIGURE4.5. SERIES WITH TRANSIENT CHANGE 
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These are the figures of time series data of sample size 150 with five types of outliers 

named AO, SLS, LS, IO and TC respectively. These data series are generated from 

“rnorm” in a statistical package R-language and then we introduced all types of 

outlier at a time point t=85 in these series and then detected the outliers from these 

series by using a method which s explained in chapter 3 to check the performance of 

suggested procedure. Mostly we used five libraries in Rstudio named “vars”, 

“matlib”, “Hmisc”, “nlme”, “matrixstats”. 


