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ABSTRACT 

 In the estimation of crude oil price prediction, parametric econometric and 

machine learning models are used, to predict the future price. The parametric 

econometric models include the conventional time series models by using the 

suitable(log-difference) transformation to fulfill the necessary assumptions according 

to the axioms of econometric modelling. The hybridization of ARIMA and GARCH is 

done to get the model with best predictions. The machine learning model (Recurrent 

Neural Network (Long Short-Term Memory) state of the art architect of neural network 

for sequential/time series data. The recent interest has been focused on developing the 

estimation technique to predict the future prices by using the series at level, rather than 

the return series. We find that the hybrid ARIMA-GARCH outperformed amongst all 

the models used in this study. But on theoretical basis and also the graph of predictions 

from RNN(LSTM) suggests that if we have to model high frequency data by estimating 

series at level rather than return series then one must go for the machine learning model 

RNN(LSTM). 

Keywords: Crude Oil Price prediction, ARIMA, GARCH, ARIMA-GARCH, 

RNN(LSTM). 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction  

Oil is a commodity that influences everybody's daily life in a multitude of ways 

unlike any other. The industrial world depends on oil almost as much as the human 

body does on blood. Oil prices and supply impact transport, whether driving or flights 

on a regular basis, as well as economic development, as goods must be transported, and 

oil is used almost everywhere in the secondary sector. Machines need to be oiled, 

engines require fuel and in the automotive sector certain goods are completely oil 

dependent. For computers and circuit boards the insulation on the wires is made of palm 

oil. Popular products are manufactured from oil, such as shampoo, detergent, solvents, 

paint, ink, tires, lubricants, candle wax and hundreds of thousands of other products. 

Heating, and of course the military, depends heavily on oil prices and availability. The 

nature of oil, and its use in the global economy, makes finding any comparable resource 

difficult. It should also be borne in mind that oil is a non-renewable fossil fuel. Actually 

economic activity is fairly associated with oil consumption. Not only is the interest in 

oil prices and, in particular, in the ability to predict oil prices important for the 

aforementioned reasons.  

For individuals such as traders, investors and risk managers, forecasting price 

volatility is crucial for understanding market dynamics. One of the highest demand and 

consumption in Pakistan is for Crude oil. Oil price is a dynamic time series data with 

massive periodic swings.  

There are in fact two different modeling methods. The first is a structural model 

of the oil price, based on simple data such as demand and supply, which is applied using 
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a linear regression. The second is an alternative through time series, which involves an 

analysis of linear and nonlinear time series. The nonlinear time series analysis uses an 

autoregressive model of a neural network, where the strength of the relationship is 

modelled using neural network regressions.  

Due to the increasing fluctuations over time, forecasting the oil prices is 

difficult. Whenever demand for a commodity such as oil exceeds supply, the price can 

rise incredibly high, which is because demand and supply in the short run are quite 

inelastic. While people will be upset by higher oil prices, change of habits and 

consumption takes time. The broad range of cost of extracting oil results in increased 

volatility in the medium term. Consequently, market changes would trigger a much 

more significant price change than before.  

Multi-period volatility forecasts are prominently featured in asset pricing, 

portfolio allocation, risk management, and most other finance areas where long-horizon 

risk measures are essential. These predictions can be made up in three very different 

ways. The first approach is to estimate a horizon-specific volatility model, such as a 

weekly or monthly GARCH, which can then be used to formulate direct volatility 

forecasts over the coming week, month, etc. The second method is to predict a daily 

prediction and then iterate the daily forecasts to obtain weekly or monthly forecasts. 

The literature regarding forecasting refers to the first approach as "direct" and the 

second as "iterated" by RNN (Recurrent Neural Network), a machine learning 

technique. The advantages of this approach is that, as in the direct approach, one focuses 

specifically on multi-period forecasts, while preserving the use of high-frequency data.  

To forecast various types of time series, the long-term trend captured using 

autoregressive integrated moving average (ARIMA) models. ARCH based models have 
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been used in the case of financial time series which have been observed to have 

volatility clustering where significant changes in the data appear to cluster together and 

result in persistence of the amplitudes of changes. Within the background of WTI (West 

Texas Intermediate) crude oil prices in US dollar ($) per barrel, the oil selling price will 

be modelled and forecast using the models ARIMA and GARCH. Although the models 

provided a good data fit with the GARCH being superior, it was shown that a 

combination of those two models (hybrid) could improve predictive accuracy.  

In order to motivate the class of models, it is important to remember that a key 

ingredient of conditional volatility models is to add more weight to the most recent 

returns (i.e., information). When forecasting future (daily) conditional volatility, in the 

case of the original ARCH model that means the most recent (daily) squared returns 

have more weight. The theory of continuous time semi-martingale stochastic processes, 

more explicitly stochastic volatility continuous time jump-diffusions, is the basis of so-

called realized volatility (RV) modeling. Whereas intra-daily data is used to create RV, 

prediction models put more weight on recent (daily) RV but do not differentiate 

between intra-daily returns, given the use of intra-daily data. If volatility is a constant 

process it would be normal, as Malliavin and Mancino (2005) pointed out, to weigh 

intra-daily data differently. 

1.2 Crude oil prices and Forecast Failure 

Considering the position of the Organization of Petroleum Exporting Countries 

(OPEC), another challenge in modeling the oil price emerges. OPEC can behave as a 

swing producer and so it only meets the remaining demand for oil after the non-OPEC 

supply has been depleted. OPEC acts as a price-taker in this scenario, but OPEC may 

also produce at total potential and take on a more competitive position in the global oil 
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market, in which situation OPEC acts as a price maker. The effect of a dominant 

producer is easily observable, but more difficult to model for two reasons: the first is 

the inability to predict the producer 's behavior, the second is the inability to translate a 

particular behavior into the model. The forecasting based on this story is not appropriate 

in any ways and thus the investor is uncertain about the tomorrow’s price which is main 

objective of this study. The forecasting is based on the appropriate modeling of the 

underlying process and identification of the true data generating process of the series. 

If one is ineligible of employing the true data model it becomes inevitable to incorporate 

the true forecasting methodology. This is assumed thus a true data generating process 

will be identified and then an appropriate estimation methodology will be employed, 

due to the limitations of the parametric approach the non-parametric method is also 

applied to meet the quest of the appropriate forecasting.  

1.3 Problem Statement 

Literature suggests that the investor/market player is very much interested in 

tomorrow’s price. So, it’s needed to estimate the series at level rather than return series. 

As the conventional time series models (ARIMA, GARCH, ARIMA-GARCH) are 

parametric and based on hard core assumptions which are the prerequisites, the most 

important is ‘stationarity’ of the series. To achieve stationarity different transformations 

are available, but when log-difference transformation applied on the series at level, it 

becomes return series. As discussed above we want to estimate the series at level for 

prediction of future price. To achieve this objective by bridging this gap through 

estimation of series at level rather than return series, we must switch on machine 

learning models (Recurrent Neural Network).  
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Oil prices have been modelled by ARCH techniques along its variants. 

However, one of the drawbacks of the ARCH specification, is that it looked more like 

a moving average specification than an auto regression and later it was improved as 

GARCH (p, q) to include the lagged conditional variance terms as autoregressive terms. 

The GARCH (p, q) depends both on past values of the shocks, which are captured by 

lagged squared residual terms, and on past values of itself, which are captured by lagged 

terms. The GARCH (1,1) model is a parsimonious alternative to an infinite ARCH(q) 

process. The investor is very much interested in tomorrow’s price rather than the 

average price. this study comprises that which model gives better prediction of oil 

prices by using hybridized ARIMA-GARCH rather than simple ARIMA or GARCH 

and Machine learning model named as Recurrent Neural Network (Long Short-Term 

Memory). The addition to literature can also be justified on the basis that the GARCH 

family models are mainly based on the hard core assumptions of the classical 

econometrics and also the specific nature of the GARCH models is also questionable 

as described by the Robert Engle (1982). Thus, to mitigate this the study is assumed to 

switch to the assumption free methodology that is non-parametric models. 

1.4 Study Objectives 

• The Primary objective of this study is to suggest an appropriate model to 

forecast WTI crude Oil prices. 

• The time series Models allows us to investigate some intriguing empirical 

modelling strategies and investigate the capability of another hybrid and 

machine learning RNN(LSTM) models in forecasting the volatility. 
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1.5 Hypothesis 

The machine learning models (Recurrent Neural Network (Long Short-Term 

Memory)) provide better predictions than the conventional time series models. 

1.6 Significance of the study 

 Which one give the better predictions of WTI crude oil prices, conventional 

time series models or RNN (LSTM). 

 Contrary to the existing estimation methods it is intended to estimate based on 

the Machine Learning techniques to improve the forecast. 

1.7 Organization of the study 

This study is structured into five sections or chapters, chapter one provides a 

short overview of the study covering the research problems, goals and hypothesis. 

Chapter two reviews the relevant literature. Chapter three discusses the methodology. 

Chapter four presents empirical results and discussion. The final section discusses the 

findings and suggestions. 
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1  Introduction 

Literature review gives fundamental, theoretical, and empirical background and 

effective information to comprehend depth and significance of a study problem. 

Reviewing past studies is therefore one of the first steps to understand, evaluate and 

solve a research issue. Previous studies on modeling of actual oil prices and their 

predictions have evaluated chronological order in the subsequent chapter.  

Modelling and forecasting the changing aspects of WTI crude oil prices is not 

an easy task because the prices may possibly be fluctuating unpredictably from time to 

time and also depends on so many factors.  

2.2 Previous studies for WTI oil price prediction 

Tang and Hammoudeh (2002) used a nonlinear regression to estimate the price 

of an OPEC basket. Using stock rates of fuel from the OECD and relative market 

inventories. They examined the world oil price actions based on the goal zone model 

of the first decade. Using anecdotal data for the period 1988–1999, they found that 

OPEC had attempted to establish a poor target zone regime for the price of oil. The 

econometric tests showed that the oil price trend was not only influenced by real and 

significant OPEC actions but also balanced by the expectations of intervention from 

market participants. Consequently, the non-linear model based on the target zone 

principle has very strong predictive potential when the price of oil exceeds the band's 

upper or lower limit. 

Zamani (2004) applied an econometrics approach for predicting short-term 

quarterly WTI crude spot oil prices. This paper provided a quarterly, short-term forecast 
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model of WTI using OECD stocks, non-OECD demand and econometrics-based OPEC 

availability. Stock rates included SPR and industrial equilibriums in the OECD oil 

sector and OPEC supply is the most significant tool for controlling the price of oil often 

called non-OECD demand as a market indicator for that region. The econometrics 

relationships between certain variables were analyzed in this research. Because the 

commercial stocks and SPR seek different targets they were analyzed separately. Then 

price model forecasting evolved on the basis of lagged values of industrial production, 

non-OECD demand and OPEC supply. This model is mainly useful for the OPEC to 

analyze the effect of various supply limits on future oil prices. The model provided 

good dynamic forecasts for the post-Gulf War era, both in sample and out of sample. 

The model's in-sample and out-of-sample predictions are comparable to those obtained 

from other models. The model is intended for the realistic forecaster and is designed to 

be easy enough to quickly incorporate the variables in a spreadsheet or other software 

package. The flexibility and ease of updating makes this model appealing for exploring 

various scenarios to see the impacts that market shifts may have on monthly crude oil 

spot prices if inventories, supply, imports or demand change. Finally, it is easy to update 

the model structure regularly if there is a fundamental market change or a drop in the 

usual level of inventories. 

Wang et al. (2005) discussed that the gains of ARIMA models. ARIMA models 

are essentially a group of distinctive linear models that are intended to be the best for 

linear time series data and captured the linear features in time series data. ARIMA 

models are thus best suited on a theoretical basis.  

Similarly, Chinn et al. (2005) considered the predictive value of the energy futures and 

analyzed the relationship between the future prices and spot prices for the different 
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energy commodities and the ARIMA model (1, 1 , 1) used for the prediction of crude 

oil prices.  

Lanza et al. (2005) observed crude oil and commodity prices then analyzed 

using error correction models. They investigated the hypothesis that a shift in 

investment behavior among international oil companies (IOC) towards the end of the 

1990s had long-lasting effects on OPEC strategies and the development of oil prices. 

In the aftermath of the Asian economic crisis, concerted investment restrictions were 

placed on the IOCs by financial-market pressures to increase short-term profitability. 

To compare the impact of those tacitly collusive capital restrictions on oil supply with 

an alternative defined by industrial stability, a partial equilibrium model for the global 

oil market was applied. The core findings indicated that even temporary economic and 

financial shocks  

may have a long-term impact on the development of oil prices. 

In a related research, Ye etal. (2006) included in the linear forecasting model 

proposed by Ye etal. (2002, 2005) nonlinear variables such as low- and high-inventory 

variables to predict short-run WTI crude oil prices. Using OECD stocks, demand from 

non-OECD countries and supply from OPEC. Since inventories have a lower or 

minimum level of activity, economic literature suggests a nonlinear relationship 

between inventory and commodity prices. In the short-run crude oil market, this was 

found to be the case. Two nonlinear inventory variables described and extracted from 

the usual monthly level and relative level of OECD crude oil inventories from the post-

1991 Gulf War to October 2003 in order to explore this inventory-price relationship: 

one for the low inventory state and one for the high inventory state of the crude oil 

market. Incorporating low- and high-inventory variables into a single equation model 
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to forecast short-run WTI crude oil prices improved the fit and predictive capability of 

the model. 

On the other hand, Sadorsky (2006 ) suggested that it is easier for Vector Auto 

Regression (VAR) and for bivariate GARCH models out of sample predictions of a 

single GARCH model equation, and higher in forecasting the petroleum prices for 

future. He analyzed and the performance of four multivariate models of volatility, 

namely CCC, VARMA-GARCH, DCC and BEKK, to measure optimal portfolio 

weights and optimal hedge ratios for the crude oil spot and potential returns of two 

major international crude oil benchmarks, Brent and WTI, and to propose a strategy for 

crude oil hedges. The empirical findings indicated that Brent 's optimum portfolio 

weights of all multivariate volatility models suggest keeping futures in greater 

proportions than spot.However, for WTI, DCC and BEKK suggested that crude oil 

futures should be spotted, but CCC and VARMA-GARCH suggested that crude oil spot 

be kept for future. Additionally, the estimated optimal hedge ratios (OHRs) from each 

multivariate conditional volatility model give the time-varying hedge ratios, and 

suggested short crude oil futures with a high proportion of one dollar long in crude oil 

spot. Ultimately, the efficiency of hedging showed that DCC (BEKK) is the best (worst) 

model for OHR calculation in terms of lowering portfolio variance.  

Slightly more recent, Dees et al. (2007) developed a linear world oil market 

model to predict oil demand, supply, and prices mainly focused on OPEC behavior. An 

econometric study of oil prices: they assessed arguments that the capacity of OPEC to 

control real oil prices has decreased and that the relationship between real oil prices and 

OPEC production can be used to check opposing OPEC activity hypotheses. An 

econometric study revealed that there is a statistically significant relationship between 

the real oil prices, the utilization of OPEC capacity, OPEC quotas, the degree to which 
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OPEC meets these production quotas, and crude oil stocks in the OECD. Such factors 

"Granger triggers" real oil prices but these factors are not "Granger affects" actual oil 

prices. The findings suggested that OPEC controls oil prices and that it is not possible 

to use previous models to check rival OPEC output behavior. The impact of OECD oil 

stocks on real oil prices suggested that private decisions on optimal crude oil stocks can 

have a major externality. 

Similarly, Agnolucci (2009) used different types of GARCH models and 

pointed out unpredictable models to predict potential market uncertainty in the daily 

WTI, but the findings found were inconsistent and revealed their output with respect to 

statistical tests and various steps. He contrasted the predictive potential of two methods 

that can be used to forecast volatility: GARCH-type models in which predictions 

obtained after estimating time series variables, and an inferred volatility model in which 

predictions obtained by inverting one of the variables used for market options. The key 

focus of the work discussed here was to determine which model provide the best 

volatility forecast for the future WTI contract, evaluated according to statistical and 

regression-based criteria. 

Murat and Tokat (2009) investigated the relationship between futures and spot 

crude oil prices and thus checked the ability of futures prices to predict spot price 

movements using random walk model. The crack spread in oil markets refers to the 

price relation of crude-products. Refiners are major oil market players, and are mainly 

exposed to crack spread. In other words, the purpose of protecting crack spread 

significantly drives refiner operation. In addition, oil consumers are active participants 

in the market for oil hedging, and are also vulnerable to crack spread. Hedge funds, 

from a different angle, use crack spread extensively to gamble on oil prices. The issue 

they want to answer is whether the crack spread futures can be a good indicator of oil 
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price changes, based on the large amount of crack spread futures trading in oil markets. 

They investigated first if there is a causal link in a vector error correction system 

between the crack spread futures and the spot oil markets. They consider the causal 

effect of crack spread futures on both the long- and short-run spot oil market after April 

2003 where we observed a systemic split in the model. They used the Random Walk 

Model (RWM) as a benchmark to analyze the forecasting efficiency, and they also 

tested the predictive power of crack spread futures against crude oil futures. The results 

showed that both the crack-spread futures and the crude oil futures outperformed the 

RWM and the crack spread futures are almost as strong as the crude oil futures in 

predicting spot oil market movements. 

Cheong (2009) introduced ARCH models to predict the markets for crude oil. 

On another way, more recent studies have applied GARCH as well as various GARCH 

family models for forecasting the price of oil. 

Kang etal. (2009) proposed CGARCH, FIGARCH, and IGARCH models for 

forecasting crude oil market volatility. This article explored the efficacy of a volatility 

model for three crude oil markets — Brent, Dubai, and West Texas Intermediate 

(WTI)—with respect to its ability to forecast and classify stylized facts of volatility, 

especially persistence of volatility or long memory. In that sense, using conditional 

volatility models, they assessed persistence in the volatility of the three crude oil prices. 

The Models CGARCH and FIGARCH are better suited to catch persistence as for the 

GARCH and IGARCH models.  

Wang et al. (2009) implemented a GARCH method that makes volatility 

forecasts using sampled returns at a higher frequency than the horizon predicted. They 

called the model class High Frequency Data-Based Projection-Driven GARCH, or 

HYBRID-GARCH models, because the dynamics of variance are driven by what we 
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consider HYBRID processes. The HYBRID processes may provide sampled data at any 

frequency.  

In addition, Marzo etal. (2010) used various GARCH models to predict the 

potential volatility of the regular crude oil prices traded on NYMEX. The authors 

reached a conclusion that using the various statistical tests such as DM test, output 

indicators as modified heteroscedasticity of MSE, MSE and MAE, and success ratio, 

no model works well on a continuous basis. 

In a related study, Mohammadi and Su (2010) contrasted the predictive results 

of various GARCH-type models to forecast the price of crude oil.  

Wei et al. (2010) expanded the Kang et al. (2009) analysis with the 

implementation of linear and nonlinear GARCH-class models for the same function. 

Predicting volatility on the crude oil market: More proof using GARCH-class models 

expanded Kang et al. 's research (2009). For capturing the volatility characteristics of 

two crude oil markets — Brent and West Texas Intermediate (WTI), they used a greater 

number of linear and nonlinear generalized autoregressive conditional 

heteroskedasticity (GARCH) class models. The GARCH-class models' one-, five- and 

twenty-day out-of-sample volatility forecasts are tested using the superior predictive 

capability check. Unlike Kang et al. (2009), they found that no model can outperform 

all the other models for either the Brent or the WTI market over various loss functions. 

Overall, however, nonlinear GARCH-class models, capable of capturing long-memory 

and/or asymmetric volatility, are more predictive than linear models,  

In 2010, however, Alquist and Kilian considered the issue of crude oil price 

forecasting and concluded that the models that provided lower MSPE in future values 

would be the better models for estimating future crude oil prices.  
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Wang et al. (2011) used the intra-day returns to forecast potential volatility at 

day horizons. The latter demands that they fixed periodic trends intra regular. Two 

methods were suggested and their relative merits compared. The first method used raw 

intra-daily data-recording the intra-daily periodic trends with the HYBRID procedure-

while the second approach includes pre-adjusted intra-daily returns. They found that 

the former method dominates both in-sample and out-of-sample, albeit for different 

requirements of the HYBRID GARCH model. 

Ahmad (2012) used the Box-Jenkins techniques to forecast Oman's average 

monthly crude oil prices at the end of which he proposed the use of the seasonal 

multiplicative model ARIMA (1 , 1, 5) x (1, 1, 1) in practice to estimate crude oil prices. 

On top of that, Hou etal. (2012) used a new method using a non-parametric 

modeling methodology and forecasting crude oil price return uncertainty, the results 

showed that the GARCH non-parametric model's sample volatility forecast showed 

better performance from a GARCH parametric model range. 

Lin et al. (2012) estimated that over the past five years, the global economy has 

undergone volatile instability due to significant rise in oil prices and attacks by 

terrorists. Although predicting oil prices accurately is necessary but extremely difficult, 

this study attempted to predict crude oil futures prices accurately by implementing three 

common neural networking methods, including the multilayer perceptron, the Elman 

recurrent neural network ERNN, and the recurrent neural fuse network RFNN. 

Experimental findings suggested that using neural networks to predict future prices of 

crude oil is acceptable, and consistent prediction is accomplished by the use of different 

training times. Further, the findings showed that learning efficiency can be increased in 

most cases by increasing the training time. This shows how the predictive capacity 

increases when through the training time under ERNNs and RFNNs BPNs were 
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involved in the exceptional event, meaning the predictive capacity increases when the 

training time is shortened. To sum up, they concluded that in predicting crude oil futures 

prices, the RFNN outperformed the other two neural networks.  

In addition, Ahmed et al. (2013) used the GARCH model to estimate frequent 

spot oil prices. This approach was used to illustrate non-linear models' advantages and 

efficiency over the liner models. The analysis consisted of fitting the three separate 

GARCH models like GARCH-G, GARCH-N and GARCH-T to the regular spot crude 

oil prices. The different models provided different results over the different data sets 

the GARCH-G model was considered to be the best model for WTI while the GARCH-

N model was the best candidate model for forecasting Brent 's regular spot prices for 

crude oil.  

Yusopc et al. (2013) submitted that rainfall dependency structure is typically 

very complex in time as well as in space. In this paper it was noted that the regular 

rainfall series of Ipoh and Alorsetar were affected by nonlinear variance characteristics 

sometimes referred to as variance clustering or volatility. 

Ahmed and Shabri used the ARIMA, GARCH and SVM (Support Vector 

Mechanic) techniques in 2014 and concluded that the performance of the proposed 

vector mechanics technique is better than all other traditional methods based on RMSE 

and MAE's forecast accuracy measurement error.  

Monfareda and Enke (2014) studied financial market volatility forecasting as 

well as the development of financial models, among others, is significant in the areas 

of risk management and asset pricing. Recent research found that asymmetric GARCH 

models outperform other GARCH family models when it comes to forecasting 

volatility. Three common Neural Network models (Feed-Forward with Back 

Propagation, Generalized Regression, and Radial Base Function) were implemented 
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using this knowledge to help improve the performance of the GJR (1,1) method for 

estimating volatility over the next forty-four trading days. Around 1997-2011 four 

separate economic cycles were known to reflect real and contemporary phases of 

market calm and crisis during training and testing. In addition to stress testing for 

various neural network architectures to evaluate their performance under different 

turbulence and usual conditions on the U.S. market, their synergy was also accessed 

along with another econometric model. 

Pahlavani and Roshan (2015) tried to compare the forecast performance of the 

ARIMA model and hybrid ARMA-GARCH models using regular exchange rate data 

from Iran against the U.S.Dollar (IRR / USD) from 20 March 2014 till 20 June 

2015.The time from 20 March 2014 to 19 April 2015 was used to create the model 

while the remaining data were used to make sample forecasting and to test the model's 

predictive potential. Any of the data was obtained from Iran's central bank. Using the 

Box-Jenkins process, the correct ARIMA model was obtained and some hybrid models 

such as: ARIMA-GARCH, ARIMA-IGARCH, ARIMA-GJR and ARIMA-EGARCH 

were calculated for capturing volatilities of return sequence. The findings showed that 

ARIMA (7,2,12) – EGARCH (2,1) is the strongest model in terms of the lowest RMSE, 

MAE, and TIC parameters.  

Osman et al. (2016) worked for GARCH family models are commonly used in 

the prediction of dynamic data from time series. In the current research, GARCH (1,1) 

model 's ability to forecast Malaysian gold, known as Kijang Emas, was enhanced by 

hybridizing it with the Artificial Neural Network (ANN). Estimates of volatility 

obtained using GARCH (1,1) model used as one of the input variables in ANN. Model 

efficiency evaluated by AIC, mean absolute error (MAE), and root mean square error 

(RMSE) computing. 
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Summary: 

The literature cited above has shown that majority of them has implied the 

GARCH type modelling with higher order and ARCH type models with also higher 

orders. The literature on GARCH type models also confirms the estimation of lower 

order parsimonious models. Thus, a general approach to select the model was also 

ignored and that the literature has also confirmed the utilization of the parametric 

approaches which are highly restrictive based on highly restrictive assumptions. The 

limitations of the GARCH type models is also evitable thus using the mean and variance 

equations separately. From this, it is intended to utilize the less restrictive and 

parsimonious approach to tackle the issue of prices forecasting. 
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CHAPTER 3 

METHODOLOGY 

3.1 Introduction  

The terms in ARIMA stands for Auto-Regressive-Integrated-Moving-Average. 

It is attributed to Box and Jenkins (1976). The ARIMA models are popular and effective 

tools for the time series forecasting. Thus, to incorporate the concepts of the ARIMA 

modelling developed by the Box and Jenkins (known as Box Jenkins methodology). 

This chapter starts with the usual AR and MA models describing the properties of the 

models and thus providing guidelines to identify the underlying process. The 

development of ARMA & ARIMA models along with the properties will be judged 

then a sequential based procedure will be opted to develop a more general GARCH 

model. In the end, ARIMA-GARCH and RNN (LSTM) models will be developed, and 

their forecasting ability will be judged. 

3.2 The Autoregressive Models. 

The Auto regression consists of modelling the time series, suppose yt such that 

it consists of the past values of the evolving variable. If we let us assume the following 

AR Model; 

 𝑦𝑡 = 𝜑𝑦𝑡−1 + 𝑒𝑡 ----------------------------------------1 

it constitutes an AR model of first order denoted by AR(1), where the order of an AR 

model means the number of previous values that have been incorporated in the 

regression. Where |𝜑| < 1 it means the process is wide sense stationary and 𝑒𝑡 is a 

Gaussian Error term. The logic of Autoregressive models indicates that what happens 

in time period ‘t’ depends on what has happened in time period ‘t-1’. Now, if this time 

series 𝑦𝑡 has a mean and variance that do not depend on time ‘t’ then it means the time 
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series is stationary and the covariance depends on the gaps between the series and do 

not on the actual time period for which this time series has been considered. Thus, to 

address these properties of time series the AR models have the following underlying 

statistical properties which are essential to develop a reasonable AR model. 

The unconditional mean and variance of an AR model is given by; 

𝐸(𝑦𝑡) = 𝜑𝐸(𝑦𝑡−1) + 𝐸(𝑒𝑡)   − − − − − − − − − − −  2 

            = 0 

The variance is; 

𝑣𝑎𝑟(𝑦𝑡) = 𝑣𝑎𝑟(𝜑𝑦𝑡−1) + 𝑣𝑎𝑟(𝑒𝑡) 

                =
σu

2

1 − 𝜑2σt
2   − − − − − − − − − − − − − 𝟑 

The series is also characterized by the following Auto-covariance and Auto correlation 

Functions. Which are important results for the identification of the underlying AR 

process. These are given by the following functions.    

 𝒄𝒐𝒗(𝒚𝒕 − 𝒚𝒕−𝟏) = 𝑬[(𝜑𝒚𝒕−𝟏 + 𝒆𝒕)𝒚𝒕−𝟏] 

= 𝑬[(𝜑𝒚𝒕−𝟏. 𝒚𝒕−𝟏) + 𝑬(𝒆𝒕. 𝒚𝒕−𝟏)] 

= 𝜑. 𝜎𝑡
2  − − − − − − − − − − − − − − − − − 𝟒   

this can easily be shown that  

𝒄𝒐𝒗(𝒚𝒕 − 𝒚𝒕−𝟐) = 𝑬[(𝜑𝒚𝒕−𝟐 + 𝒆𝒕)𝒚𝒕−𝟐] 

= 𝑬[(𝜑𝒚𝒕−𝟐. 𝒚𝒕−𝟐) + 𝑬(𝒆𝒕. 𝒚𝒕−𝟐)] 

= 𝜑2. 𝜎𝑡
2  − − − − − − − − − − − − − − − − − 𝟓   

in general we can show that  

𝒄𝒐𝒗(𝒚𝒕 − 𝒚𝒕−𝒌) = 𝑬[(𝜑𝒚𝒕−𝒌 + 𝒆𝒕)𝒚𝒕−𝒌] 

= 𝑬[(𝜑𝒚𝒕−𝒌. 𝒚𝒕−𝒌) + 𝑬(𝒆𝒕. 𝒚𝒕−𝒌)] 
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= 𝜑𝑘. 𝜎𝑡
2  − − − − − − − − − − − − − − − − − 𝟔 

 

The Auto-correlation function is thus dented by: 

𝑐𝑜𝑟(𝒚𝒕 − 𝒚𝒕−𝒌) =
𝒄𝒐𝒗(𝒚𝒕 − 𝒚𝒕−𝒌)

√𝒗𝒂𝒓(𝒚𝒕). 𝒗𝒂𝒓(𝒚𝒕−𝒌)
 

                             =
𝜑𝑘. 𝜎𝑡

2 

𝜎𝑡
2  

                             = 𝜑𝑘 

Thus, an Autocorrelation function (ACF) of an AR(p) process dies out 

exponentially. The graph of an Auto correlation function against ‘k’ which is called the 

correlogram thus dies out exponentially and does not break at any lag. Thus, to identify 

the appropriate AR process it cannot be used as a tool. It involves the partial 

autocorrelation function which where the estimated coefficients by OLS of and AR(k) 

process are plotted against ‘k’. Now, if the observations are generated by an AR(p) 

process then theoretically these coefficients will be significant up to lag ‘p’ and zero 

beyond lag ‘p’. Thus, to sum up whenever to identify the AR process one should resort 

to the partial Auto correlation function. 

So far there has been a discussion of only AR(1) process above but there is a 

generalization of AR(1) process which is an AR(p) process where ‘p’ denotes the 

number of lag values of the underlying variable. If we let us assume the AR(2) model 

in this case we have number of lagged values equal to 2. The AR(2) model can be 

written as: 

                   𝑦𝑡 = 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + 𝑒𝑡           ...7 

similarly, this can be generalized to incorporate ‘p’ lags as follows: 
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               𝑦𝑡 = 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2+. . . +𝜑𝑝𝑦𝑡−𝑝 + 𝑒𝑡           ...8 

using the summation notation this can be simply written as: 

𝑦𝑡 = ∑ 𝜑𝑖𝑦𝑡−𝑖 + 𝑢𝑡

𝑝

𝑖=1

 

The other properties of the AR(p) process that mean, variance, covariance and 

correlation hold true as that for the AR(1) process. The stationarity condition for the 

AR(p) process is same as that for AR (1) process that is the root of the ∑ 𝜑𝑖 < 1𝑝
𝑖=1  

holds true. 

3.3 The Moving Average Models. 

The moving average models state that the series depends on the past values of 

the error terms. That is the implication behind the MA models is that the sequence of 

series is generated in such a way that it incorporates the past errors while the 

constructing the data generating process of the series. The simplest form of the MA 

model is that of MA (1) model which constitutes that the series depends on the 

immediate past error. This can be written as: 

    𝑦𝑡 = 𝜃𝑢𝑡−1 + 𝑢𝑡 ...9 

this can be translated into the general form by including the ‘q’ lagged error 

terms. This constitutes a model of order ‘q’. Thus we have the following form of q order 

MA(q) model: 

𝑦𝑡 = 𝜃1𝑢𝑡−1 + 𝜃2𝑢𝑡−2 + ⋯ 𝜃𝑞𝑢𝑡−𝑞 + 𝑢𝑡 

which can be written as by sing the summation notation : 

𝑦𝑡 = ∑ 𝜑𝑖𝑒𝑡−𝑖 + 𝑢𝑡

𝑞

𝑖=1
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the moving average process by definition is the average of the ‘q’ white noise stationary 

processes. The moving average models are thus stationary. The moving average 

models’ possess the following properties which hold true for all the moving models 

from MA (1) to MA(q). The mean of MA models is clearly equal to zero as it is the 

average of the white noise error terms. The variance is thus given by the following 

function. Let for an MA (1) model we have: 

𝑣𝑎𝑟(𝑦𝑡) = 𝑣𝑎𝑟(𝜃𝑢𝑡−1 + 𝑢𝑡) 

𝑣𝑎𝑟(𝑦𝑡) = 𝜃2𝜎𝑢
2 + 𝜎𝑢

2 

= 𝜎𝑢
2(1 + 𝜃2) … 10 

The autocovariance would be: 

𝑐𝑜𝑣(𝑦𝑡, 𝑦𝑡−1) = 𝐸[(𝜃𝑢𝑡−1 + 𝑢𝑡)(𝜃𝑢𝑡−2 + 𝑢𝑡−1)] 

= 𝐸(𝑢𝑡. 𝑢𝑡−1) + 𝜃𝐸(𝑢𝑡−1
2 ) + 𝜃2𝐸(𝑢𝑡−1. 𝑢𝑡−2) 

= 𝜃𝜎𝑢
2 

since, 𝑢𝑡  is serially uncorrelated therefore, it is easy to conclude that  

𝑐𝑜𝑣(𝑦𝑡, 𝑦𝑡−𝑘) = 0,       ∀ 𝑘 > 1 

from this conclusion it is clear that ACF of an MA process will be pf the form 

𝑐𝑜𝑟𝑟(𝑦𝑡, 𝑦𝑡−𝑘) =
𝑐𝑜𝑣(𝑦𝑡, 𝑦𝑡−𝑘)     

𝑣𝑎𝑟(𝑦𝑡). 𝑣𝑎𝑟(𝑦𝑡−𝑘)
 

                         =
𝜃𝜎𝑢

2

𝜎𝑢
2(1 + 𝜃2)

= {
𝜃

1 + 𝜃2
    ∀ 𝑘 = 1   

0          ∀ 𝑘 >  1

        . . .11 

Thus, the ACF of an MA(q) process will break off after the lag k=q the PACF of an Ma 

process thus decays slowly. To identify the order of an MA process therefore one needs 

to draw its ACF. 

ACF and PACF of an MA model together with the AR models determine the 

appropriate order of the ARMA models. The PACF determines the order or lag length 
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of the lagged values of the underlying series while ACF of an MA determine the order 

of the lagged errors to be included into the model. The AR and MA models together 

generate a third class of a modelling procedure known as the ARMA models which 

have an important implication for univariate time series prediction and Analysis. 

3.4 ARMA Models 

  There is a combination of AR and MA models to give a new series of the model 

known as the ARMA models. If we let us assume that we have AR(p) and MA(q) 

models then together these both give a new class of the models known as ARMA(p,q) 

models and denoted by the following relation: 

𝑦𝑡 = ∑ 𝜑𝑖𝑦𝑡−𝑖 + ∑ 𝜃𝑖𝑒𝑡−𝑖 + 𝑢𝑡

𝑞

𝑖=1

𝑝

𝑖=1

        . . . 12 

This is known as the general form of the ARMA(p,q) model where p’q determines the 

order of the ARMA model. It is important to note that the stationarity concerned only 

with the AR part of the ARMA model. Therefore, for the ARMA model to be stationary 

it is mandatory for the root of 𝜑𝑖 to be remain less than 1 in absolute form. The 

stationarity concern makes the ARMA models to put up in more general form known 

as ARIMA models. Which incorporates the Stationarity of the series in a model? 

Therefore, a general stationary model of an ARMA an also be written as ARMA (p,0, 

q). 

3.5 ARIMA Models 

  The ARMA models can only be made with the series which are stationary it 

means the series which have mean, variance and covariance all constant over time. 

However, most of the Economic and Financial time series show trend over time 

therefore the mean and variance do not remain constant over time as a result these are 
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subjected to the non-stationarity problems. To avoid this and to model the non-

stationary series another more general form of the model is developed known as the 

ARIMA models where “I’ stands for the integrated process or series. It means the order 

of differencing of the series to approach the stationarity of the economic time series. 

The General ARIMA (p, d, q) model is written as: 

 𝛻𝑑𝑦𝑡 = 𝛼0 + ∑ 𝛼𝑖  𝛻𝑑𝑦𝑡−𝑖

𝑟

𝑖=1

+ ∑ 𝛽𝑗휀𝑡−𝑗

𝑚

𝑗=1

+ 휀𝑡 . . .13  

this indicates that an integrated series of a general ARMA model must be differenced 

‘d’ times to make it stationary and before it an be represented by an ARMA stationary 

and invertible process. Where, ‘d’ represents the order of differencing of the original 

time series that have been taken from the original time series to make stationary. If a 

process 𝑦𝑡 has an ARIMA (p, d, q) representation then  𝛻𝑑𝑦𝑡 has an ARMA (p, q) 

representation. The appropriate order of ARIMA (p, d, q) model is usually determined 

by the Box-Jenkins Methodology. The modelling of general real-world time series 

phenomenon the ARIMA models are not usually may not be much effective due to the 

linearity constraint imposed on the working of the model. The Box-Jenkins model 

selection procedure consists of the following. 

3.6 Box-Jenkins Methodology 

  The basic theory behind the ARIMA models is the principal of parsimony. The 

parsimony principal should come as a second nature to the economists and financial 

analysists. The principal states that adding additional coefficients to the regression will 

necessarily increase the fit of the model, but the cost may be reduction in the degrees 

of freedom. Thus, Box-Jenkins argued that “parsimonious models produce better 

forecasts than do the overparametrized model”. Therefore, to select a parsimonious 

model the Box-Jenkins have proposed three step procedure. Their main quest is to find 
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the more appropriate ARIMA model. These are (a) identification (b) estimation and (c) 

Diagnostic checking. 

We know that an AR(1) an be converted to an MA(∞) thus from a lower order 

AR process we can generate a higher order Moving Average models similarly, from an 

MA(1) we can generate infinite AR models. Thus, a lower order moving average 

process is invertible to the higher order AR models. This generates the problem while 

using the ARIMA models and give rise to many issues one of them is the Identification 

problem. The essence of this problem is that any model may give us more than one 

representation and in most cases many which are essentially equivalent. Therefore, how 

should we choose the best one and how should it be estimated? The trick is to define a 

parsimony model that is a model with the smallest number of possible parameters. One 

may think of defining a model with high order ARMA process and then reducing by 

discarding insignificant parameters, but this does not work. There may be many ways 

within the high order model to represent the same model and the estimation procedure 

is unable to choose between them. We therefore have to assume the form of the model 

before we estimate it. In this context it is known as the identification problem and Box-

Jenkins methodology starts with this problem. 

3.6.1 Identification 

  The identification starts with the visual examination of the ACF and PACF. The 

visual examination of time plot of the series gives useful information to decide about 

the possible order of the ARMA models. Plotting observations also provide information 

about the possible outliers, missing observations and structural breaks in the series. As 

we know that almost all the economic and financial time series data is non-stationary 

therefore it can also provide information about the stationarity of the data. Typically, 

the non-stationary variables have pronounced trend or do not have constant long run 
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mean and variance. In theory if a series is non-stationary then its ACF will not die out 

or not shows any sign of decay at all. Now, if this is the case then series needs to be 

transformed to make it stationary. A common stationarity procedure is thus to transform 

the series into logarithmic form and then differencing. 

  One the stationarity has been achieved then the next step is to identify the 

possible order of ‘p’ and ‘q’. This is done by following ways: 

For a pure MA (q) process the ACF will shows significant coefficients up to lag 

‘q’ and then dies out immediately after the lag ‘q’. The PACF of an MA (q) process 

will tend to die out quickly by exponentially or by a damped sine wave. Similarly, the 

PACF of a pure AR(p) process will tend to show spikes up to lag ‘p’ and then dies out 

while the ACF of an AR (p) process will dies out quickly by exponentially or by damped 

sine wave. If neither ACF nor the PACF shows a clear cut off points, then in this case 

a mixed process is suggested.it is also possible to find the AR and MA orders of the 

model. One can think of ACF and PACF as being superimposed to one another. 

3.6.2 Estimation  

  In the estimation stage each of the tentative model is estimated and the 

coefficients of the model are examined. The estimated models are then analyzed against 

each other based on the SBC and AIC criterion. To choose the parsimonious model one 

needs to choose with smallest AIC and SBC values. The SBC is preferable of these two 

criteria. The SBC is preferable. The Box-Jenkins methodology necessitates that the 

model be stationary and invertible. 

3.6.3 Unit root testing. KPSS 

  A prominent test for the presence of a unit root is the KPSS test. [Kwiatkowski 

et al., 1992] Conversely to the Dickey-Fuller family of tests, the null hypothesis 
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assumes stationarity around a mean or a linear trend, while the alternative is the 

presence of a unit root. 

The test is based on linear regression, breaking up the series into three parts: a 

deterministic trend (βt), a rndom walk part (rt), and a stationary error (εt), with the 

regression equation: 

𝑦𝑡 =  𝑟𝑡 +  𝛽𝑡 +  휀𝑡 

𝑟𝑡 =  𝑟𝑡−1 +  𝜇𝑡 

Where μ~(0,σ²) and are iid (independent and identically distributed). The null 

hypothesis is thus stated to be H₀: σ²=0 while the alternative is Hₐ: σ²>0. Whether the 

stationarity in the null hypothesis is around a mean or a trend is determined by 

setting β=0 (in which case x is stationary around the mean r₀) or β≠0, respectively. 

The KPSS test is often used to complement Dickey-Fuller-type tests. 

Ho: Non-existence of unit root (Series is stationary). 

H1: Existence of unit root (Series is not stationary). 

  There is another issue that needs to be handle when discussing about the unit 

root problem of the series. That is fractionally integrated process when the stationarity 

of the series has been confirmed by the KPSS test that is the rejection of the null 

hypothesis at the level will lead to the integrated process that is the series is stationary 

at the first difference. But, the confirmation of the fractional process is necessary before 

application of the univariate model because it can change the modelling strategy that is 

instead of applying ARIMA we need to resort to the ARFIMA instead. Therefore, 

another test of unit root is applied to confirm with the null hypothesis which is reverse 

of the KPSS null. If the series is I(1) from one test then it must be I(1) from another 

test. The test which is performed is ADF which is explained below. 
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3.6.4 Augmented Dicky Fuller Test 

Stationarity of time series can be determined using ADF test. The testing 

procedure is applied to the model. 

∆𝑦𝑡 =  𝛼0 +  𝛽𝑡 +  𝜃𝑦𝑡−1 +  ∑ 𝛼𝑖

𝑘

𝑖=1
∆𝑦𝑡−1 + 𝑒𝑡 

where yt is the tested time series, Δ indicates the first difference, k is the lag order of 

the autoregressive process. It has three different variants known ADF with intercept, 

ADF with trend only and with intercept and trend. The hypothesis testing of the ADF 

test is,   

Ho: Existence of unit root (not stationary). 

H1: Non-existence of unit root.  

3.6.5 Diagnostic Checking 

  In the diagnostic stage the goodness of the fit of the model is examined. The 

standard practice is to plot the residuals of the model and to look for the outliers and 

evidence of the periods in which the data does not fit well. The statistic which are 

observed in this stage are the Box-Pierce Statistics and L-Jung Box Q-statistics (1979) 

which serve to detect the Autocorrelation in the residuals. The Box-Jenkins Approach 

can be summarized in the following diagram. 

 

  

 

  

 

 

 

Figure 1: Box-Jenkins Approach 
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So far, the discussion involved the constant variance of the error terms as with 

the conventional econometric methodology it is assumed that the variance is constant 

that the assumption of the homoscedasticity of the error variance. But there are many 

financial and economic time series which do not involve the constancy of the variance 

of the error term. There are many time series which shows the period of high volatility 

clustering followed by the low period of clustering. Therefore, such time series 

modelling the conventional principal of constancy of the error terms is violated as a 

result the variance becomes heterogeneous. In such cases it is preferable to examine the 

patterns which allow the dependency of variance on its history. Suh models are known 

as the models with conditional heteroscedasticity. The univariate models which 

incorporate these conditional variances are known as Auto-regressive Conditional 

heteroscedastic models here the brief description of these models is presented for the 

purpose of the data analysis in the next chapter. These are as follows. 

3.7 The ARCH Model 

  The ARCH model is attributed to the Robert F. Engle.1 The model presented by 

the Engel suggests that the variance of residuals at time ‘t’ depends on the square of the 

residuals from the past period. Thus, he suggested that it is better to model the mean 

and variance simultaneously when it is suspected that the conditional variance of the 

series is not constant. If we let us assume that 

𝒚𝒕 = 𝜶 + 𝜷′𝑿𝒕 + 𝒆𝒕 

                                                           
1 The Robert F. Engle is attributed to the ARCH model who in his seminal paper entitled 

“Autoregressive Conditional Hetroskedasticity with the estimates of the variance of the United 

Kingdom inflation “published in Econometrica in 1982 open the new era foe financial modelling. 
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where,𝑋𝑡 is a K×1 vector of the explanatory variable and 𝜷′ is a k×1 vector of the 

unknown coefficients. It is assumed normally that the residuals 𝒆𝒕 distributed normally 

as zero mean and constant variance. In mathematical term this can be written as: 

𝑒𝑡~𝑖𝑖𝑑𝑁(0, 𝜎2) 

The Engels’s idea starts by allowing for the heteroscedastic variance. One way to 

incorporate this idea is to allow the variance to depend on the one time lagged of the 

square of the error term that is: 

     𝜎𝑡
2 = 𝛿𝑜 + 𝛿1𝒆𝒕−𝟏

𝟐   

which is the basic ARCH(1) process. 

The ides of the ARCH type model suggests that it will simultaneously model the mean 

and variance of the series with the following specification. 

𝒚𝒕 = 𝜶 + 𝜷′𝑿𝒕 + 𝒆𝒕  … 𝟏𝟒 

𝑒𝑡~𝑖𝑖𝑑𝑁(0, ℎ𝑡) 

ℎ𝑡 = 𝛿𝑜 + 𝛿1𝒆𝒕−𝟏
𝟐   … 𝟏𝟓 

The equation (14) is the mean equation and (15) is the variance equation. Thus, the 

ARCH model simultaneously models the mean and variance equation. The estimated 

coefficient  𝛿1 must be positive for the positive variance. The model written above is a 

simple ARCH (1) model but it may be that the conditional variance may depend on the 

more than one lagged square error. Therefore, the idea of general ARCH(q) model is 

generated. If let us assume that the conditional variance depends on the ‘q’ lagged 

squares error term then the underlying model is written as: 

ℎ𝑡 = 𝛿𝑜 + 𝛿1𝒆𝒕−𝟏
𝟐 + 𝛿2𝒆𝒕−𝟐

𝟐 + ⋯ + 𝛿𝑞𝒆𝒕−𝒒
𝟐  

     = 𝛿𝑜 + ∑ 𝛿𝑖

𝑞

𝑖=1

𝒆𝒕−𝒊
𝟐  
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Thus, the ARCH(q) model will simultaneously model the mean and variance of the 

serries according to the following specification: 

𝒚𝒕 = 𝜶 + 𝜷′𝑿𝒕 + 𝒆𝒕 

𝑒𝑡~𝑖𝑖𝑑𝑁(0, ℎ𝑡) 

ℎ𝑡 = 𝛿𝑜 + ∑ 𝛿𝑖

𝑞

𝑖=1

𝒆𝒕−𝒊    
𝟐        𝟏𝟔 

The coefficients 𝛿𝑖′𝑠 has to be positive for the variance to be positive. For the 

application purpose it is necessary to check for the possible presence of the ARCH 

effects in order to confirm which model requires the ARCH estimation instead the OLS. 

The simple test can be performed along the lines of Breusch-Pagan test which requires 

the estimation of mean equation. 

𝒚𝒕 = 𝜶 + 𝜷′𝑿𝒕 + 𝒆𝒕 

obtain the residuals from the mean equation above by estimating it through OLS. an 

auxiliary regression is thus performed which consists of the squared residuals �̂�2 on the 

lagged squared residual including the intercept. That is 

�̂�𝑡
2 =  𝛿0 + 𝛿1�̂�𝑡−1

2 + 𝛿2�̂�𝑡−2
2 +. . . +𝛿𝑞�̂�𝑡−𝑞

2 + 𝜖𝑡 

compute the (T×R2 ). Under the null hypothesis of no arch effects that the variances are 

all same or constant. The statistic (T×R2) has a χ2 distribution with q degree of freedom. 

The rejection of null hypothesis suggests the evidence of the ARCH effects model. The 

ARCH(q) models are useful when the variability of series is expected to change more 

slowly than the ARCH (1) model. The ARCH models are quite difficult to estimate 

because they may yield the negative coefficients 𝛿𝑖′𝑠. To overcome this issue Tim-

Bollerslev (1986) developed the idea of the GRACH type Modelling. 
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3.8 The GARCH Model 

  According to the Engel the drawback of the ARCH models was that it looks 

more like the moving average than the autoregressive, from this criticism a new idea 

was born to include the lagged conditional variance term as the Autoregressive term. 

This idea was worked out by the Bollerslev (1986), who published a paper entitled 

“Generalized Conditional Hetroskedasticity in the Journal of Econometrics” 

introducing a new family of GARCH type models. The general GARCH (p. q) model 

is presented as: 

𝒚𝒕 = 𝜶 + 𝜷′𝑿𝒕 + 𝒆𝒕     . . . 𝟏𝟕 

𝑒𝑡~𝑖𝑖𝑑𝑁(0, ℎ𝑡) 

ℎ𝑡 = 𝛿𝑜 + ∑ 𝛾𝑖

𝑝

𝑖=1

𝒉𝒕−𝒊 + ∑ 𝛿𝑖

𝑞

𝑖=1

𝒆𝒕−𝒊
𝟐     . . . 𝟏𝟖 

This model now state that the variance parameter that is ℎ𝑡 now depends on the lagged 

squared residuals and lagged values of itself. The former is captured by the lag error 

terms in the model and later is captured by the lagged ℎ𝑡 terms. When (p=0) the 

GARCH model reduces to the ARCH model. The simplest form of the GARCH (p, q) 

model is the GARCH (1,1) model whose variance equation is written as: 

ℎ𝑡 = 𝛿𝑜 + 𝛾1𝒉𝒕−𝟏 + 𝛾2𝒆𝒕−𝟏
𝟐  

The GARCH (1,1) model is parsimonious alternative to the ARCH (q) process because 

with the GARCH (1,1) infinite ARCH process can be estimated. Therefore, it is 

theoretically established that instead estimating the higher order ARCH models it is 

essential to estimate the GARH (1,1) model and that few parameters to estimate and 

few degrees of freedom are lost. It is to note that the ARIMA (p, d, q) models capture 

the linear part of the data generating process of the series then GARCH (p, q) model is 

there to capture the non-linearity in the residuals. The best ARIMA (p, d, q) model 
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together with the GARCH type models thus gives the complete picture of the data 

generating process of the underlying series thus in case of oil prices series the both 

version of linear and non-linear are combine together to find the best model for the 

purpose of improvement in the forecast. This is described as: 

3.9 Hybridization (ARIMA-GARCH Model) 

Let’s assume an ARIMA (p, d, q) model of the form: 

 𝛻𝑑𝑦𝑡 = 𝛼0 + ∑ 𝛼𝑖  𝛻𝑑𝑦𝑡−𝑖

𝑟

𝑖=1

+ ∑ 𝛽𝑗휀𝑡−𝑗

𝑚

𝑗=1

+ 휀𝑡 

Where, ‘d’ represents the order of differencing of the original time series that have been 

taken from the original time series to make stationary. If a process 𝑦𝑡 has an ARIMA 

(p, d, q) representation then  𝛻𝑑𝑦𝑡 has an ARMA (p, q) representation. The rationale 

for the GARCH type model is that the errors from the ARIMA model above contains 

the ARCH effects thus the variance of the series conditions on the past realization that 

is captured by the GARCH (p, q) model. Thus, the linear part of the series is captures 

by the ARIMA model and then the non-linear part which is contained in the errors is 

captured by the GARCH model. Thus, it develops the rationale for ARIMA-GARH 

hybrid model given mathematically as. 

 𝛻𝑑𝑦𝑡 = 𝛼0 + ∑ 𝛼𝑖  𝛻𝑑𝑦𝑡−𝑖

𝑟

𝑖=1

+ ∑ 𝛽𝑗휀𝑡−𝑗

𝑚

𝑗=1

+ ∑ 𝛾𝑖

𝑝

𝑖=1

𝒉𝒕−𝒊  + 휀𝑡     …  19 

Where, ℎ𝑡 = 𝛿𝑜 + ∑ 𝛾𝑖
𝑝
𝑖=1 𝒉𝒕−𝒊 + ∑ 𝛿𝑖

𝑞
𝑖=1 𝒆𝒕−𝒊

𝟐   

The ARIMA part = 𝛼0 + ∑ 𝛼𝑖  𝛻𝑑𝑦𝑡−𝑖
𝑟
𝑖=1 + ∑ 𝛽𝑗휀𝑡−𝑗

𝑚
𝑗=1  

The GARCH part =∑ 𝛾𝑖
𝑝
𝑖=1 𝒉𝒕−𝒊 + ∑ 𝛿𝑖

𝑞
𝑖=1 𝒆𝒕−𝒊

𝟐   and errors 휀𝑡  thus assumed independent 

and identically distrusted. This models the residuals from the best ARIMA model using 

the GARCH method together with the ARIMA as the mean equation. 
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3.10 Machine Learning Models 

Neural Networks is one of the most popular machine learning algorithms at 

present. It has been decisively proven over time that neural networks outperform other 

algorithms in accuracy and speed. With various variants like CNN (Convolutional 

Neural Networks), RNN (Recurrent Neural Networks), Deep Learning etc. neural 

networks are slowly becoming for data scientists or machine learning practitioners what 

regression analysis was one for statisticians. It is thus imperative to have a fundamental 

understanding of what a Neural Network is, how it is made up and what is its reach is 

described as under. 

3.10.1 What is a Neuron? 

As the name suggests, neural networks were inspired by the neural architecture 

of a human brain, and like in a human brain the basic building block is called a Neuron. 

Its functionality is similar to a human neuron, i.e. it takes in some inputs and fires an 

output. In purely mathematical terms, a neuron in the machine learning world is a 

placeholder for a mathematical function, and its only job is to provide an output by 

applying the function on the inputs provided. 

3.10.2 Anatomy of a Neural Network: 

Training a neural network revolves around the following objects: 

 Layers, which are combined into a network or (model) 

 The input data and corresponding targets 

 The loss function, which defines the feedback signal used for learning 

 The optimizer, which determines how learning proceeds 

3.10.3 DATA and Sources: 

The data on Crude oil prices in current US$ was used. The data was retrieved 

from West Texas intermediate (WTI). There are 2520 observations on 10 year daily 
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crude oil prices. The link of data source is given as under: 

www.macrotrends.net/2516/wti-crude-oil-prices-10-year-daily-chart (URL). The data 

trends are shown as below:  

Neural Network model of Machine Learning 

                    Input X 

 

 

 Weights   

 

 

 

 

       

   

 

 

 

 

 

 

 

Figure 2 Neural Network Model 

The network, composed of layers that are chained together, maps the input data 

to predictions. The loss function then compares the predictions to the targets, producing 

a loss value: a measure of how well the network’s predictions match that was expected. 

The optimizer uses this loss value to update the network’s weights. 
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3.11  Recurrent Neural Network (RNN) 

Biological intelligence processes information incrementally while maintain an 

internal model of what it’s processing, built from past information and constantly 

updated as new information comes in. A recurrent neural network (RNN) adopts the 

same principle, albeit in an extremely simplified version: it processes sequences by 

iterating through the sequence elements and maintaining a state containing information 

relative to what it has seen so far. In effect, an RNN is a type of neural network that has 

an internal loop. 

A major characteristic of all neural networks has been observed as a densely 

connected networks and convents, is that they have no memory. Each input show to 

them is processed independently, with no state kept in between inputs. With such 

networks, in order to process a sequence or a temporal series of data points, you have 

to show the entire sequence to the network at once: turn into a single data point. The 

entire dataset transformed into a single large vector and processed in one go. Such 

networks are called ‘feedforward networks. 

The state of the RNN is reset between processing two different, independent 

sequences (such as two different reviews), so you still consider one sequence a single 

data point: a single input to the network. what changes is that this data point is no longer 

processed in a single step; the network internally loops over sequence elements. This 

RNN takes as input a sequence of vectors, which you will encode as a 2D tensor of size 

(timesteps, input features). It loops over timesteps, and each timestep, it considers its 

current state at ‘t’ and the input at ‘t’ (of shape (input_features,), and combines them to 

obtain the output at ‘t’. you’ll then set the state for the next step to be this previous 

output. For the first timestep, the previous output isn’t defined; hence, there is no 
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current state. So, first initialize the state as an all-zero vector called the ‘initial state’ of 

the network.  

Recurrent Neural Network 

  

 

 

 

 

Figure 3: Recurrent Neural Network 

Anatomy of Recurrent Neural Network  

 

 

Figure 4: Anatomy of RNN 
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3.12 RNN (Long Short-Term Memory): 

As the simple RNN is too simplistic to be of real use. Simple RNN has a major 

issue: although it should theoretically be able to retain at time ‘t’ information about 

inputs seen many timesteps before, in practice, such long-term dependencies are 

impossible to learn. This is due to ‘vanishing gradient problem’, an effect that is similar 

to what is observed with non-recurrent networks (feedforward networks) that are many 

layers deep: as if keep adding layers to a network, the network eventually becomes 

untrainable. The theoretical reason for this effect were studied by ‘Hochreiter, 

Schmidhuber, and Bengio’ in the early 1990’s. The LSTM and GRU layers are designed to 

solcve this problem. 

The LSTM (Long Short-Term Memory) algorithm was developed by 

Hochreiter and Schmidhuber in 1997, it was the culmination of their research on the 

vanishing gradient problem. This layer is a variant of the simple RNN layer. RNN 

(LSTM) works better on long sequences than a simple or naïve RNN. So, in this way 

the advanced features of RNN (LSTM) can help to get most of deep-learning models.    

It adds a way to carry information across many timesteps. Imagine a conveyor 

belt running parallel to the sequence that is processing. Information from the sequence 

can jump onto the conveyor belt at any point, be transported to a later timestep, and 

jump off, intact, when need it. This is essentially what LSTM does: it saves information 

for later, thus preventing older signals from gradually vanishing during processing. 
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 output ‘t-1’                                   output ‘t’                                 output ‘t+1’ 

  

 

 

   

  

input ‘t-1’                                    input ‘t’                                      input ‘t-1’ 

Figure 5: Anatomy of RNN(LSTM) 

 There are a lot of weight matrices, index the ‘W’ and ‘U’ matrices in the cell in 

the above figure with letter ‘o’ (𝑊𝑜 and 𝑈𝑜) for output. The data flow that carries 

information across timesteps. Call its values at different timesteps ‘Ct’ where ‘C’ stands 

for carry. This information will have the impact on the cell: it will be combined with 

the input connection and the recurrent connection (via a dense transformation: a dot 

product with a weight matrix followed by a bias add and the application of an activation 

function), and it will affect the state being sent to the next timestep (via an activation 

function and a multiplication operation). Conceptually, the carry dataflow is a way to 

modulate the next output and the next state simple so far.   

The interpretation for what each of these operations is meant to do. For instance, 

the multiplication of c_t and f_t is a way to deliberately forget irrelevant information in 

the carry dataflow. Meanwhile, i_t and k_t provides information about the present, 

updating the carry track with new information. But at the end of the day, these 

interpretations don’t mean much, because what these operations actually do is 

determined by the contents of the weights parameterizing them; and the weights are 

learned in an end-to-end fashion, starting over with each training round, making it 
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impossible to credit this or that operation with a specific purpose. The specification of 

an RNN cell determines the hypothesis space- the space in which search for a good 

model configuration during training, but it doesn’t determine what the cell does; that is 

up to the cell weights. The same cell with different weights can be doing very different 

things. So, the combination of operations making up an RNN cell is better interpreted 

as a set of constraints on search, not as a design in an engineering sense. 

The choice of such constraints is based upon the implementation of RNN cells 

for the better optimization algorithm (like genetic algorithms or reinforcement learning 

processes) than to human engineers. There is no need to understand anything about the 

specific architecture of an LSTM cell. The LSTM cell is meant to do allow past 

information to be reinjected later, thus fighting the vanishing gradient problem.  

The performance of RNN(LSTM) can be improved by tuning hyperparameters 

such as the embeddings dimensionality or the LSTM output dimensionality. Another 

may be lack of regularization. But honestly, the primary reason is that analysing the 

global, long-term structure of the reviews (what LSTM is good at) is not helpful for a 

sentiment-analysis problem.   

3.13 Performances Evaluation: 

 The performances of modelling and forecasting hybrid model and GARCH (1,1) 

model will be evaluated using Akaike’s information criterion (AIC), mean absolute 

error (MAE) and root mean square error (RMSE). The formula are as follows:   

 𝐴𝐼𝐶 = −2 log [𝜎^2
] + 2𝐾 

 MAE =  
∑ 𝐴𝐵𝑆(𝑦𝑡−𝑦𝑡

^𝑛
𝑖=0 )

𝑛
 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑡−𝑦𝑡

^)𝑛
𝑖=0

𝑛
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 where 𝜎^2
 = estimated model error variance; 

  k = number of free parameters in the model,  

 𝑦𝑡= actual value, 

 𝑦𝑡
^ = estimate.   
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CHAPTER 4 

DATA ANALYSIS 

4.1 Introduction 

This chapter includes the analysis of the time series data in two sections. First 

section explains all the results obtained by using conventional time series models and 

second section is all about the machine learning model RNN(LSTM). Now for the 

identification of the time series properties of the data and identification of the 

appropriate ARMA process. In the end the ARIMA-GARCH model will be estimated 

and forecast from this hybrid model will be analyzed through various evaluation 

statistics.to compare the RNN(LSTM) and ARIMA- GARCH this univariate analysis 

will be comparatively examined and finally a better model will be explained based on 

prediction capability.  

4.2 Trends in Series over the Time 
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4.3  Identification of Appropriate order of AR&MA and Explanation of Results 

  The order ‘p’ of an auto regressive time series is unknown empirically; it must 

be defined empirically it is known as the order determination of the AR process. There 

has been extensive literature on this issue. There are two approaches in general which 

are available for the determination of order of an AR process. These are Partial 

autocorrelation function and using some information criteria. The Partial 

autocorrelation function cuts-off beyond the lag ’p’ therefore, it is customary to draw 

the PACF of the stationary data series. Let we have the following graph of the raw 

series of the oil prices. 

 

Figure 6:  sample Auto correlation function (ACF) of raw data series (Oil prices US $) from 2009 to 2019 on daily 
basis for five working days 

The ACF of a raw series does not break off at any lag thus it is clear that the 

series is not stationary and needs to be differenced to make it stationary for the 

forecasting and estimation purpose. Further it can be shown in the following diagram 

that the series is trending and there are changes in both level and slope. 
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Figure 7: A non-stationary series with changes in both level and slope 

The logarithm and then first difference of the series was taken to make it 

stationary the resulting output is graphed below along with the ADF and KPSS results. 

 

The table above shows that the data series is integrated of order one that is I (1) 

of differenced stationary. The null hypothesis of ADF is rejected at 5% level of 

significance as the estimated value of ADF is greater than the table value at level. 

Similarly, at first difference we can reject the null hypothesis of unit root. Similarly, the 

null hypothesis of KPSS that is the series is stationary is rejected at 5% level of 

Table 4.1 ADF and KPSS Unit Root Tests 

                          ADF             Level                                KPSS 

Variables  t-statistics Critical value t. Statistic Critical value 

lnP -2.1891 -3.4115     0.7478  0.1460 

                                               1st Difference  

Lnp -52.4958 -1.9409     0.0760  0.1460 
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significance as the estimated value of KPSS is greater than the critical at level thus the 

conclusion is that the series is subjected to unit root problem. The null of KPSS cannot 

be rejected at first difference thus it shows that the series is first differenced stationary. 

This also confirm that the series is not subjected to fractional integration. The 

stationarity of the series can also be confirmed from the following figure. 

Figure 8: ACF of a log-diff. series:

 

The fig 4.3 above shows that the ACF of log-differenced series is decaying after 

lag 3 this shows that the time series is stationary further the (2) in the figure above also 

has shown that the series fluctuate around the mean value of zero. Therefore, it confirms 

that the series is stationary. As first difference of series makes the data stationary 

therefore, it follows an integrated path. The next task is to find the appropriate AR 
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process for this the PACF of the series is drawn here. 

 

Figure 9: Partial Auto correlation function of an integrated series which confirms the possible AR(p) process of the 
oil prices. 

The Dotted lines in the figure above indicate approximately two standard error 

limits (2S.E). the plot suggests maximum of an AR (4) model for the data because at 

3rd lag the PACF of the series dies out. The criterion-based solution calls for the 

selection of AR terms with minimum of the criterion value. To determine the 

appropriate order for the moving average terms we need to draw the ACF of the 
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integrated series which is given below. 

 

Figure 10: The ACF of an integrated series which shows the appropriate order of the MA model. 

The diagram above shows the autocorrelation function of the integrated series 

the appropriate order of the MA model is thus MA (4) because after that the 

Autocorrelation function of the series breaks off. After identifying the appropriate order 

of the AR and MA terms the next step involves the identification of the ARIMA model. 

One thing that is to remember is that we need to estimate a parsimonious ARIMA model 

to be able to avoid the overfitting of the model. If the decision of the ARIMA order is 

kept on the visual examination of the ACF and PACF of the MA and AR models then 

it can be ARIMA (3,1,3) or ARIMA (4,1,4) or any combination of the these may be 

regarded as the appropriate order of the ARIMA (p, d, q) model but, the PAC and ACF 

are not appropriate to determine the appropriate order of the ARIMA models. 

  Tsay and Tiao (1984) proposed a new approach that uses the extended auto 

correlation function to determine the appropriate order of the ARMA models. The basic 

idea of this approach is relatively simple that is “if we have estimated the consistent 

estimates of the AR components of the ARMA models then we can derive the MA 
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component and from this derived MA series the ACF can be used to identify the MA 

component (Tsay and Tiao, 1984). Therefore, the possible estimates of the ARIMA (p, 

d, q) models re given below along with the other fit statistics. 

 Table 4.2 Regression Results of An ARIMA (3,1,3) Model 

Variables  Coefficient Std.Error t. Statistic Probability 

AR (1) -0.756058 0.11907 -6.349717 0.0000 

AR (2) -1.091342 0.023598 -46.24654 0.0000 

AR (3) -0.566647 0.117354 -4.828531 0.0000 

MA (1) 0.68876 0.125663 5.481014 0.0000 

MA (2) 1.089924 0.024754 44.02937 0.0000 

MA (3) 0.496563 0.125251 3.96456 0.0001 

D -0.60679 0.30681 -1.97481 0.0000 

      

SE Regression  0.02038 Akaike info Criterion -4.94544 

SS residuals 1.0433 Schwartz Criterion  -4.92923 

Log likelihood 6235.784 Hanan-Quin Criterion -4.93956 

D. Watson Stat 2.0011    

Table 4.2: the ‘d’ is the integrated part of the ARIMA model. It indicates that the series is stationary at first 

difference. The statistic is significant. 

The results of the ARIMA (3, 1, 3) are given above. The table shows AR and 

MA coefficients are highly significant and that the tests on residuals also show that the 
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model is stable, and residuals are independent and identically distributed. The Box-

LJung statistics for the (Q-stat) is also insignificant for the ARIMA (3,1,3) model. The 

other possible ARIMA models have also been estimated but, they have higher standard 

errors of regression and that the SIC and AIC criterion is minimum only at the ARIMA 

(3,1,3) model. Therefore, the ARIMA (3,1,3) is regarded as the parsimonious model. 

The Box-Ljung Statistic for the 𝑄(1) = 0.012 (0.972, 𝑄(2) =

0.0405 (0.980), 𝑄(3) = 0.0625(0.996) which are all insignificant suggesting the 

same ARIMA model. Now this model can be used to predict the future values. The 

results of the forecasts are given below: 

Table 4.3: Results of forecast statistic from An ARIMA (3,1,3) Model 

RMSE MAE MAPE Theil Inequality Coeff  

0.02048 0.01479 100.2691 0.994141  
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If we analyses the series, there is volatility clustering in the data series. There are 

periods of high volatility followed by another period of high volatility and low volatility 

followed by another low volatility clustering. This suggests that there is an ARCH 

process in the data series which are estimated by the ARIMA-GRACH model the 

estimates are given below.  

 

The table shows the output of the GARCH (1,1) model. It is estimated for 

various orders and the decision is based on the minimum value of the AKAIKE 

  Table 4.4 Regression Results of GARCH (1,1) 

Variables  Coefficient Std.Error t. Statistic Probability 

AR (1) -0.734471 0.172492 -4.258006 0.0000 

MA (1) 0.692786 0.184116 3.762769 0.0002 

 Variance Equation 

C 

ARCH (1) 

ARCH (2) 

GARCH (1)         

0.00028 

0.08673 

0.03294 

0.9411 

 0.00078 

0.01844 

0.01876 

0.00631 

3.5705 

4.7011 

1.7554 

148.737 

0.0004 

0.0000 

0.0792 

0.0000 

SE Regression  0.02041 Akaike info Criterion -5.1280 

SS residuals 1.4909 Schwartz Criterion  -5.1142 

Log likelihood 6464.835 Hanan-Quin Criterion -5.1230 

D. Watson Stat 2.0542 RMSE(Forecast)   
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information criterion. Thus, GARCH (1,1) gives the minimum value of the AIC. The 

output shows that the coefficients are highly significant except the ARCH (2) term that 

is also significant if we set the significance level at 10%. Thus, the model estimated is 

a valid model for prediction analysis. The prediction statistics are given below. 

Table 4.5: Results of forecast statistic from GARCH (1,1) Model 

RMSE MAE MAPE Theil Inequality Coeff  

0.02047 0.01479 99.9263 0.994141  

 

The forecast from the GARCH (1,1) model is better than the ARIMA (3,1,3) 

model. The estimates from the ARIMA-GARCH model are given below. The hybrid 

model thus consists of the ARIMA as the mean equation and then non-linearity in the 

residuals captured by the GARCH model. Thus, a combined hybrid model is given 

below. 

 Table 4.6: Regression Results of an ARIMA-GARCH 

Variables  Coefficient Std.Error t. Statistic Probability 

AR (1) -0.741280 0.124248 -5.966127 0.0000 

AR (2) -1.089243 0.024445 -44.55928 0.0000 

AR (3) -0.552010 0.122388 -4.510339 0.0000 

MA (1) 0.672377 0.130952 5.134518 0.0000 

MA (2) 1.087152 0.025686 42.32431 0.0000 

MA (3) 0.480417 0.130486 3.681761 0.0002 

ARCH (1) -5.86992 3.075348 -1.90870 0.0564 

GARCH (1) 4.33704  2.17967 2.17934 0.0294 

SE Regression  0.02037 Akaike info Criterion -5.9557 

SS residuals 1.03786 Schwartz Criterion  -5.5143 

Log likelihood 6221.543 Hanan-Quin Criterion -5.7237 

D. Watson Stat 2.0022    
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The ARIMA (3,1,3) and GARCH (1,1) model has been estimated. The results 

above shown that all the coefficients are significant except only one coefficient which 

is significant at 10%. The AIC has value of -5.9557 which minimum of all the previous 

models. Similarly, all other statistics of the ARIMA-GARCH model has been 

improved. Thus, it is a better model as compared to earlier estimated. The residuals 

diagnostics and other forecast statistics are given in the below page. These statistics 

also show that the ARIMA-GARCH model is better as compared to the ARIMA and 

GARCH alone. The fit statistics are given as follows; 
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All the test statistics are insignificant and there is no serial or auto correlation 

in the standardized residuals. The Ljung-Box statistics has confirmed that there is no 

ACF/PACF in the residuals obtained from the ARIMA-GARCH model at various lags 

order as given above in the table. The forecast valuation also has confirmed that the 

forecast errors obtained from the ARIM-GARCH model are minimum as compared to 

the other models 

Table 4.7: Tests for Fit based on ARIMA-GARCH 

  Statistics Probability Value 

LM ARCH Test  179.5258 0.9997 

Jarque Bera   1006.60 0.0000 

Ljung-Box test Q (1) 0.0912 0.972 

Ljung-Box test Q (2) 0.0405 0.980 

Ljung-Box test Q (3) 0.0625 0.996 

Ljung-Box test Q (4) 0.5256 0.971 

Ljung-Box test Q (5) 1.1445 0.950 

Ljung-Box test Q (10) 2.7057 0.988 

Ljung-Box test Q (15) 4.5981 0.995 

 Forecast Evaluation  

RMSE 0.01935   

MAE 0.0144   

Theil Inequality 0.7124   



54 
 

The Graph of the Actual and Fitted series and forecast standard errors are given 

below which also confirm the superiority of the ARIMA-GARCH model over the 

ARIMA and GARCH alone. Therefore, if we compare these three models the ARIMA-

GARH has higher predictability ability but as the objective of the study is concerned 

about another machine learning model named as RNN(LSTM) then compare the 

predictions by using informal (graphical) methods and other performance evaluation 

criteria’s. In the next section the following model will be estimated and then the 

comparative forecasting ability will be judged. The one which is more accurate and 

suitable based on theoretical background and its forecasting ability that is RNN(LSTM) 

or ARIMA-GARCH. This section will revolve around this issue. 
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Figure 12: The figure shows the forecast errors of the fitted model. The bands with red colours indicate 
approximately 2SE of the data. 

The forecast from this model ARIMA-GARCH is better than all other models 

the graphs of the actual and forecasted series also represents the same phenomenon in 

the above mentioned figure.  

4.4 Results of RNN(LSTM) 

The forecasts from the RNN (LSTM) model are given below. The RNN (LSTM) 

being more unrestrictive, flexible regarding hard core restrictions (assumptions) of 

conventional time series modelling like stationarity, normality etc. It is easy to design 
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Figure 11: The actual series of Pakistan crude oil prices with the fitted values. The data is in the log-difference form 
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the architect, train the dataset on the designed algorithm of RNN (LSTM) to learn the 

pattern and tuning the hyperparameters then predict values and thus to implement. So, 

in this way as it is not based on hard and fast assumptions. Therefore, the forecasts 

statistics from this estimation technique are given as under: 

 

Figure 13: The figure shows the training dataset along with the predictions corresponding to their actual prices. 

 

Table 4.8 Results of forecast statistic from RNN (LSTM) Model 

           RMSE            MAE                   MAPE D-Watson  

           0.02822        0.01450                    0.0064% 1.9345  

the machine learning model RNN(LSTM) has D-Watson value of 1.9345 which is 

significantly rejecting the null hypothesis and concluded that there is no 

autocorrelation/serial correlation. The residuals plot from this model given on the next 

page also clearly indicates that the residuals have no any regular pattern and became iid 

(independent and identically distributed) pattern of residual series which validates this 

model RNN(LSTM). Thus, the prediction from this model is valid and can be used for 
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further analysis and forecasting. The graphs of actual and fitted series and residuals are 

given as follows: 

 

Figure 14: The actual and predicted Series Graph from the RNN (LSM) Model. The Series is Daily crude oil price of 
Pakistan 

 

Figure 15: The residual plot from RNN (LSTM) showing the random behaviour. 

The graph of actual and predicted series and residual plot show that the 

estimated model is valid because, the residual series has become iid and there is no 

conditional hetroskedasticity in the variance. 

As the objective is to find the better model for the prediction of the oil prices in 

Pakistan therefore, the fitted models are analyzed based on their forecasted values. The 

ARIMA (3,1,3), GARCH (1,1), ARIMA(3,1,3)+GARCH(1,1) and then RNN(LSTM) 
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were estimated. To compare these models and to choose the better among estimated 

models the following statistics were used (MAE and RMSE) to evaluate the forecast 

performance of various models. The comparison of the various models is given below: 

Table 4.9    Forecast Accuracy Comparison 

          RMSE                   MAE   

ARIMA (3, 1,3) 0.02048                  0.01479   

GARCH (1,1) 0.02047           0.01479   

ARIMA(3,1,3)+GARCH(1,1) 0.01935            0.01442   

RNN (LSTM) 0.02822            0.01450   

based on the mean absolute errors and root mean square errors the better model for the 

prediction of the oil prices in Pakistan based on the variation explain ability and 

predictability, in the above table and figure 4.5 & 4.7. The hybrid model 

ARIMA(3,1,3)+GARCH(1,1) and RNN(LSTM) have minimum values of MAE 

therefore, in case of forecasting the future values based on the daily data of prices the 

Hybrid-GARCH model has performed better than the other estimated models. On the 

other hand, according to the figure 4.5 & 4.7 suggests that RNN(LSTM) is most 

appropriate model for the oil price predictions. 
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CHAPTER 5 

CONCLUSION  

5.1 Introduction  

Th is about the core findings, recommendation of empirical analysis. The 

chapter is divided into two sections. Firstly, Section 5.2 deals with the core findings 

of this study and lastly the section 5.3 is about the limitations of the study.  

5.2 Major findings of the study 

The main objective focused on empirically testing of daily crude oil price of 

Pakistan and to suggest the most appropriate model for prediction for the daily oil 

price in Pakistan. As the investor/market player is very much interested in tomorrow’s 

price. To achieve this objective, I estimated the series at level by using machine 

learning model (RNN(LSTM)) parallel to the estimation of conventional time series 

models on return series. It also includes the hybridization of the existing conventional 

time series model for volatility analysis for the oil price in Pakistan. The statistical 

treatments applied on the data and made it stationary by using the log differencing 

transformation and then ARIMA model was estimated by using the transformed data. 

As volatility clustering observed in the variance of the data series therefore, the 

GARRCH (1,1) model estimated to capture volatility. It can capture infinite ARCH 

processes the results suggested that the daily crude oil price for Pakistan was 

significantly showing the GARCH effects. The series of the forecasts were obtained 

then to compare this forecast with the other proposed hybrid models.  

The Hybrid ARIMA-GARCH model was then estimated. It includes the series 

of variance from the residuals of ARIMA model which was showing the ARCH effect. 

Thus, to meet the quest for more appropriate model for the prediction of the oil prices 
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another machine learning model RNN(LSTM) that is highly flexible and unrestricted 

method regarding parametric assumptions (stationarity, normality etc.) was also 

estimated and the series of forecast obtained. The obtained results have shown that 

hybrid ARIMA-GARRCH model performed the best amongst all estimated models 

but taking into account the informal procedure according to the graphical 

representation of predictions in figure 4.5 & 4.7 suggest that performance of 

RNN(LSTM) is best. The root mean squared error and the mean absolute errors of 

hybrid ARIMA-GARCH and RNN(LSTM) model are less than that amongst all the 

other estimated models and very close to each other. The conclusion of this empirical 

study thus supports the application of hybrid model to forecast the daily oil prices in 

Pakistan. As RNN(LSTM) is assumption free and it has the ability to deal with any 

sort of dataset, so, it should preferably be applied for the large dataset for good 

predictions. It also consumes a very small computational power to analyze the large 

datasets in one go.  

The empirical results have shown that this type of hybridization that is 

capturing the linear part of the univariate analysis through the ARIMA type modelling 

then model the conditional variance through the GARH type modelling with ARIMA 

as the mean equation can perform better than to model them separately. Thus, study 

recommends the hybrid model to use for the prediction of future prices in case of oil 

prices in Pakistan.  

The empirical results have shown that this type of hybridization that is capturing 

the linear part of the univariate analysis through the ARIMA type modelling then model 

the conditional variance through the GARH type modelling with ARIMA as the mean 

equation can perform better than to model them separately. Thus, study recommends 
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the hybrid model to use for the prediction of future prices in case of oil prices in 

Pakistan.  

5.3 Limitations of the study 

The actual prices may deviate far away from the predicted prices and the 

predictions become fallacious if the values predicted too early for the long run. So, 

any of the econometric or machine learning models which perform very well in the 

short run but may not perform well for predictions in the long run.  
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