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ABSTRACT 

Time series forecasting remains a challenging task owing to its nonlinear, complex and 

chaotic behavior. Autoregressive integrated moving average (ARIMA) models are most 

frequently used since long time in forecasting. Artificial neural networks (ANN) is 

considered a good alternative to traditional ARIMA model in time series forecasting 

and often regard superior than ARIMA in forecasting performance. In recent literature 

Support vector machines (SVM) is becoming famous for solving nonlinear regression 

problems and time series forecasting. In this study, a hybrid methodology is used which 

combines the linear ARIMA with nonlinear models of ANN and SVM in order to 

improve the forecasting performance of Pakistan’s macroeconomic variables such as 

inflation, exchange rate and stock return. The forecasting performance of all models 

i.e., ARIMA, ANN, SVM, ARIMA-ANN and ARIMA-SVM are compared on the basis 

of RMSE and MAE. The results indicate that the best forecasting model to achieve high 

forecast accuracy is the hybrid ARIMA-SVM. 

Key words: Time series forecasting, ARIMA, ANN, SVM, Hybrid models 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Time series data are not very simple. They are subject to many complexities, 

instabilities, and nonlinearities which emerge due to dynamic behavior of economy. 

Due to complexity, instability and nonlinearity in most of time series data, it is not easy 

to make perfect and accurate predictions for it by using different conventional and 

advanced methods. Therefore, we never succeed in making accurate and perfect future 

forecasting by using different conventional and advanced methods. But it does not mean 

to stop making predictions as predictions keep the things moving in the hope of better 

future. It also helps policy makers in taking corrective measures and planning for the 

development of better future. 

Autoregressive Integrated Moving Average (ARIMA) model has been used since long 

for time series forecasting and giving reliable results. It is well accepted owing to its 

statistical properties as well as popular Box-Jenkins (1976) methodology but it has 

limitations in nonlinear data set handling (Zhu and Wei, 2013). Now a days, novel 

neural network techniques have been widely used for nonlinear data sets because of 

their feature of fast learning and pattern recognizing for complex data sets. Artificial 

neural networks (ANN) is famous and well accepted technique due to its flexibility to 

nonlinear data sets and gives reliable results for financial time series, but it also has 

disadvantages of over fitting and not giving much understanding of data. Support vector 

machines (SVMs) is considered as a major breakthrough in machine learning and is 

widely applied to classification and regression analysis. It is high performing algorithm 

with little tuning. The long term and accurate predictions play a crucial role in any of 

business and investment strategy. Most of the studies have shown that a hybrid model 
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of different linear and nonlinear models have some powerful tools to advance the 

forecast performance of each individual model (Khashei and Bijari, 2011). 

Linear models such as ordinary least squares (OLS), maximum likelihood estimation 

(MLE), generalized linear model (GLM), Cholesky Decomposition, analysis of 

variance (ANOVA) Methods and ARIMA are used to analyze the linear dependency 

among the dependent and independent variables. There are many limitations for these 

models in case of nonlinearity and complex data set. Often these models are used for 

nonlinear data set by making different prior assumptions and taking data 

transformation. But in real life data are not normal as assumed, so it may lead to 

selection of the model which can be inappropriate and does not replicate the factual 

shape of the data set. However, linear models are preferred due to their simplicity, 

requirement of small memory space and speed of convergence in comparisons with 

nonlinear models which usually have low convergence (Petruseva et al., 2017). When 

the influence of the nonlinearity to the overall specification of the model is very small, 

also one cannot assume a nonlinear model to perform fine than a linear model. But 

linear models cannot perform well for nonlinear functions as their counter parts can. 

Nonlinear models like SVM, ANN, K-Nearest Neighbors, Decision Trees like CART, 

Random Forest and Naive Bayes take much attention for their importance of tackling 

the nonlinear and complex data set issues. So, it is difficult to decide either linear or 

nonlinear models are best that’s why we choose both for our forecasting and will make 

their hybrid for sake of fruitful results.  

In this study, forecasting performance of linear ARIMA, nonlinear models ANN, SVM 

and hybrid ARIMA-ANN and ARIMA-SVM would be compared. An appropriate 
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combination of linear and nonlinear models yields a more precise predictions than any 

separate linear and nonlinear models for forecasting time series data (Babu et al., 2014). 

1.2 Objective of the Study 

The objective of the study is to propose hybrid model of both linear and nonlinear 

models to achieve accuracy in forecasting for empirical illustrations. Macro variables 

like Inflation, Exchange rate and Stock return are used to compare forecasting ability 

of proposed hybrid models. 

1.3 Significance of the Study 

The significance of the research is the affirmed need in the financial and Marco variable 

time series data to be able to forecast precisely up to maximum level. The investors in 

the financial world are regularly involved in decision making that will pursue their aims 

on risks, returns and policies. Even though, obtaining precise market forecasts is 

difficult because financial time series forecasts are one of the most demanding task of 

time series forecasting (Cocianu and Grigoryan, 2015; Cao and Tay, 2001 and Al-

hnaity and Abbod, 2016). Because in general time series data are often highly instable, 

noisy and deterministically chaotic in nature. Various univariate and multivariate 

measures have been taken for time series forecasting originating from linear and 

nonlinear techniques. In this study selected linear and nonlinear models and their 

hybrids models are applied with the objective of enhancing forecast performance of the 

actual measurements. For that reason the importance of this study is to discover the use 

of hybrid model for time series forecasts in Pakistan by performing a comprehensive 

experimental study comprises of linear, nonlinear and hybrid models. The following 

actions are taken to evaluate the time series forecasts performance of different models: 

• Forecasts are made from ARIMA model. 
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• Forecasts are drawn  from ANN and SVM. 

• Hybrids ARIMA-ANN and ARIMA-SVM are devised. 

• Forecasts are made by hybrid models of ARIMA-ANN and ARIMA-SVM. 

• Finally, mutually comparing the results of all five models run in this study. 

These three types of different models such as linear, nonlinear and hybrids are not used 

simultaneously for evaluating the performance of time series forecasting in case of 

Pakistan. So, it increase the value of this study in the sense of exclusive attributes of 

above mentioned models which are used to explore the forecasts performance of time 

series data in Pakistan. 

1.4 Organization of the study  

The organization of the thesis is as. Chapter 1 consists of introduction. Chapter 2 

includes a detailed reviewed literature of methods used for time series forecasting. The 

data description and methodological framework followed for this thesis is presented in 

Chapter 3. While Chapter 4 provides the experimental result and discussion and 

comparison of obtained forecasts from all techniques. Finally, Chapter 5 concludes the 

thesis and the limitation of the study have some recommendations for  extending work.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Introduction  

Several studies have been conducted for the sake of forecasting time series data arising 

from various fields. In literature different models are suggested based on their 

forecasting performance that are consisted of linear, nonlinear and hybrid models. In 

this chapter existing literature on ARIMA, ANN, SVM and hybrid modeling and their 

applications in different fields has been reviewed. The use of these models has been 

also be discussed with their weaknesses and strengths based on their forecast 

performance on different kind of data sets. The chapter proceeds from linear to 

nonlinear and then to their hybrid models. The usage of these models such as ARIMA, 

ANN and SVM in literature of Pakistan has been also discussed. ARIMA modeling was 

used almost in every field of forecasting in Pakistan whereas limited applications of 

ANN has been found in case of Pakistan. The applications of SVM modeling exist in 

pattern recognition and classification in literature of Pakistan but SVM has no evidence 

of its use in forecasting. Also there has been no effort is made to develop hybrid 

modeling for forecasting the Pakistan’s economy. 

2.1.1 Literature Review of Autoregressive Integrated Moving Average (ARIMA) 

Meyler et al. (1998) have forecasted Irish inflation using ARIMA model. They have 

stated that ARIMA models are theoretically more validated and can be unexpectedly 

robust as compared to alternative modeling approaches. They have emphasized on 

forecast performance and suggested there should be more focus on minimizing out of 

sample forecasts errors rather than minimizing in sample ‘goodness of fit’. Saeed and 

Zakria (2000) have used an empirical study of the Box Jenkins ARIMA methodology 

to forecast the wheat production in Pakistan. The diagnostic checking showed that 
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ARIMA with order (2,2,1) is suitable. The fifteen year ahead forecasting was done 

which showed a good fit with 95% confidence interval. Sultana et al. (2014) have 

forecasted inflation and economic growth for Pakistan by using ARIMA and 

decomposition methodology on monthly series. They have compared out of sample 

forecasts of both time series methods based on mean absolute deviation and sum of 

square of errors in which ARIMA give better forecasts performance.  

Farooqi (2014) has presented ARIMA model to forecast the future annual values of 

imports and exports of Pakistan. Standard statistical techniques such as AIC and 

diagnostic check were used to determine the validity of the fitted model. The author has 

founded that ARIMA model with order (2,2,2) and (1,2,2) are suitable for imports and 

exports respectively. Jafri et al. (2012) have examined the rate of dust fall by using 

ARIMA model and Stochastic models a case study to Quetta, Pakistan. The aim of the 

study was to control the pollutants specially heavy and toxic metals present in the 

particular matters. Study showed that ARIMA model give comparatively better 

forecasts for rate of dust fall. 

2.1.2 Literature Review of Artificial Neural Networks (ANN)  

Zhang et al. (1999) have bonded the gap between theoretical development and the real 

world applications of ANN and presented the general framework for understanding the 

role of neural network. They have predicted the bankruptcy and check the robustness 

of the model through cross validation. Tkacz and Hu (1999) have concluded that neural 

networks are best as compared to their traditional counterparts. These model can 

capture more essential non linearities among financial variables and real output growth 

at longer horizons and performed poor for 1-quarter forecasts. They have said that 

neural networks are very robust to exploit the nonlinear relationships between variables 

to provide the more precise forecasts of economic activities. Moshiri and Cameron 
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(2000) have evaluated the back propagation neural network (BPNN) and conventional 

econometric techniques to forecast Canadian inflation. They have stated that ANN 

modeling can solve the complex problems and there is no need to make assumptions of 

linearity as in traditional models. They have concluded that hybrid BPNN outperform 

econometric techniques in some cases. 

Haider and Hanif (2009) have forecasted inflation on the base of monthly data for 

Pakistan through ANN and simply compared with ARIMA and AR(1) out-of-sample 

forecast which showed ANN was more precise. They build the architecture of 

‘feedforward with backpropagation’ by using standard levenberg marquadt algorithm. 

To reduce the error volatility 12 hidden layers were trained and model learning rate was 

kept 0.25.They evaluated the forecast by calculating RMSE. Burney et al. (2005) have 

forecasted Karachi stock exchange shares by ANN using pre-processed data. Levenberg 

marquardt algorithm is used through which weights are adjusted during the back error 

propagation. it proved fairly accurate forecast when compared with weighted 

exponential method and ARIMA model.  

Samin et al. (2004) have used ANN for different metals hazardous in ground water 

contamination forecasting for Faisalabad city in Pakistan. The obtained results then 

compared with actual values and as well as World health organization (WHO) 

standards. They founded that ground water is fully contaminated with effluents and is 

for above the safe water standards. Awan et al. (2012) have proposed a hybrid non-

linear Autoregressive exogenous model (NARX) established with feed Forward 

Network (FFNN), SVR and Neural Network Models. They have forecasted the long 

term industrial load by using these models comparison was made between stated three 

techniques based on MAPE. All of three models showed accuracy in results with 
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acceptable MAPE in which proposed hybrid model NARX based FFNN remain more 

attractive in forecasting.  

2.1.3. Literature Review Support Vector Machine (SVM) 

Cortes and Vapnic (1995) have extended the SVMs to nonlinear regression problems 

by introducing the idea of mapping input vectors into higher dimensional space. Linear 

decision surface is constructed in this space which results to higher generalization 

ability. SVMs use structural risk minimization instead of empirical risk minimization 

which minimize the generalization error by minimizing its upper bound resulting to 

better generalization as compared with conventional techniques. Cao and Tay (2001) 

have evaluated the SVR as promising alternative to time series forecasting. They have 

noted that SVMs are better when compared with multilayer perceptron trained with 

back propagation (BP) based on criteria of normalized root mean square error 

(NRMSE) and mean absolute error (MAE). SVMs is faster and have small number of 

parameters as compared to BP. Calveria et al. (2015) have examined the regional 

forecasting for tourism using Support vector regression (SVR) with three different 

kernels and two ANN models of Radial Basis Function (RBF) and multilayer 

perceptron. SVR with Gaussian kernel outperformed other models of ANN and SVR 

with linear and polynomial kernels. The authors have concluded that the choice of 

kernel is important in SVR for better results and machine learning technique are better 

suitable for long term forecasts.  

Guajardo et al. (2006) have used wrapper method for feature selection in SVR and then 

updated the model using proposed methodology to achieve better forecasting 

performance. They have stated that because of the complexity of data mining 

applications like regression, it is necessary to select the most valuable features to 

construct the respective model. The proposed methodology was applied to sales 
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forecasting problem and its performance was compared with standard ARMAX 

method. The proposed methodology showed little advantage in forecasting 

performance. Many authors (Mukhergee, 1997; Kim, 2003; Cao and Tay, 2003) have 

done financial and time series forecasting in order to attain satisfactory results. They 

have stated that SVMs received an increasing interest from its earlier application in 

pattern recognition to other fields such as regression analysis due to its outstanding 

generalization ability. They have concluded that SVMs is advantageous over other 

machine learning techniques and a promising alternative to financial forecasting’s. 

2.1.4 Literature Review of Hybrid Models (HM) 

Zhang (2001) has stated that hybrid methodology of ARIMA and ANN could be a 

productive way to improve forecasting performance by their unique feature of linearity 

and nonlinearity. He has proposed the hybrid methodology by estimating first linear 

part by ARIMA and then its residuals through ANN and compared the results based on 

mean square error (MSE). He has inferred that hybrid model may perform worse than 

ANN and ARIMA in some data points but its overall performance is better. Pai and Lin 

(2005) have stated hybrid methodology of ARIMA and SVM showed satisfactory 

results in stock price forecasting. They have used the real data sets of ten stocks in order 

to inspect the accuracy of proposed methods. In which they have used four statistical 

indices such as mean absolute error (MAE), MSE, MAPE and RMSE to measure the 

performance of the proposed model. Chen and Wang (2007) have proposed hybrid 

model of SARIMA and SVM and concluded that hybrid methods give reliable results 

as compared to individuals methods. They have forecasted the Taiwan’s machinery 

industry production values to investigate the proposed methodology. Normalized mean 

square error (NMSE) and mean absolute percentage error (MAPE) are used to check 

the accuracy of presented methodology. 
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Khashei and Bijari (2010) have stated that ANN modeling is a universal approximator 

and flexible computing framework which can be applied to a wide range of time series 

forecasting. But for some real time series, it cannot give satisfactory results. So, there 

is a need of integration of some different models to improve predictive performance in 

an effective way. They have proposed a hybrid model of ANN and ARIMA and 

concluded that a hybrid model can be used as an alternative to traditional ANN to obtain 

high degree of accuracy in forecasting. Zhu and Wei (2013) have made three different 

hybrid models of ARIMA and least square support vector machine (modification of 

SVMs) to forecast carbon prices. To determine the optimal parameters of LSSVM in 

order improve the forecasts ability particle swarm optimization (PSO) was used. Two 

main future carbon prices are used to compare the forecasting performance based on 

the criteria of root mean square error (RMSE) and D stat of the European climate 

exchange market. The results showed that only one hybrid perform better but not all 

hybrid models are superior than their single ones.  

Babu and Reddy (2014) have stated that it is not good to apply simply ARIMA model 

on a series and then its residuals modeled by ANN instead they have used moving 

average filter model to decompose the data into linear and nonlinear parts and then 

apply the respective models. Many authors have combined statistical models and 

suggested that hybrid statistical modeling improve predictive performance as compared 

to stand-alones (Stone, 1974; Breiman, 1996; Leblence and Tibshirani, 1996 and 

Mojirsheibani, 1999). Papatla et al. (2012) have presented two classes of hybrid models 

linear and nonlinear and suggested mixed NN has higher  probability in performance. 

Kumar (2014) has made hybrid model of SVM, ANN, Random Forest with ARIMA 

and compared all with each other and their single ones, in which SVM-ARIMA hybrid 

model took first place. He has measured the results on RMSE, MAE and NMSE based 
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criteria for the purpose of to identify the best hybrid model. Among others ANN-

ARIMA performed better in forecasting the stock index returns. He has suggested that 

ARIMA- SVM could be a worth to the forecasting improvement and assure profit-

making returns for policy makers in forecasting economic and financial data. 

Khandelwal et al. (2015) have proposed Discrete Wavelet Transform (DWT) to split 

the data into linear and nonlinear components. Then ARIMA and ANN models have 

been used independently to recognize and forecast the reconstructed detailed and 

approximate components. The proposed DWT hybrid model has outperformed other 

models based on MSE and MASE for four real world time series. 

Al-hnaity and Abbod (2016) have explored the predictability of stock index time series. 

They have stated that a single classical model will not yield the accurate prediction 

results. In their study, they have used most famous data mining techniques such as SVR, 

SVM, and BPNN. In which they have combined these three models and made a hybrid 

model. The weights of models were determined by genetic algorithm and to improve 

the prediction performance of single SVR and SVM Quantization factor was used. They 

have concluded that proposed hybrid model outperformed all other single models and 

the bench mark traditional model AR based on MSE, RMSE and MAE. Zhu et al. 

(2017) have forecasted the Air Quality Index (AQI) by using the hybrid models of 

Empirical Mode Decomposition Support Vector Regression (EMD-SVR) and EMD-

Intrinsic Mode Functions (IMFs). To validate the proposed models forecast 

performance as compared to all other models employed in this paper, famous loss errors 

like MAE, RMSE, MAPE, MSE, absolute relative error and index of agreement are 

utilized. The AQI forecasts for empirical research has showed that two proposed hybrid 

models were superior to all other models like ARIMA, SVR, GRNN, EMD-GRNN, 

Wavelet-GRNN and Wavelet-SVR. 
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Kim and Won (2018) have examined a new hybrid long short-term memory (LSTM) 

which was combined with various generalized autoregressive conditional 

heteroscedasticity (GARCH)-type models to forecast stock price volatility. The 

proposed models performance were compared with different existing methodologies 

such as GARCH, exponential GARCH, exponentially weighted average, deep 

feedforward neural network (DFN), LSTM and as well as DFN combining with one 

GARCH type model. They have concluded that proposed hybrid models have lowest 

prediction errors based on MAE, MSE, heteroscedasticity adjusted MAE and 

heteroscedasticity adjusted MSE. Karathanasopoulos and Osman (2019) have proposed 

a hybrid model to forecast the Dubai Financial general index in which they have 

combined  the momentum effect with  a novel methodology of deep belief networks. 

They have compared the empirical results based on MAE, MSE, MAPE and RMSE 

with other three linear models named moving average convergence divergence, naïve 

strategy and ARMA model. They have concluded that proposed hybrid model 

outperformed all other models significantly and provides auspicious results for further 

usage in financial forecasts. 

2.2 Literature Gap 

After reviewing the literature we come to conclude that different techniques have 

different features regarding their ability of forecasting. But all of these cannot capture 

everything lonely. Therefore, there is need to make hybrid model by taking advantage 

of their specific abilities. 

To our best knowledge, there has been no evidence that SVM and hybrid modeling of 

ARIMA with ANN and SVM is used for time series forecasting of macro variables in 

Pakistan.   
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CHAPTER 3 

METHODOLOGY 

This chapter discusses, the methodological framework employed in this study and data 

description. In section 3.1 the methodology of ARIMA model is explained. ANN model 

is discussed in section 3.2. Section 3.3 described the methodology of SVM. While 

section 3.4 explained the hybrid modeling in detail. Data description is given in the last 

section of 3.5. 

3.1 Autoregressive Integrated Moving Average (ARIMA) Modeling 

Box and Jenkins (1976) introduced the ARIMA model one of the most popular 

approaches to forecast time series data. In an ARIMA model, the future value of a 

variable is assumed to be a linear combination of several past values and past errors. 

Mathematically, it can be written as: 

𝑦𝑡 = 𝜎 + 𝜑1𝑦𝑡−1, +𝜑2𝑦𝑡−2, + ⋯ +𝜑𝑝𝑦𝑡−𝑝 + 𝜀𝑡

− 𝜃1𝜀𝑡−1, −𝜃2𝜀𝑡−2, − ⋯ −𝜃𝑞𝜀𝑡−𝑞                           3.1          

Where 𝑦𝑡  represents the series at time t, 𝜀𝑡 represents the error terms at time t, φ, θ are 

the coefficients and p, q are lag lengths of AR and MA respectively. Box and Jenkins 

methodology is followed to choose the appropriate univariate model of ARIMA for 

forecasting. Box-Jenkins gives a systematic procedure for choosing ARIMA model 

which involves iterative steps such as identification, estimation and diagnostic checks 

on model adequacy. The detail of these three iterative steps are discussed below 

respectively. 

3.1.1 Model Identification 

Assuming for the moment that series is stationary and there is no seasonal variations. 

The initial tentative model identification starts from the plots of autocorrelation and 
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partial autocorrelation functions. Frequently, it is possible to detect one or several 

possible models for a given time series by matching empirical autocorrelation patterns 

with theoretical ones. The relevant properties of the correlation patterns are given below 

3.1. 

Table 3.1 Model Identification through ACF and PACF 

 ACF   PACF 

AR(p)                    Infinite spikes. Finite spikes and cuts off after p 

lags 

MA(q) Finite spikes and cuts off after 

q lags 

Infinite spikes 

ARMA(p, q) Infinite spikes Infinite spikes 

 

This process encompasses the subjective element at the identification stage which can 

be an advantage because it permits non-sample information to be taken into account. 

Frequently, it is considered suitable to discern the magnitude of large autocorrelation 

and partial autocorrelation coefficient. An autocorrelation to be statistically significant 

must be at least 
2

√𝑁
 in absolute value. When time series data has time varying mean and 

variance or both  then data is considered to be non-stationary and in case of ARIMA 

modeling there is preliminary requirement for analysis to do it stationary by a method 

of differencing the data or transformations. The Augmented dickey-fuller (1981) is used 

to determine the null hypothesis of unit root problem in the data set under investigation. 

The  auxiliary regression for the detection of unit root is: 

∆𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑦𝑡−1 +  𝜃1∆𝑦𝑡−1 + ⋯ + 𝜃𝑝∆𝑦𝑡−𝑝 + 𝑢𝑡                      3.2  

Where 𝛼 and 𝛽 are coefficients of constant and time trend and 𝑝 is lag order of the 

autoregressive process. The null hypothesis 𝛾 = 0 indicate series has unit root against 

the alternative hypothesis of 𝛾 < 0 series has no unit root. If the calculated value is less 
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than the critical value one can reject the null hypothesis that series has unit root. Test 

statistic for calculated value is:  

𝐷𝐹𝑐𝑎𝑙 =
𝛾

𝑆𝐸(𝛾)
                                              3.3 

The critical values at 5% level with constant and if series has deterministic trend are -

2.86 and -3.41 respectively. The amount of differencing and the inclusion of a constant 

in the model determine s the long term behavior of the model. 

3.1.2 Model Estimation 

Once a preliminary model is identified, the model estimation is simple. The parameters 

are estimated in such way that total measure of errors is minimized which can be done 

through a nonlinear optimization process. The frequently used method to estimate the 

ARIMA model is maximum likelihood estimation (MLE) presented in Box-Jenkins 

(1976). Which attempts to maximize the log-likelihood for given values of p, d and q 

and finding those values of parameters that would lead to highest probability of finding 

the data we have observed. 

3.1.3 Diagnostic Checking 

There are two types of diagnostic checks in which first extra coefficients are fitted and 

then tested for their significance. In the second residuals of the fitted model are 

examined to determine if they are white noise. The checking is accomplished by 

inspecting the autocorrelation plots of the residuals to verify there is no further structure 

can be found i.e. residuals are white noise. To check the white noise behavior of 

residuals of estimated model, portmanteau test is applied. The Ljung-Box test is used 

to diagnose the autocorrelation among error terms and to examine the heteroskedasticity 

problem same test is applied on the square of residuals. JB test is used to determine the 

normal distribution of the residuals. This procedure of inspection the residuals and 
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modifying the values of p and q continues till the resulting residuals hold no extra 

information. Brock-Dechert-Scheinkman (BDS) test is applied to the estimated 

residuals to check the nonlinear dependence in all data series. It is a nonparametric test 

developed by Brock et al. (1987 & 1996)  which is a powerful tool that is not only used 

to detect deterministic chaos and nonlinearities in stochastic time series, but also it can 

be used as general test for model misspecification. The null hypothesis for BDS is that 

series are linearly dependent. Statistically BDS test values can be obtained by using 

given formula as: 

𝐵𝐷𝑆𝜖,𝑚 =
√𝑛(𝑐𝑚(𝜖) − 𝑐1(𝜖)𝑚)

√𝑉𝜖,𝑚

 

Where 𝜖 is tolerance distance, 𝑚 is embedding dimension, 𝑛 is sample size, 𝑐𝑚(𝜖) 

referred as joint probability of each pair of points in the set satisfying the epsilon 

condition and 𝑐1(𝜖)𝑚 is the product of individual probabilities of each pair. While 

√𝑉𝜖,𝑚 is the standard deviation that varies with dimension 𝑚. If 𝐵𝐷𝑆𝜖,𝑚 > 2 the null 

hypothesis is rejected with a confidence level of 95 percent and if 𝐵𝐷𝑆𝜖,𝑚 > 3 the null 

hypothesis is rejected with 99 percent confidence interval. Once the appropriate model 

is nominated then the model may be used to produce future forecasts. 

3.1.4 Seasonal Box Jenkins 

If time series have a seasonal component, in case of seasonal fluctuations in time series 

data model would become seasonal ARIMA (SARIMA). Mathematically the general 

expression of the SARIMA model can be inscribed as follow: 

𝜙𝑝(𝐵)Φ𝑃(𝐵)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑦𝑡 = 𝜃𝑞(𝐵)Θ𝑄(𝐵𝑠)𝜀𝑡                        3.4 

Where P and Q are seasonal lag lengths, D is the order of seasonal differencing and s is 

the number of seasons per year. In case of seasonal series it would process the same 
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cycle of Identification, Estimation and Diagnostic checking followed by forecasting. If 

the series is seasonal the autocorrelation will have spikes at the seasonal frequency. If 

seasonal differencing is required then the auto correlogram must be re-estimated for the 

seasonal series. For the nonseasonal case, identification of D proceeds the same way. 

The selection of p, q, P and Q tentatively identified from the autocorrelation and partial 

autocorrelation functions in a somewhat similar way as in the nonseasonal model. 

Identification of P and Q are done by looking at the autocorrelation and partial 

autocorrelation at lags s, 2s, 3s and so on to multiples of the seasonal frequency. The 

procedure set out in the Table 3.2 below. 

Table 3.2 Model identification for Seasonal Box Jenkins 

Properties Inferences 

SAC dies down, SPAC has spikes at SL, 

2SL,…, PSL and cuts off after PSL 

Seasonal AR of order P 

SAC has spikes at lags SL, 2SL,…, QSL 

and SPAC dies down 

Seasonal MA 

SAC has spikes at lags SL,2SL, …, PSL 

SPAC has spikes at lags SL, S2L, …, 

QSL and both die down 

Use either  

▪ Seasonal AR of order P or 

▪ Seasonal MA of order Q 

No seasonal spikes P = Q = 0 

SAC and SPAC die down Possible P = Q = 1 

Source: Frain (1992) 

3.2  Artificial Neural Networks (ANN) Methodology 

A computational model for neural networks based on mathematics and algorithms 

called the threshold logic have been created by Mcculluch and Pitts (1943). This model 

covers the process for neural network study to split into two methods. One method 

focused on biological process in the brain whereas the second concentrated on the 

application of neural networks to artificial intelligence. Connectionist systems in ANN 
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are computing system that are motivated by biological neurons works like human brain 

such as learn by experience and then analyze it. Such system “learn” (i.e. gradually 

upgrade performance on) tasks by evaluating examples, usually without task specific 

programming. 

ANN established on a number of attached units or nodes termed artificial nodes. Each 

connected unit between artificial nodes can transfer a signal from one to another. In 

common ANN executes the signal at a connection among artificial neurons is real 

number, and the output of each artificial is computed by a nonlinear function of the 

summation of its inputs. ANN nodes and units consist of layers usually three layer 

perceptron is enough to train a model but it can be changed depending on the structure 

of data set. Most of the time second hidden layer is used to detect the relationship 

between variables and discontinuities. ANN works in a very analogous way, it takes 

several inputs, process it into and out of multiple neurons from multiple hidden layers 

and yields the result using an output layer. This outcome estimation procedure is 

technically known as “Forward propagation”. The basic objective of ANN is to solve 

problems in the same as human mind do and to conduct different tasks more quickly 

and in better way than the traditional systems. Structure of an artificial ANN is given 

in Figure 3.1. Figure consists of three multilayer feed-forward network with five inputs 

neurons where each next neurons receives inputs from the previous layer and also 

outputs of neurons in one layer are inputs to the next layer. 
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Figure 3.1 ANN Architecture 

 

Source : Sharma and Bhardwaj (2015) 

Artificial neurons and networks generally have weights and biases that are modified as 

learning proceeds. The weights increases or decreases the robustness of the signal at a 

connection. The target is to make the output to neural networks as close  as possible to 

desired output. The mathematical association among the output ( 𝑦𝑡) and the inputs 

(𝑦𝑡−1, … , 𝑦𝑡−𝑝) has the following representation: 

                              𝑦𝑡 =  𝑤0+∑ 𝑤𝑗 . 𝑔 𝑞
𝑗=1 (𝑤0.𝑗+∑ 𝑤𝑖.𝑗 . 𝑦𝑡−𝑝

𝑝
𝑖=1 )+𝑒𝑡                                (3.5)  

Where 𝑤𝑖.𝑗 = (𝑖 = 0,1,2, … , 𝑝 𝑗 = 1,2,3, … , 𝑞) and 𝑤𝑗 = ( 𝑗 = 0,1,2, … , 𝑞) are model 

constraints also called neuron weights; p represent the input nodes and q is the number 

of hidden nodes. The different activation functions are used to transmit an input signal 

of a neuron to an output signal. Most commonly used activation functions as the hidden 

layer transfer functions are Sigmoid, Tanh and ReLu. The neural network structure of 

activation function is showed in Figure 3.2: 
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Figure 3.2 ANN Architecture with a sigmoid activation function 

 

Source : Patterson (2012) 

These neurons are contributing of some error to final output individually. The value of 

neurons those are contributing more to the error are minimized and this happen while 

moving back to the neurons of the neural network and detecting where the errors lies. 

This process is known as “back propagation”. Back propagation distributed the error 

terms back through the layers by updating the weights and each neuron. The neural 

networks uses a common algorithm known as “Gradient Descent” in order to reduce 

the numbers of iterations while minimizing the error. Which helps the task quickly and 

efficiently, one round of onward and back propagation iteration is known as one 

training iteration also known as Epoch. 

3.2.1 Selection of Input Parameters 

ANN modeling for time series analysis is considered good alternative to ARIMA 

forecast. ANN form of Multilayer Perceptron (MLP) is best and most generally used 

neural network architecture. The most decisive part of the ANN modeling is the 

selection of input lags because these determine (non-linear) autocorrelation form of the 

time series. Neural networks has no hard and fast rule for parameter selection. So 

determining the number of  input lags p and number of hidden nodes q are data 

dependent. There exist many approaches for parameter selection in AAN modeling but 
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none of these techniques give promise to perform best for actual time series analysis 

(Khashei and Bijari, 2010). Therefore, there is no rule of thumb or theory that give exact 

direction for parameter selection. For that reason many experiments are done to select 

the suitable p and q parameters that minimize the general criteria for accuracy like mean 

square error (Zhang, 2001). Once an appropriate ANN parameters are selected for a 

data set then the model is ready for final forecast analysis.  

3.2.2 Training of Artificial Neural Networks Architecture 

As specification of input lags is very crucial in training of ANN architecture, so there 

is need of universal methodology in specifying ANN architecture. Because a data 

generating process may show a diversity of stochastic and deterministic time series 

patterns of single or multiple seasonality, cycles, trends, pulses and structural breaks 

depending on time frequency. Therefore our selection of lags laboriously relies on 

automated network specification by using combined filter and wrapper approach for 

feature evaluation and a methodology that combines a novel iterative neural filter based 

on multilayer perceptron (Crone and Kourentzes, 2010; Kourentzes and Crone, 2010). 

Both automated methodologies are fully data driven and select input lags wisely 

without any expert intervention. The selection of hidden nodes is also data dependent 

and there is no systematic rule for deciding these parameters (Khashei and Bijari, 2010). 

To make optimum selection of hidden nodes validation test is considered in which 20% 

of time series validation sample is used within training data. Then chosen architecture 

based on discussed methods is again updated by modifying input lags and hidden nodes 

manually by error and trail method for the sake of parsimonious model. The final 

selected architecture is that which gives the minimum Mean square error (MSE). 
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3.2.3 Estimation of parameters and activation function 

Once an appropriate ANN architecture with input lags and hidden nodes is selected then 

parameters are estimated through back propagation. This is the process in which 

weights of neurons are updated to traveling back through layer by layer and yielding 

the ultimate output. This process of backward pass is done until the desired output is 

achieved. Resilient back propagation (RPROP) is a well-known gradient descent 

algorithm and is used to train a neural network. RPROP only uses the sign of gradients 

to compute the parameter updates. If the sign of  parameter remain in the same direction 

for several iterations then the step size of update value will be increased otherwise in 

case of oscillation it will be minimized. The main advantage of RPROP over standard 

back propagation is that it does not need any free parameter value like learning rate and 

momentum term and is much faster. RPROP also has separate step size for each weight  

which mean if one weight is much closer to optimal value while other needs more 

updates then it has no big issue like other gradient descent variants which can cause 

problem in this situation. But the drawback of RPROP is that it is more complex to 

apply than standard back propagation. Activation function basically is used to transfer 

input signal of a node to an output signal in ANN architecture. Activation function sum 

the multiplication of inputs and their respective weights and then feed it as input to the 

next layer of neurons through transfer function. The sigmoid or logistic function is used 

as transfer function and typically it can be written as: 

  𝑆𝑖𝑔(𝑥) =
1

1 + 𝑒−𝑥
                                             (4.5) 

The all three combination operators like mean, median and mode can be used to produce 

ANN forecasts with their specific qualities depending on the nature of data. But median 

combination operator performs very well and converge to reliable and better ANN 

forecasts (Barrow and Kourentzes, 2018). 
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3.3 Support Vector Machines (SVM) 

Support vector machine (SVM) developed in 1990’s by Vapnic et al. SVM is basically 

a classification method that executes classification tasks by formulating hyperplane in 

a multidimensional space that splits the cases of unalike class labels. It is a most popular 

supervised machine learning which can be used for both regression and classification 

tasks and can handle continuous and categorical variables. SVM works by transforming 

the data to a higher dimensional space, and then performing separation in resulting 

hyperplane. Now we discuss how SVM works, theory behind it and its mathematical 

representation as follows:  

In SVM a line is constructed that best separates the points to their class 0 or 1 in input 

space variable. The best or optimal hyperplane is the line which separates the two 

classes by largest margin, and the margin is the distance between the neighboring data 

points of that hyperplane. Margin is calculated as the vertical distance from line to only 

the closest points. These points are important in explaining the line and in constructing 

the classifier. These are the points that called support vectors and they define or support 

the hyperplane. Below  Figure 3.3 further clarify the idea. 

 

Figure 3.3: Hyperplane 

 

Source :Meyer and Wien (2015) 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiK28C4hajdAhWMgI8KHcjgCP0QjRx6BAgBEAU&url=https://en.proft.me/2014/04/22/how-simulate-support-vector-machine-svm-r/&psig=AOvVaw0Tm3IF1F4P5DRCqpEicFa7&ust=1536380350639358
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Mostly we relax the constraints of hyperplane that is called soft margin hyperplane 

because in practice the real data is complex and messy. Furthermore, the slack variables 

are added which give more wiggle room to the margin in each dimension. The 

magnitude of the wiggle allowed across all the dimensions is defined by introducing a 

tuning parameter C which describes the violation in the margin. If C=0 then there is no 

violation and if there is more the value of C means more the violation and vice versa. 

Because in reality it is not easy job to classify a complex, nonlinear and chaotic data 

effortlessly so SVM uses kernel functions which transform the data from input space to 

higher dimension space to classify data accurately. 

First linear separable case is considered, then the soft margin support vector regression 

(SVR) is discussed and ultimately nonlinear case would be explained. Precisely, the ℇ 

-insensitive  SVR would be used for forecasting. In ℇ -insensitive SVR, the main goal 

is to find a function f(x) that has an ℇ -deviation from the actually acquired target 𝑦𝑖 

for whole training data and simultaneously as flat as possible. Given below Figure 3.4 

simply sketch the SVR. 

Figure 3.4: Detailed epsilon tube with slack variables 

 

Source : Kuntoji et al (2017) 

Assume f(x) takes the following form as under taken by Smola and Scholkopf (2004): 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjNs4b2iqjdAhXEMI8KHcqZDE8QjRx6BAgBEAU&url=https://www.researchgate.net/figure/A-schematic-diagram-of-support-vector-regression-using-e-insensitive-loss-function-Where_fig1_325442606&psig=AOvVaw1o4MMKL8TCxOlrqBWoAfmz&ust=1536381552625669
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   f(x)  =  wx +  b            w ϵ x, b ϵ R                           (3.6)  

Here w is the regularizing term and give optimization problem central over the flatness 

of the solution and b is the bias. Then by solving the given problem: 

min
1

2
||𝑤||2                                       (3.6.1) 

Subject to, 

𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏 ≤ ℇ                                  (3.6.2) 

𝑤𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ ℇ                                   (3.6.3) 

In case where the constraints are infeasible and to protect against outliers also to discern 

how many points can be tolerated outside the tube. One can insert slack variables  𝜉𝑖 ,𝜉
∗  

in this case called soft margin formulations according to the Vapnic (1995) and is 

explained by the following problem (also see Figure 3.4 for slack variables which lie 

outsides the ℇ -insensitive tube). 

min
1

2
||𝑤||2 + 𝑐 ∑(𝜉𝑖+𝜉𝑖

∗)                                 (3.7)

𝑛

𝑖=1

 

Subject to, 

𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏 ≤ ℇ + 𝜉𝑖               (3.7.1) 

𝑤𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ ℇ + 𝜉𝑖
∗              (3.7.2) 

𝜉𝑖 ,𝜉𝑖
∗ ≥ 0 

𝑐 ≻ 0 

Where c is trade of among the flatness of the f(x) and the number up to which deviations 

larger flatness apart from ℇ are tolerated. That is called the ℇ-insensitive loss function 

|𝜉|ℇ and is discussed by following equation, 

|𝜉|ℇ = {
0         𝑖𝑓   |𝜉|     ≤ ℇ
|𝜉| − ℇ    𝑖𝑓    𝜉 > ℇ

                                (3.8) 
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According to Smola and Scholkopf (2004) By constructing the Lagrangian function as 

explained in Fletcher (1989), it can be deduced the dual problem. Specifically, 

𝐿 =
1

2
||𝑊||2 + 𝐶 ∑(𝜉 + 𝜉∗) − ∑ 𝜆𝑖(ℇ + 𝜉 − 𝑦𝑖 + 𝑤𝑥𝑖 + 𝑏)

𝑛

𝑖=1

𝑛

𝑖=1

− ∑ 𝜆𝑖
∗(ℇ + 𝜉∗ + 𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏)

𝑛

𝑖=1

− ∑(𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖

∗),                                                                 (3.9)

𝑛

𝑖=1

 

In equation (3.9) all dual variables have to satisfy positivity constraints that is 𝜆𝑖,

𝜆𝑖
∗, 𝜂𝑖 , 𝜂𝑖

∗  ≥ 0. At the optimal solution, it have 

𝜕𝐿

𝜕𝑤
= 𝑤 − ∑(𝜆𝑖 − 𝜆𝑖

∗)𝑥𝑖

𝑛

𝑖=1

= 0                        (3.9.1) 

𝜕𝐿

𝜕𝑏
= ∑(𝜆𝑖 − 𝜆𝑖

∗)

𝑛

𝑖=1

= 0                                   (3.9.2) 

𝜕𝐿

𝜕ℰ
= 𝐶 − 𝜆𝐼

∗ − 𝜂𝐼
∗ = 0                                  (3.9.3) 

According to Trafalis and Ince (2000), We will obtain the dual problem by substituting  

values of (3.9.1), (3.9.2) and (3.9.3) into (3.9) which is as follows: 

max          −
1

2
∑ ∑(

𝑛

𝑗=1

𝑛

𝑖=1

𝜆𝑖 − 𝜆𝑖
∗)(𝜆𝑗 − 𝜆𝑗

∗)𝑥𝑖𝑥𝑗

− 𝜀 ∑(𝜆𝑖 + 𝜆𝑖
∗) + ∑ 𝑦𝑖(𝜆𝑖 − 𝜆𝑖

∗)

𝑛

𝑖=1

          (3.10)

𝑛

𝑖=1

 

Subject to    ∑(𝜆𝑖 − 𝜆𝑖
∗) = 0                    

                    𝜆𝑖, 𝜆𝑖   
∗ 𝜖(0, 𝐶)  

Solving (3.9.1) for w, it can be obtained: 
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𝑤∗ = ∑(𝜆𝑖 − 𝜆𝑖
∗)𝑥𝑖

𝑛

𝑖=1

 

Substituting the value of w in (3.6), the function will become as follows: 

𝑓(𝑥) = ∑(𝜆𝑖 − 𝜆𝑖
∗)𝑥𝑖𝑥 + 𝑏∗                                         (3.11)

𝑛

𝑖=1

 

The optimal value of b could be computed from the complementary slackness 

conditions Trafalis and Ince (2000) , precisely, 

𝜆𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 + 𝑤∗𝑥𝑖 + 𝑏) = 0                                 

𝜆𝑖
∗(𝜀 + 𝜉𝑖

∗ + 𝑦𝑖 − 𝑤∗𝑥𝑖 − 𝑏) = 0                          (3.12) 

(𝑐 − 𝜆𝑖)𝜉𝑖 = 0 

(𝑐 − 𝜆𝑖
∗)𝜉𝑖

∗ = 0 

Only samples (𝑥𝑖, 𝑦𝑖) with respective 𝜆𝑖 = 𝐶 exist outside the ℇ -insensitive tube 

around ƒ. The set of dual variables 𝜆𝑖, 𝜆𝑖
∗ can never be nonzero simultaneously, therefore 

if 𝜆𝑖 is in (0,C) then relative ξ is zero. So b could be calculated as follows: 

𝑏∗ = 𝑦𝑖 − 𝑤∗𝑥𝑖 − 𝜀             𝑓𝑜𝑟 𝜆𝑖𝜖(0, 𝐶) 

𝑏∗ = 𝑦𝑖 − 𝑤∗𝑥𝑖 + 𝜀             𝑓𝑜𝑟 𝜆𝑖
∗𝜖(0, 𝐶) 

Till now it was dealt with in input space assuming f(x) is linear, now it can be looked 

at the nonlinear case briefly. First, there is need to map input space into feature space 

where data will be mapped into higher dimensional space named kernel space and try 

to discover a hyperplane in the feature space to achieve higher accuracy. Using Cortes 

and Vapnik (1995) the trick of kernel functions, one have the following quadratic 

problem. 
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max          −
1

2
∑ ∑(

𝑛

𝑗=1

𝑛

𝑖=1

𝜆𝑖 − 𝜆𝑖
∗)(𝜆𝑗 − 𝜆𝑗

∗)𝐾(𝑥𝑖, 𝑥𝑗)

− 𝜀 ∑(𝜆𝑖 + 𝜆𝑖
∗) + ∑ 𝑦𝑖(𝜆𝑖 − 𝜆𝑖

∗)

𝑛

𝑖=1

                   3.13

𝑛

𝑖=1

 

Subject to    ∑(𝜆𝑖 − 𝜆𝑖
∗) = 0                   

                    𝜆𝑖, 𝜆𝑖   
∗ 𝜖(0, 𝐶)  

At the optimal solution we have, 

𝑤∗ = ∑(𝜆𝑖 − 𝜆𝑖
∗)𝐾(𝑥𝑖)

𝑛

𝑖=1

                        (3.14) 

And putting the values of (3.14) in (3.6) the general equation becomes, 

𝑓(𝑥) = ∑(𝜆𝑖 − 𝜆𝑖
∗)𝐾(𝑥𝑖,𝑥) + 𝑏                          (3.15)          

𝑛

𝑖=1

 

Where K(.,.) represent the kernel function, any symmetric semi-definite function, which 

fulfills the Mercer’s conditions can be used as a kernel function in the SVMs situation 

Cortes and Vapnik (1995). Different kernel functions can be used to achieve better 

generalization for specific problem. However one cannot say specific kernel outperform 

others so some validation techniques can be used to fix good kernel. Commonly used 

kernel functions are polynomial, gaussian and RBF. For more detail see tutorial on 

SVM by Smola and Scholkopf (2004) and SVMs for classification and regression 

(Gunn, 1998). 

3.3.1 The Selection of Input Lags and Hyperparameters for SVM model 

In literature many authors have selected different input lags depending on the nature 

and frequency of the data. We have used twelve lags for our analysis as it make sense 

because of monthly data and would be appropriate to next month forecasts. The 

selection of hyper parameters pay a crucial role in any analysis of SVM which are sort 

of kernel function, regularization constant C and the maximum allowable loss function 
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ɛ. Many authors like (Kumar, 2014; Cao and Tay, 2003; Chen and Wang, 2007) found 

that gaussian  radial basis function is superior to other kernel types as they take more 

time to train the model and gives adverse results as compared to gaussian radial basis 

function. Therefore, we have used Gaussian radial basis function because of its better 

prediction performance. In tuning of SVM model for parameter selection kernel 

parameter γ and regularization parameter C play an important role of model 

performance. Improper selection of these parameters can lead to under and overfitting 

of the trained model as too large value of constant C can cause overfitting of the train 

data while small values can underfit and vice versa for gamma parameter. So 

combination of optimal C and γ  parameters are chosen through tuning the SVM model 

which can test several different values and yield the ones which has minimum error for 

10-fold cross validation. Where 10-fold cross validation means splitting data randomly 

into ten equal parts in which each fold is used as testing set at some point. For example 

in 1st iteration, the first fold used to test the model while remaining are used to train the 

model and for second fold repetition, 2nd fold is used as testing set and the rest are used 

as the training set. This procedure is repeated until every fold of the 10 folds have been 

used as the testing set. In order to attain optimal parameters a suitable range of 

parameter C and γ is provided to training data while tuning of the model which chose 

best parameter values based on cross validation. A reasonable value for ɛ is insensitive 

to SVM modeling (Kumar, 2014). Now we will follow the discussed process to select 

the best performing model to make forecasts for our data sets. 

3.4  Hybrid Model 

Basically hybrid modeling means mixing or combining the two or more different 

models with their unique characteristics to obtain accuracy and precision in results 

within a given situation. The inspiration for mixing the models occurs from the 
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consideration that a single model may not be enough to identify the true data generating 

process or cannot capture entire the features of the time series (Khashei and bijari, 

2010), so the idea behind hybrid methodology was to acquire advantages of individual 

models best traits to gain best possible results (Mojirsheibani, 1999; Paptla et al., 2002).  

Let’s assume that we have a series 𝑦𝑡 consisting of linear and nonlinear components of 

𝐿𝑡 and 𝑁𝑡 given as: 

𝑦𝑡 = 𝐿𝑡 + 𝑁𝑡                                   (3.16) 

We run ARIMA model first on given data sets to obtain linear forecasts. Then using the 

residuals acquired from the ARIMA model are estimated through ANN. After that 

combining the resulted output from ARIMA and ANN yields the final required output. 

The same procedure is repeated for ARIMA and SVM. If 𝑒𝑡 denotes residuals from the 

linear model at time t then, 

𝑒𝑡 = 𝑦𝑡 − 𝐿̂𝑡                                   (3.17) 

Where 𝐿̂𝑡 represents the forecasting value by ARIMA model at time t, and then the 

residuals of ARIMA are estimated through SVM and ANN as follow: 

𝑒𝑡 = 𝑓(𝑒𝑡−1, 𝑒𝑡−2, … … 𝑒𝑡−𝑛) + ℇ𝑡       (3.17.1) 

Where 𝑓 is nonlinear function computed by ANN and SVM and ℇ𝑡 is random error. 

The resulted combined forecast is as given below: 

𝑦̂𝑡 = 𝐿̂𝑡 + 𝑁̂𝑡                                    (3.18) 

Where 𝑁̂𝑡 is the forecast value of equation (3.17.1). 

3.5 Data Description 

For empirical analysis stock return, exchange rate and inflation data set is used. The 

detail description of all the variables along their sources are given in Table 3.3. 
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Table 3.3: Data Description and Source 

Variables Definition Frequency Time 

period 

Source 

Stock return 𝑆𝑡 = 𝑙𝑜𝑔𝑝𝑡 − 𝑙𝑜𝑔𝑝𝑡−1 Monthly 1994-

2018 

Business 

Recorder & 

KSE 

Exchange 

rate 

The rate at which currency 

of two countries can be 

exchanged. 

𝐸𝑡 =
𝑅𝑠

𝐷𝑜𝑙𝑙𝑎𝑟
 

Monthly 1990-

2018 

SBP Monthly 

Statistical 

Bulletin  

Inflation 
𝜋𝑡 =

𝐶𝑃𝐼𝑡 − 𝐶𝑃𝐼𝑡−1

𝐶𝑃𝐼𝑡−1
 

Monthly 1990-

2018 

SBP Monthly 

Statistical 

Bulletin 

 

  



32 
 

CHAPTER 4 

RESULT AND DISCUSSION 

In this chapter data set comprises of stock return, inflation and exchange rate is 

used to assess the forecasting ability of discussed techniques in case of Pakistan. Data 

points from all these variables are divided into two parts in which last 24 observations 

of total data points characterized as the test set while remaining all initial observations 

represented as training set. So that authentic out of sample forecasts can be obtained 

and compared with the actual values. The discussion is started from the statistical 

properties of data and assumptions of data normality which is preliminary requirement 

for ARIMA forecasting. It is also useful to make data normal for ANN and SVM to 

attain more accuracy in forecasting but due their nonparametric properties, it is not 

considered necessary to make data normal for these models. After discussing the nature 

of data proposed models will be applied in order to get out of sample forecast.  

4.1 Statistical and Graphical Description of Data 

Every different variable has distinct historical pattern and statistical characteristics, 

therefore various techniques perform dissimilarly on these different data sets. Jarque-

Bera Test (JB), descriptive statistics and time plot has been used to elaborate the 

historical pattern and statistical characteristics of three type of data sets such as 

inflation, stock return and exchange rate. Jarque and Bera (1987) gives two sided test 

based on the skewness and kurtosis coefficients to check either data came from a normal 

distribution or not. The null hypothesis for JB test is that the data is from normal 

distribution and the alternative is that the data is not normal distributed. The statistic of 

JB test is given as below: 

𝐽𝐵 = 𝑛 (
𝑆2

6
+

𝐾2

24
)                   4.1 
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Where 𝑛 specifies the sample size, 𝑆 is the skewness and 𝐾 is the kurtosis. Statistical 

description of all data sets is discussed in Table 4.1. 

Table 4.1: Data Summary Statistics 

Data Mean Std. 

Dev 

Skewness Kurtosis JB Probability Obs 

πt 
 

   0.007    0.007 
 

   0.441 

 

   0.415 

 

  13.9 

 

    0.001     343 

𝐸𝑡  

  4.408 0.495 
   

-0.386 

   

-0.933 

 

21.05 

     

    0.001     348 

𝛥𝐸𝑡 
 

  0.005 0.013 
 

  1.825 

 

 

   5.932 

 

 

712 

 

 

   0.001 

 

    347 

𝑆𝑡 
 

  0.009   0.084 
 

  -0.972 

 

  4.697 

 

 

323.1 

 

   0.001     294 

In Table 4.2 JB test indicate that none of the data set is normal. Inflation data has 

positive value of skewness its mean data is skewed to right and kurtosis is less than 3 

which implying that data distribution is platykurtic. Exchange rate at level with negative 

skewness value having kurtosis below than 3 depicts non normal distribution of data 

that is left skewed and have leptokurtic distribution. While exchange rate at 1st 

difference shows opposite data statistics with positive value of skewness which indicate 

that data has a lengthy right tail. The distribution with kurtosis greater than 3 is said to 

be leptokurtic or fat tailed. Stock return also shows abnormal distribution with negative 

value of skewness which implies that distribution has long left tail or skewed to the left. 

The kurtosis value greater than 3 is supposed to be leptokurtic distribution. In general 

mostly time series data give more information than skewness and kurtosis statistics and 

have more importance in time series analysis. 

The line plots of all the data sets are provided in Figure 4.1, 4.2, 4.3 and 4.4 to judge 

the pattern of data either it shows stationary or non-stationary behavior. The basic 
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concern for time plot is to check the fluctuations and trend in time series data which 

might be seasonal or nonseasonal. 

 

Figure 4.1: Inflation Rate 

Figure 4.2: Exchange Rate at level 

 

Figure 4.3: Exchange Rate after 1st difference 
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Figure 4.4: Stock return 

It can be seen from plots of inflation and stock return in Figure 4.1 and 4.4 respectively 

that these series are fluctuating around constant mean level. So we consider both of 

these data sets are stationary with little bit unexpected variation. Also no structural 

break has been found in inflation but in case of stock return it exhibits little troublesome. 

Figure 4.2 exhibits a line plot of log of exchange rate series which showing an upward 

trend and it can be easily deduced that exchange rate is nonstationary at level. Whereas 

in Figure 4.3 1st difference of log of exchange rate is fluctuating around zero mean level. 

ADF statistic is further implemented on the series to get the statistical counter part of 

stationarity and non-stationarity. 

Table 4.2: ADF test statistics for all series 

Series Deterministic  part Lags 𝑻𝒄𝒂𝒍 Integration order 

𝜋𝑡 None 6 -5.38 𝐼(0) 

𝐸𝑡 Drift 7 -2.24 𝐼(1) 

𝛥𝐸𝑡 None 7 -5.42 𝐼(0) 

𝑆𝑡 None 6 -6.08 𝐼(0) 

 

As in the Table 4.2 calculated values for inflation, and stock return at level are less than 

critical values, so we reject the null hypothesis and conclude that series has no unit root 
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at 5% significance level. But in case of exchange rate it has unit root at level because 

its calculated value is greater than its critical value but after taking the 1st difference it 

become stationary. Now after data interpretation, next step is modeling of all discussed 

data sets and we will proceed from ARIMA then go as ANN, SVM and Hybrid models. 

4.2 Analysis of series through ARIMA modeling 

The analysis of ARIMA modeling is proceeded by following the iterative steps of Box 

and Jenkins methodology accordingly. 

4.2.1 Inflation series 

Identification step of ARIMA model starts from autocorrelations (ACF) and partial 

autocorrelations (PACF) plots of the series which are used to identify the significant 

lags of the model. Plots for ACF and PACF are given below in Figures 4.5 and 4.6 

respectively. 

 

Figure 4.5: ACF of inflation series 

 

Figure 4.6: PACF of inflation series 

Identification of seasonal and nonseasonal lags through given plots of correlogram are 

made as following. ACF and PACF of inflation series up to lags 50 are presented in 
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Figure 4.5 and 4.6 respectively. If spikes in ACF and PACF at specific lags lie outside 

the dotted line which shows ±
2

√𝑇
 confidence interval, it would be declare as significant 

lag otherwise not. In order to identify seasonal lags, spikes at seasonal lags will be 

considered. It can be seen from Figure 4.5 and 4.6 that there is seasonal behavior in the 

data set of inflation because both plots for ACF and PACF exceeds the significance 

bound at lags 12, 24, and 36. In addition with ACF which is signicant at 48 lag and also 

shows significancy to some extent at 13, 25, and 37 lags. Which implies the significant 

seasnonal autocorrelation and therefore, our model beome seasonal ARIMA. 

In case of nonseasonal behaviour it can be seen from plots that spikes at lags1, 3 and 9 

exceeds the significant level in both functions. Also it can be noted from plots of ACF 

and PACF that no other lags are much significant beyond the 9th lag. General model for 

ARIMA based on correlogram become as 𝐴𝑅𝐼𝑀𝐴(9,0,9)(1,0,2)𝑆. Excluding the 

insignificant lags by using general to specific methodology, the specific ARIMA model 

is (9,0,1)(1,0,2)𝑆.Subsequent step is to estimate specific equation and after diagnostic 

checking, it can be used for forecasting. In next step estimation of the selected ARIMA 

model for inflation is done. The statistics of the estimated model are given below in 

Table 4.3. 

Table 4.3: Model results of inflation 

Lags Coefficients Standard errors t-statistics 

AR(1) 0.584 0.142 4.112 

AR(3) 0.170 0.077 2.208 

AR(9) 0.113 0.047 2.404 

MA(1) -0.399 0.160 -2.493 

SAR(1) 0.967 0.023 42.043 

SMA(1) -1.008 0.065 -15.508 

SMA(2) 0.205 0.068 3.015 

σ2 = 3.737e-05,  Log Likelihood = 1167.14, AIC = -2318.27 
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Where sigma^2 is the value of constant variance which model assumed, the value of 

log likelihood shows the probability of deriving the data we have observed and AIC 

represents the performance of selecting the best possible model among others based on 

its minimum value. Mathematically, the estimated model can be written as: 

(1 − 0.584𝐿)(1 − 0.17𝐿3)(1 − 0.113𝐿9)(1 − 0.967𝐿12)𝜋𝑡

= (1 − 0.399𝐿)(1 − 1.008𝐿24)𝜀𝑡                                  (4.2) 

Next step is diagnostic checking to discern as there is no information left in error terms 

(i.e. error terms are white noise). 

After the estimation of the model diagnostic checking is made and statistics of applied 

portmanteau test and JB test are given below in the Table 4.4. 

Table 4.4: ARIMA model fit (𝟗, 𝟎, 𝟏)(𝟏, 𝟎, 𝟐)𝟏𝟐 for inflation 

Test Chi-square Lags P-Value 

JB Test 1.504 - 0.4713 

Autocorrelation LM Test 4.477 12 0.9732 

Heteroscedasticity LM 

Test 

60.406 12 0.000 

 

JB test (p-value >.05 ) in Table 5 shows that residual are normally distributed and LM 

test (p-value>.05) implies that we accept the null hypothesis i.e. there is no 

autocorrelation among residuals. But LM test for heteroskedasticity has p-value<.05 

which indicate that there is problem of heteroscedasticity. Except the LM test for 

heteroskedasticity all other tests meet the assumptions of having no patterns in the 

residuals, after diagnose checks the next step is forecasting through estimated model. 

BDS test is applied to check the nonlinear dependencies among the residual and in case 

of nonlinear presence, the obtained residuals from ARIMA will  be further used for 
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nonlinear forecasting through hybrid models. The statistics of BDS test are given in 

Table 4.5 as: 

Table 4.5: BDS test results for residuals of inflation series 

𝒎 p-values z-statistics 

2 0.026 2.226 

3 0.000 3.816 

4 0.000 4.193 

5 0.000 4.690 

 

Table 4.5 for all embedding dimension levels show that the null hypothesis of iid is 

rejected and there direct evidence of nonlinear dependence in inflation series. The 24 

months ahead forecast for inflation series are done from ARIMA(9, 0, 1)(1, 0, 2)12. 1 

to 24 period ahead forecasts and actual values on different forecast horizon with their 

errors and absolute errors (AE) are given below in Table 4.6. 

Table 4.6: Actual versus forecasted values of inflation from ARIMA 

Months Actual values Forecast values    Error AE 

1 -0.00296   0.00833   -0.01129 0.01129 

4 0.002082   0.00168    0.00040 0.00040 

8 0.008369   0.00660    0.00176 0.00176 

12 0.003448  0.00966   -0.00621 0.00621 

16 0.003633  0.00249    0.00115 0.00114 

20 0.003008  0.00537   -0.00236 0.00236 

24 0.009319  0.00984   -0.00052 0.00052 

 

Above Table 4.6 consist of forecasts and actual values with their corresponding errors, 

which shows that ARIMA model provided relatively good forecasts. Now we check 
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how graphical representation of forecasted and actual values looks like which are given 

as in Figure 4.7: 

 

Figure 4.7: Actual versus forecasted values of inflation by ARIMA 

In Figure 4.7 dash line shows forecast values whereas solid line represents actual 

values. The graphical representation indicate that selected ARIMA model tried its best 

to capture the actual values. 

4.2.2 Return on exchange rate 

For Identification of the model, plots for ACF and PACF of exchange rate at 1st 

difference known as return on exchange rare are given below in Figure 4.8 and 4.9 

respectively. Which are used for model identification purpose. 

 

Figure 4.8: ACF of return on exchange rate 
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Figure 4.9: PACF for return on exchange rate 

ACF and PACF of return on exchange rate series up to 50 lags are presented in Figure 

4.8 and 4.9 respectively for Identification of seasonal and nonseasonal lags. As 

discussed earlier in case of inflation series that dotted line shows ±
2

√𝑇
 confidence 

interval, So any specific lag spikes either it would be seasonal or nonseasonal exceeds 

from this line will be considered significant. It can be seen from Figure 4.8 that spikes 

at nonseasonal lags 1, 2 and 11 and one seasonal lag at 12 seems to be significant. 

Whereas in case of PACF in Figure 4.9, it can be seen that only nonseasal spikes at lag 

1 and 11 shows significant behaviour. According to the correlogram our general model 

for ARIMA will become as 𝐴𝑅𝐼𝑀𝐴(11,0,11)(0,0,1)𝑆 with intercept. Excluding the 

insignificant lags one by one the remaining significant lags are estimated in next step 

of estimation. The next stage is estimation of the selected model for return on exchange 

rate series. Table 4.7 consist of the statistics of the estimated specific model which is 

given as below. 

Table 4.7: Model results of return on exchange rate 

    Lags Coefficients Standard errors t-statistics 

 Intercept 0.005 0.001 4.08 

  AR(1) 0.422 0.049 8.67 

 AR(11) -0.348 0.126 -2.78 

 MA(11) 0.478 0.131 3.65 

 SMA(1) 0.212 0.070 3.02 

σ^2 = 0.00013:  log likelihood = 983.85,  AIC = -1955.69 
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Mathematical equation for chosen ARIMA model can be written as: 

(1 − 0.422𝐿)(1 + 0.348𝐿11)𝐸𝑡

= 0.005 + (1 + 0.478𝐿11)(1 + 0,212𝐿12)𝜀𝑡                     (4.3) 

Next step is diagnostic checking to determine as there is no information left in error. 

The test statistics of residuals for estimated model are given below in Table 4.8 as: 

Table 4.8:ARIMA Model Fit (𝟏𝟏, 𝟎, 𝟏𝟏)(𝟎, 𝟎, 𝟏)𝟏𝟐 for return on exchange rate 

Test    Chi-square   Lags         P-Value 

JB test       1.504           0.0001 

Autocorrelation LM 

Test 

       4.477     12          0.9222 

Heteroscedasticity 

LM Test 

      60.406      12           0.0001 

 

From Table 4.8, it can be seen that there is no autocorrelation among residuals but it 

has the problem of heteroskedasticity and error terms are not normally distributed. 

Further BDS test is applied to check the nonlinear dependencies among the residual. 

The statistics of BDS test are given in Table 4.9 as: 

Table 4.9: BDS test results for residuals of return on exchange rate 

𝒎 p-values z-statistics 

2 0.000 10.06 

3 0.000 9.905 

4 0.000 9.673 

5 0.000 4.690 
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BDS test results from Table 4.9 clearly suggest that reject the null hypothesis that series 

are linearly dependent. As many pairs of specific models was went through diagnostic 

check but the selected ARIMA(11, 0, 11)(0, 0, 1)12 model remained best among all 

others, next step is of forecasting.  

1 to 24 months ahead forecasts are done, forecast against actual values with their 

respective errors and absolute errors are given in Table 4.10 as: 

Table 4.10: Actual versus forecasted values of return on exchange rate by 

ARIMA 

Months Actual values Forecast values Error AE 

1  0.00005 0.00422 -0.00417 0.00417 

4  0.00005 0.00486 -0.00480 0.00480 

8 -0.00111 0.00437 -0.00548 0.00548 

12  0.03116 0.00506  0.02610 0.02609 

16  0.02948 0.00442  0.02505 0.02505 

20 -0.00454 0.00451 -0.00906 0.00906 

24  0.03596 0.00499  0.03098 0.03098 

 

Above Table contains the forecasts and actual values with their corresponding errors, 

which shows its error increases as forecasts horizon increases from 1 to 24. The 

graphical representation of actual and forecasted values is given as Figure 4.10: 

 

Figure 4.10: Actual versus forecasted values of return on exchange rate by 

ARIMA 
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In Figure 4.10 dash line shows forecast values and solid line shows actual values. The 

graphical representation indicate that selected ARIMA model do not capture actual 

direction of real values. Because straight solid line shows that its forecast values almost 

remain consistent over the period from 1 to 24.  

4.2.3 Stock return series 

Plots for ACF and PACF of exchange rate at level are given below in Figure 4.11 and 

4.12 respectively, which are used for model identification. 

 

Figure 4.11: ACF for stock return 

 

Figure 4.12: PACF for stock return 

For the identification of seasonal and nonseasonal lags, plots for ACF and PACF of 

stock return series up to 50 lags are presented in Figure 4.11 and 4.12 respectively. It 

can be seen from Figure 4.11 that spikes at nonseasonal lags 5 and 15 exceeds the 

significant bound. While in case of PACF in Figure 4.12, it can be seen that nonseasal 

spikes at lag 5, 8 and 15 are seems to be significant. According to the correlogram our 
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general model of ARIMA become as 𝐴𝑅𝐼𝑀𝐴(15,0,15) with intercept and removing 

the insignificant lags one by one the specific model is given as 𝐴𝑅𝐼𝑀𝐴(15,0,0) with 

intercept. 

In next step estimation of the selected ARIMA model for stock return is done and the 

statistics of the estimated specific model are given below in Table 4.11. 

Table 4.11: Model results of stock return 

    Lags Coefficients Standard errors t-statistics 

 Intercept 0.011 0.005 2.46 

  AR(15) -0.137 0.06 -2.82 

σ^2 = 0.0074:  log likelihood = 279.02,  AIC =-552 

 

 

It can be written in mathematical equation form as: 

𝑆𝑡 = 0.011 − 𝑆𝑡−15 + 𝜀𝑡                          (4.4) 

Subsequent step is diagnostic checking to determine as there is no information left in 

error terms. The test statistics of residuals for estimated model are given below in Table 

4.12 as: 

Table 4.12: ARIMA Model Fit (15, 0, 0) with intercept on stock return 

Test    Chi-square   Lags         P-Value 

JB test 238.71 - 0.0001 

Autocorrelation LM 

Test 

18.85 12 0.54 

Heteroscedasticity 

LM Test 

15.88 12 0.2 

 

From Table 4.12, it can be noted that there is no problem of serial correlation and 

heteroskedasticity as well in the selected model. But the only problem which could not 

be fixed during choosing the specific model is the normal distribution of error terms. 
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Now BDS test is applied to check the nonlinear dependencies among the residual of 

stock return obtained through ARIMA model. The statistics of BDS test are given in 

Table 4.13 as: 

Table 4.13: BDS test results for residuals of stock return 

𝒎 p-values z-statistics 

2 0.003 2.959 

3 0.002 3.134 

4 0.000 3.368 

5 0.000 4.846 

 

From Table 4.13, it can be concluded that stock return series is not linearly dependent. 

Now forecasting of the stock return are done from 1 to 24 months ahead by selected 

model after diagnostic check. Forecasts and actual values from 1 to 24 period ahead on 

different forecasts horizon with their errors and absolute errors are given below in Table 

4.14. 

Table 4.14: Actual versus forecasted values of stock return by ARIMA 

Months Actual 

values 

Forecast 

values 

Error AE 

1 0.01969 0.00474 0.01495 0.01495 

4 0.02349 0.01934 0.00416 0.00416 

8 -0.11026 0.00767 -0.11793 0.11793 

12 0.01145 0.01037 0.00109 0.00109 

16 -0.00157 0.01221 -0.01378 0.01378 

20 -0.022976 0.01114 -0.03412 0.03412 

24 -0.088486 0.01198 -0.10046 0.10046 

 

Above Table contains the forecast and actual values with their corresponding errors, it 

can be seen from Table 4.14 that overall error increased as forecasts horizon move from 
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1 to 24. The graphical representation of actual and forecasted values are given as in 

Figure 4.13: 

 

Figure 4.13: Actual versus forecasted values of ARIMA for stock return 

In Figure 4.13 dashed line shows forecast values and solid line shows actual values. 

The graph shows straight line of forecasts values on average represents the real values 

but  do not succeed to capture direction of the return.  

4.3 Analysis of all Series through ANN Modeling 

The analysis of ANN modeling is proceeded by following the discussed ANN 

methodology in section 3.2 accordingly. 

4.3.1 ANN Modeling for Inflation 

The plot of ANN architecture is given in Figure 4.14 for inflation series which was 

selected after a careful consideration with minimum MSE (0.000) by following all 

discussed steps in section 3.2.2: 
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Figure 4.14: ANN Architecture for inflation 

The diagram of multilayer perceptron indicate 21 input variables in which 10 nodes 

represents autoregressions or lags and 11 nodes shows deterministic dummies with 3 

hidden nodes and 100 repetitions. Mathematically, it can be written as: 

             𝜋𝑡 =  𝑤0+∑ 𝑤𝑗. 𝑔 3
𝑗=1 (𝑤0.𝑗+𝑤𝑗(𝑤1𝜋𝑡−1 + 𝑤2𝜋𝑡−2 + 𝑤3𝜋𝑡−3 + 𝑤4𝜋𝑡−4 +

                          𝑤5𝜋𝑡−5 + 𝑤6𝜋𝑡−6 +  𝑤7 𝜋𝑡−7 + 𝑤8𝜋𝑡−8 + 𝑤9𝜋𝑡−9 + 𝑤12𝜋𝑡−12 +

                           ∑ 𝑤𝛿𝑖𝐷𝑖
11
𝑖=1 )) + 𝑒𝑡                                                                                        (4.6) 

Equation (4.6) is the specific equation of (3.5) general equation for ANN modeling 

which shows the number of inputs and hidden nodes used in estimation. Next step is of 

future forecasts and it can be done by using selected best suited model. The forecast 

values from 1 to 24 points ahead are given in Table 4.15 on different steps with their 

error and absolute errors. 

Table 4.15: Actual versus forecasted values of inflation by ANN 

Months Actual 

values 

Forecast 

values 

    Error    AE 

1 -0.00296 0.003928 -0.00688 0.006884 

4 0.002082 0.002698 -0.00062 0.000615 

8 0.008369 0.005752 0.002617 0.002617 

12 0.003448 0.008345 -0.0049 0.004896 

16 0.003633 0.003225 0.000408 0.000408 

20 0.003008 0.005595 -0.00259 0.002587 

24 0.009319 0.009536 -0.00022 0.000217 
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Above Table contains the forecasts and actual values with their respective errors which 

shows ANN forecasts are good based on errors as errors are not much wide, 

visualization of these values are given in Figure 4.15 to check the gap between actual 

and forecasts values. 

 

Figure 4.15: Actual versus forecasted values of inflation through ANN 

Figure 4.15 represents the dashed line of forecast values while solid line indicating the 

actual values. It can be seen from Figure that ANN model remain good in capturing the 

direction of inflation series and giving overall good performance in forecasting. 

4.3.3 ANN Modeling for Return on Exchange Rate 

The plot of ANN architecture is given in Figure 4.16 for return on exchange rate which 

was selected after a careful consideration with minimum MSE (0.0001) by following 

all discussed steps: 

 

Figure 4.16: ANN Architecture for return on exchange rate 
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The diagram of multilayer perceptron indicate 10 input variables that represents 

autoregressions or lags with 3 hidden nodes and 100 repetitions. Mathematically, it can 

be written as: 

                         𝐸𝑡 =  𝑤0+∑ 𝑤𝑗 . 𝑔 3
𝑗=1 (𝑤0.𝑗+𝑤𝑗(𝑤1𝐸𝑡−1 + 𝑤2𝐸𝑡−2 + 𝑤3𝐸𝑡−3 +

                                        𝑤4𝐸𝑡−4 + 𝑤5𝐸𝑡−5 + 𝑤6𝐸𝑡−6 +  𝑤7 𝐸𝑡−7 + 𝑤8𝐸𝑡−8 + 𝑤9𝐸𝑡−9 +

                                          𝑤10𝐸𝑡−10 + 𝑒𝑡     (4.7) 

Equation (4.7) is the specific form of general equation of (3.5) which is extracted for 

the estimation of return on exchange rate through ANN. The next step is of forecasting 

for return on exchange rate through ANN modeling. 

1 to 24 step ahead forecasts are done while Table 4.16 possess the actual and forecasts 

values of return on exchange rate on different steps with their corresponding errors and 

absolute errors. 

Table 4.16: Actual versus forecasted values of return on exchange rate by ANN 

Months Actual 

values 

Forecast 

values 

    Error    AE 

1  0.00005 0.00178 -0.00173 0.00173 

4  0.00006 0.00559 -0.00554 0.00554 

8 -0.00111 0.00877 -0.00988 0.00988 

12  0.03116 0.01227  0.01889 0.01889 

16  0.02948 0.01591  0.01357 0.01357 

20 -0.00454 0.01974 -0.02428 0.02428 

24  0.03596 0.02332  0.01265 0.01265 

 

Above Table 4.16 contains the forecasts and actual values with respective forecast 

errors, it can be seen from Table that error increases with successive forecasts. The 

visualization of actual versus forecasted values are given in below in Figure 4.17. 

Which further portrait the gap among actual and forecasts values. 
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Figure 4.17: Actual versus forecasted values of return on exchange rate by ANN 

Figure 4.17 shows that ANN model make a upward regression line that indicates it just 

averages the actual values. It can be concluded from Figure 4.17 that ANN do not 

capture the direction of actual values which means it produced the poor forecasts for 

exchange rate. 

4.3.3 ANN Modeling for Stock Return 

The plot of ANN architecture is given in Figure 4.18 for stock return series which has 

minimum MSE (0.0075) by following all discussed steps: 

 

Figure 4.18: ANN Architecture for stock return 

The diagram of multilayer perceptron is given with 2 input variables that includes 5th 

and 8th  lags with 1 hidden nodes and 100 repetitions. Mathematically, it can be written 

as: 

                 𝑆𝑡 =  𝑤0+∑ 𝑤𝑗 . 𝑔 1
𝑗=1 (𝑤0.𝑗+𝑤𝑗(𝑤5𝑆𝑡−5 + 𝑤8𝑆𝑡−8)+ 𝑒𝑡                             (4.8) 
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Forecasts are made from 1 to 24 points ahead and Table 4.17 displays the actual and 

forecasts values on different steps. 

Table 4.17: Actual versus forecasted values of stock return by ANN 

Months Actual 

values 

Forecast 

values 

    Error    AE 

1 0.01969 0.01535 0.00433 0.00434 

4 0.02350 0.01930 0.00420 0.00420 

8 -0.11026 0.02683 -0.13709 0.13709 

12 0.01146 0.01486 -0.0034 0.00340 

16 -0.00157 0.01454 -0.01611 0.01611 

20 -0.02298 0.01374 -0.03672 0.03672 

24 -0.08849 0.01358 -0.10208 0.10208 

 

Above Table 4.17 contains the forecasts and actual values with respective forecast 

errors, which shows that size of errors increased as forecasts move from 1 to 24 steps 

ahead. Visualization of these values are given in Figure 4.19 to check the gap between 

actual and forecasts values. 

 

Figure 4.19: Actual versus forecasted values of stock return through ANN 

Figure 4.19 depicts that ANN model make a straight regression line that indicates it 

took average of the actual values. Figure 4.19 represents that ANN model did not 

perform well in case of stock return series. 

4.4.1 SVM Modeling on Inflation 

Tuning of SVM parameters are done according to discussed procedure in section 3.4. 

The optimum selection of parameters is made by tuning the SVM model by providing 
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a range of values to parameters based on 10 fold cross validation. Then that model is 

selected which made best performance based on minimum training mean square error 

(MSE). The graph for tuning of optimal hyper parameters is given as in Figure 4.20: 

 

Figure 4.20: Performance of SVM model on inflation series 

Figure 4.20 shows the performance of different models by using color coding in which 

the most darker region indicates the best model. Mean square error is exhibited on the 

right side of the Figure 4.20 by legend. One can again tune the model by narrowing 

rang on any darkest region in the plot to obtain further accuracy and lowest MSE. The 

best optimal values of parameters which obtained by this tuning are c=5, γ=0.04 and 

ɛ=0.1 on which SVM model give minimum training error for inflation data set. After 

selection of suitable SVM model, the next step is forecasting from that selected model.   

The forecast values of 1 to 24 steps ahead are obtained by SVM model whose 

performance remained best among tuning. Actual and forecasts values on different 

steps are given along with their errors and absolute errors in Table 4.18 as  following: 

Table 4.18: Actual versus forecasted values of inflation by SVM 

Months Actual values Forecast values Error AE 

1 -0.00296 0.00248 -0.00543 0.00543 

4 0.00208 0.00352 -0.00144 0.00144 

8 0.00837 -0.00105 0.00942 0.00942 

12 0.00345 0.00869 -0.00525 0.00525 

16 0.00363 0.00479 -0.00116 0.00117 

20 0.00301 0.00513 -0.00213 0.00213 

24 0.00932 0.01264 -0.00332 0.00332 
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This Table shows how error and absolute error between actual versus forecasts values 

shrink and widened among different time horizons. Now the graphical representation 

in Figure 4.21 will show further detailed of gap among actual and forecasts values over 

the time horizon. In which dashed line represents the SVM forecasts values while solid 

line indicate actual values. 

 

Figure 4.21: Actual versus forecasted values of inflation through SVM 

Figure 4.21 shows that SVM model almost remain good in capturing the direction of 

inflation series and provided overall good performance in forecasting. 

4.4.2 SVM modeling on return on exchange rate 

The graph for SVM parameters performance on different range of values while tuning 

the model is given below in Figure 4.22. 

 

           Figure 4.22: Performance of SVM model on return on exchange rate series 
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Above graph 4.22 shows the tuning performance of SVM model which select the 

optimal values for hyperparameters based on 10 fold cross validation. The finest values 

of cost and gamma were obtained by narrowing the rang according to darkest region of 

the plot. The more darker region means the more accurate model would be obtained by 

lowest MSE. The best chosen optimal parameters for return on exchange rate are c=10, 

γ=0.17 and ɛ=0.1 on which SVM model give minimum training error. Once best model 

is selected while tuning then forecasts can be done through this model. 

Forecasts are done by the best SVM model and their values on different time periods 

are compared with actual values. Actual values and forecasts values on different 

forecast steps with their corresponding errors are given below in Table 4.19: 

Table 4.19: Actual versus forecasted values of return on exchange rate by SVM 

Months Actual values Forecast values Error AE 

1 0.00005 0.00165 -0.0016 0.0016 

4 0.00005 0.00118 -0.00113 0.00113 

8 -0.00111 -0.00143 0.00032 0.00032 

12 0.0312 0.00008 0.0311 0.03108 

16 0.0295 0.0204 0.00904 0.00904 

20 -0.00454 0.0132 -0.0177 0.01772 

24 0.036 0.0063 0.0297 0.02966 

 

Above Table 4.19 contains the actual and forecast values on different time horizons 

with their respective errors. Table shows forecast errors relatively increased from 

beginning to end. Now below given Figure 4.23 will depict the gap between actual and 

forecasts values over the forecasts horizon. 
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Figure 4.23: Actual versus forecasted values of return on exchange rate by SVM 

Figure 4.23 shows SVM model tried to capture the trend of return on exchange rate 

which remain good in beginning but become poor as moving forward from 1 to 24 

points ahead. 

4.4.3 SVM Modeling on Stock Return 

The best optimal parameters are c=10, γ=0.2 and ɛ=0.1 for stock return on which SVM 

model give minimum training error. The graph for SVM parameters performance on 

different range of values while tuning the model is given in Figure 4.24 as: 

 

Figure 4.24: Performance of SVM model on stock return series 
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Above graph 4.24 shows the tuning performance of SVM model on different values 

which selects the optimal values for hyperparameters based on 10 fold cross validation. 

It can be seen in the Figure 4.24 that value of gamma remain round about 0.20 for 

different ranges of cost function which providing darkest blue region throughout the 

plot. 

Forecasts by chosen best SVM model and their values on different time periods are 

compared with actual values. Actual values and forecasts values with their 

corresponding errors are given below in Table 4.20: 

 

Table 4.20: Actual versus forecasted values of stock return by SVM 

Months Actual values Forecast values Error AE 

1 0.01969 0.03363 -0.01394 0.01394 

4 0.02349 0.00061 0.02289 0.02286 

8 -0.11026 0.06734 -0.17761 0.17761 

12 0.01146 -0.04845 0.05991 0.05991 

16 -0.00157 0.01669 -0.01826 0.01826 

20 -0.02298 0.02564 -0.04862 0.04862 

24 -0.08849 -0.00206 -0.08643 0.08643 

 

Above Table 4.20 contains the actual and forecast values on different time horizons 

with their respective errors which shows error are increased as moving from 1 step to 

24 step. Below Figure 4.25 shows its graphical representation. 
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Figure 4.25: Actual versus forecasted values of stock return through SVM 

In Figure 4.25 dashed lines depicts forecast values while solid line represents actual 

values. Figure shows SVM model tried to capture the direction of stock return to some 

extent but overall its performance remain poor in case of stock return. 

4.5 Analysis of all Series by Hybrid Models 

Our fundamental goal of hybrid modeling is to improve the forecast accuracy by using 

the unique features of both linear and nonlinear models as discussed earlier in chapter 

no 3. Because it is considered that none of the model can perform well in all 

circumstances, therefore proposed hybrid approach with both linear and nonlinear 

qualities can give good alternative to time series forecasts. Zhang’s (2003) strategy is 

used to combine the proposed models. 

4.5.1 Analysis of all Series through Hybrid ARIMA-ANN 

As hybrid model is a sum of linear forecasts from ARIMA and forecasts of its residuals 

from ANN. The linear forecasts from ARIMA model were provided under section 4.2, 

now in order to obtain the nonlinear forecasts of its residuals the procedure of ANN is 

as followed. 
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4.5.1.1 Estimation of Inflation by Hybrid ARIMA-ANN  

The ANN architecture for residuals of ARIMA from inflation data set with 0 MSE is 

given in Figure 4.26 as: 

 

Figure 4.26: ANN Architecture for residuals of inflation 

12 input lags with 7 hidden nodes and 100 repetitions are used for residuals forecasts. 

Mathematically, it can be written as: 

                      𝑒𝑡 =  𝑤0+∑ 𝑤𝑗 . 𝑔 7
𝑗=1 (𝑤0.𝑗+𝑤𝑗(∑ 𝑤𝑖𝑒𝑡−𝑖

12
𝑖=1 ) + ℇ𝑡                              (4.9) 

Where equation (4.9) represents the inputs and hidden nodes used for the forecasting of 

residuals from ARIMA. Forecasts of residual are obtained from fitted ANN model, now 

combining the both forecasts from ARIMA and ANN which would have equation as: 

𝑦̂𝑡 = 𝐿̂𝑡,𝐴𝑅𝐼𝑀𝐴 + 𝑁̂𝑡,𝐴𝑁𝑁                                      (4.10)  

Actual versus forecasts values on different horizons are given in following Table 4.21 

with their respective errors and absolute errors. 

   Table 4.21: Actual versus forecasted values of inflation by ARIMA-ANN 

Months Actual values Forecast values     Error    AE 

1 -0.00297 0.00247 -0.00542 0.00542 

4 0.00208 0.00512 -0.00304 0.00304 

8 0.00837 0.00612 0.00225 0.00225 

12 0.00345 0.00955 -0.0061 0.00610 

16 0.00363 0.00365 -0.00002 0.00002 

20 0.00301 0.00482 -0.00181 0.00181 

24 0.00932 0.00979 -0.00047 0.00047 
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It can be concluded from the Table 4.21 that hybrid model of ARIMA-ANN perform 

well for inflation series as corresponding errors are not huge. The graphical illustration 

of actual versus forecasted values are given below in Figure 4.27 as: 

 

Figure 4.27: Actual versus forecasted values of inflation from ARIMA-ANN 

It can be seen from Figure 4.27 that hybrid ARIMA-ANN model provided the good 

forecasts of inflation and it captured the direction of inflation well. 

4.5.1.2 Estimation of return on exchange rate by Hybrid ARIMA-ANN  

The ANN architecture for residuals of ARIMA from return on exchange rate having 

MSE 0.0001 is given below in Figure 4.28. 

 

Figure 4.28: ANN Architecture for residuals of return on exchange rate 
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12 input lags with 5 hidden nodes and 100 repetitions are used for residuals forecasts. 

Mathematically, it can be written as: 

                         𝑒𝑡 =  𝑤0+∑ 𝑤𝑗. 𝑔 5
𝑗=1 (𝑤0.𝑗+𝑤𝑗(∑ 𝑤𝑖𝑒𝑡−𝑖

12
𝑖=1 ) + ℇ𝑡                            (4.11) 

The next step is of combined forecasting in which forecasts of residual obtained from 

ANN model are combined with the forecasts values of ARIMA, here actual versus 

forecasts values are given in Table 4.22 on different steps with their errors: 

Table 4.22: Actual versus forecasted values of return on exchange rate by  

ARIMA-ANN 

Months Actual values Forecast values     Error    AE 

1 0.00005 0.00367 -0.00362 0.00362 

4 0.00005 0.00618 -0.00613 0.00613 

8 -0.00111 0.00559 -0.00671 0.00671 

12 0.031159 0.00817 0.02299 0.02299 

16 0.029478 0.00853 0.02095 0.02095 

20 -0.00454 0.01023 -0.01478 0.01478 

24 0.035964 0.01199 0.02397 0.02397 
 

Table 4.22 shows forecast errors are small in beginning but become large as the time 

horizon increased. Figure 4.29 comprises of graphical depiction of actual versus 

forecasted values as: 

 

Figure 4.29: Actual versus forecasted values of return on  exchange rate from 

hybrid ARIMA-ANN 
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It can be seen from Figure 4.29 that hybrid ARIMA-ANN model did not captured the 

trend of return on exchange rate well as it gives the upward straight line of forecast 

values. So it can be concluded that hybrid ARIMA-ANN produced the poor forecasts 

for return on exchange rate series. 

4.5.1.3 Estimation of stock return by hybrid ARIMA-ANN  

The ANN architecture for residuals of ARIMA from stock return series that have 

training MSE 0.005, is given below in Figure 4.30: 

 

Figure 4.30: ANN Architecture for residuals of stock return 

The architecture has 8 inputs with 4 hidden nodes. Mathematical equation for this 

architecture could be as: 

                                𝑒𝑡 =  𝑤0+∑ 𝑤𝑗. 𝑔 4
𝑗=1 (𝑤0.𝑗+𝑤𝑗(∑ 𝑤𝑖𝑒𝑡−𝑖

8
𝑖=1 ) + ℇ𝑡                   (4.12) 

Where equation (4.12) represents the input and hidden nodes used for the estimation of 

residuals of ARIMA by ANN model. 

The combined forecasts values of stock return from 1 to 24 steps ahead are obtained 

from hybrid ARIMA-ANN model. Table 4.23 indicates the actual and forecast values 

on different steps with their respective errors: 
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Table 4.23: Actual versus forecasted values of stock return by ARIMA-ANN 

Months Actual values Forecast 

values 

    Error    AE 

1 0.01969 0.03592 -0.01623 0.01623 

4 0.02349 0.03241 -0.00891 0.00891 

8 -0.11026 0.03104 -0.1413 0.14129 

12 0.01146 0.02569 -0.01423 0.01423 

16 -0.00157 0.01566 -0.01723 0.01723 

20 -0.02298 0.02642 -0.0494 0.04939 

24 -0.08849 0.01746 -0.10595 0.10595 
 

Table 4.23 specifies that overall errors increased as forecasts horizons move from 1 to 

24 steps. The graphical representation of actual versus forecasted values are given 

below in Figure 4.31 as: 

 

Figure 4.31: Actual versus forecasted values of stock return from hybrid 

ARIMA-ANN 

It can be concluded from Figure 4.31 that forecasts performance of hybrid ARIMA-

ANN remained poor as it failed to capture the direction of stock return. 

4.5.2 Analysis of all Series through Hybrid ARIMA-SVM 

The hybrid model of ARIMA-SVM has similar procedure as discussed for ARIMA-

ANN in previous section. The forecasts of ARIMA and its residuals forecasts from 
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SVM is to be combined to obtain hybrid forecasts. Mathematically, it can be presented 

as: 

𝑦̂𝑡 = 𝐿̂𝑡,𝐴𝑅𝐼𝑀𝐴 + 𝑁̂𝑡,𝑆𝑉𝑀                                           (4.13) 

Where 𝑦̂𝑡 is the forecasted value at time t from hybrid ARIMAPSVM model, 𝐿̂𝑡,𝐴𝑅𝐼𝑀𝐴 

represents the linear forecasts from ARIMA and 𝑁̂𝑡,𝑆𝑉𝑀 represents the nonlinear 

forecasts of residuals of ARIMA by SVM model. 

4.5.2.1 Estimation of Inflation by Hybrid ARIMA-SVM 

As ARIMA forecasts already available in section 4.2, now its residuals forecasts are 

obtained by following the modeling procedure of SVM thoroughly. Tuning of SVM 

model is done to obtain the model which has MSE. The best optimal parameters are 

c=5, γ=5 and ɛ=0.1 for residuals of inflation from ARIMA, on which SVM model give 

minimum training error. The plot of the tuning model is given in Figure 4.32 to see the 

performance of all the models together: 

 

Figure 4.32: SVM performance on residuals of inflation 

The 1 to 24 steps ahead hybrid forecasts from ARIMA-SVM are made and actual versus 

forecasted values on different forecast horizons with their particular errors are given in 

Table 4.24 as: 
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Table 4.24: Actual versus forecasted values of inflation by ARIMA-SVM 

Months Actual values Forecast values Error AE 

1 -0.00296 -0.00236 -0.00059 0.00059 

4 0.00208 0.00168 0.00039 0.00039 

8 0.00837 0.00778 0.00059 0.00059 

12 0.00345 0.00404 -0.00059 0.00059 

16 0.00363 0.00304 0.00059 0.00059 

20 0.00301 0.00360 -0.00059 0.00059 

24 0.00932 0.00984 -0.00052 0.00051 

 

Table 4.24 indicate that forecasts error between actual and forecasts values did not 

changed much over the time and short values for errors shows that hybrid ARIMA-

SVM performed good in forecasting inflation series. The graphical representation of 

forecasted versus actual values is given below in Figure 4.33: 

 

Figure 4.33: Actual versus forecasted values of inflation from hybrid ARIMA-

SVM 

It can be noted from Figure 4.33 that hybrid ARIMA-SVM captured the direction of 

inflation very well which shows ARIMA-SVM model could perform well in case of 

forecasting time series data up to maximum level. 

4.5.2.2 Estimation of Return on Exchange Rate by Hybrid ARIMA-SVM 

The best optimal parameters are c=10, γ=10 and ɛ=0.1 for residuals of exchange rate 

from ARIMA, on which SVM model give minimum training error after tuning of the 
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model. The graph for SVM parameters performance on different range of values while 

tuning the model are given in Figure 4.34 as: 

 

Figure 4.34: SVM performance on residuals of return on exchange rate 

The interpretation of the above plot is same as other plots of SVM performance 

explained earlier. Darkest the blue region in plot means there are more possibility of 

obtaining the better model by narrowing the range gamma and cost values around the 

most darkest region. 

The hybrid forecasts on different horizons with their particular errors are given in Table 

4.25 as: 

Table 4.25: Actual versus forecasted values of return on exchange rate by   

ARIMA-SVM 

Months Actual values Forecast values     Error    AE 

1 0.00005 0.00127 -0.00122 0.00122 

4 0.00005 0.00127 -0.00122 0.00122 

8 -0.00111 0.00011 -0.00122 0.00122 

12 0.03116 0.02993 0.00123 0.00123 

16 0.02948 0.02826 0.00122 0.00122 

20 -0.0045 -0.0033 -0.00122 0.00122 

24 0.03596 0.03474 0.00122 0.00122 

 

Table 4.25 shows ARIMA-SVM hybrid do good in forecasting as it has little error 

throughout the forecasted step horizons.  



67 
 

The graphical portray of forecasted versus actual values is given as in Figure 4.35: 

 

Figure 4.35: Actual versus forecasted values of return on exchange rate from 

hybrid ARIMA-SVM 

Figure 4.35 indicates that hybrid ARIMA-SVM model performed good in case of  

return on exchange rate as it has little variance between the forecasted and actual values. 

It can be also seen from the Figure that it captured the right trend of return on exchange 

rate. 

4.5.2.2 Estimation of Stock Return by hybrid ARIMA-SVM 

The best optimal parameters are c=10, γ=1 and ɛ=0.1 for residuals of exchange rate 

from ARIMA, on which SVM model give minimum training error after tuning of SVM 

parameters. The graph for SVM parameters performance on different range of values 

while tuning the model is given below in Figure 4.36 as: 

 

Figure 4.36: SVM performance on residuals of stock return 
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Forecasts from 1 to 24 step ahead are made by selected best SVM model and then 

combining these forecasts to earlier obtained forecasts of ARIMA,  hybrid forecasts are 

obtained for stock return. The hybrid forecast on different horizons with their particular 

errors are given below in Table 4.26 for stock return as: 

Table 4.26: Actual versus forecasted values of stock return by ARIM-SVM 

Months Actual values Forecast values     Error    AE 

1 0.01969 0.01247 0.00722 0.00722 

4 0.02349 0.01953 0.00397 0.00397 

8 -0.11026 -0.10184 -0.00842 0.00842 

12 0.01146 0.00819 0.00327 0.00326 

16 -0.00157 0.00683 -0.0084 0.00840 

20 -0.02298 -0.01455 -0.00843 0.00843 

24 -0.08849 -0.08002 -0.00847 0.00847 

 

Likewise the other series ARIMA-SVM hybrid has also good forecast performance in 

stock return as the Table 4.26 indicate, it has relatively low errors throughout the whole 

time horizon. The graphical representation of forecasted versus actual values is given 

in Figure 4.37 

 

Figure 4.37: Actual versus forecasted values of stock return from hybrid 

ARIMA-SVM 
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The above Figure 4.37 shows hybrid model of ARIMA-SVM perform well in capturing 

the right direction of stock return. Figure indicates that there is very little difference 

among the forecasted and actual values which shows the preciseness of ARIMA-SVM 

hybrid model in capturing the right direction for stock return. 

The estimated results from all proposed models are discussed one by one on all data 

sets such as inflation, return on exchange rate and stock return so for. Furthermore to 

analyze the preciseness of forecasted values against actual values graphical comparison 

is made as well as loss functions such as Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE) are used. The statistical equations for used loss functions are 

given as: 

𝑅𝑀𝑆𝐸 = √
∑ (𝐴𝑡 − 𝐹𝑡)2𝑛

𝑡=1

𝑛
                       (4.13) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝐴𝑡 − 𝐹𝑡|

𝑛

𝑡=1

                                 (4.14)  

4.6 Forecasts performance comparison of all used models 

In this section performance of all models is discussed systematically for every data set 

used in analysis, in which RMSE and MAE are used to check the overall accuracy of a 

model forecasting ability. While graphs signifies that how much a model succeeded in 

capturing the right trend or direction of a data set. The Table 4.27 contains the used loss 

functions  values for inflation series based on test data from all models is given below. 
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Table 4.27:Loss errors of all models for inflation series 

Models 

ARIMA ANN SVM 

ARIMA-

ANN 

ARIMA-

SVM 

RMSE 0.004367 0.003654 0.004495 0.003977 0.000567 

MAE 0.003363 0.003038 0.003603 0.003143 0.000562 

 

Table 4.27 shows ARIMA-SVM hybrid model perform excellent as compared to other 

models based on RMSE and MAE. ANN has minimum RMSE and MAE after ARIMA-

SVM model while the hybrid model of ARIMA-ANN remain at 3rd position. Then 

ARIMA shows it has better performance then SVM based on used loss functions. The 

graphical representation of inflation series is given in Figure 4.38. 

 

 

Figure 4.38: Actual and forecast values of inflation for all models 
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In the Figure 4.38 solid lines indicate the actual values and dashed lines represents the 

forecast values for respective models. It can be seen from the Figure that all model 

seems to be good in capturing the direction of the actual values of solid line. But the 

ARIMA-SVM Hybrid model outperform all other models because it almost overlapped 

the actual values. Also hybrid model for ARIMA-ANN doing good in catching the 

trend. After these hybrid models, SVM do good then ANN and ARIMA remain at last 

position. One important thing can be noted that ANN and ARIMA both perform poor 

in catching the real direction of actual values in start than SVM model, but has lower 

loss errors than SVM. 

Next series for forecast performance evaluation of various models used is return on 

exchange rate. The Table 4.28 for its loss functions are given below as: 

Table 4.28: Loss errors of all models for exchange rate series 

Models 

ARIMA ANN SVM ARIMA-ANN ARIMA-SVM 

RMSE 0.017707 0.013309 0.015868 0.015421 0.001221 

MAE 0.012744 0.010720 0.010139 0.011975 0.001221 

 

Above Table shows that ARIMA-SVM hybrid model has lowest loss errors as 

compared to other models and ANN stands at second place because it has comparatively 

least RMSE and MAE compared to other models. The hybrid ARIMA-ANN and SVM 

relatively have mixed results as one performed better in RMSE while other has good 

performance in case of MAE. However, ARIMA has the highest loss errors as 

comparison with all other models. It can be concluded from the Table 4.28 that a 

suitable hybrid model can provide the better forecasts based on RMSE and MAE for 

return on exchange rate series than most of linear and nonlinear models. The next 
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graphical picture of return on exchange rate by all used models is given in Figure 4.39 

a: 

 

Figure 4.39: Actual versus forecast values of return on exchange rate for all 

models 

The hybrid model of ARIMA-SVM perform very well in capturing the real direction of  

return on exchange rate in which the dashed line that remain throughout close to actual 

values of solid line can be seen in part (e) of the Figure 4.39. After this single model of 

SVM can be seen in part (c) of the Figure which captured the actual direction of real 

values to some extent. However all other models perform very poor in catching the real 

trend of return on exchange rate, part (a) represents straight dashed line of ARIMA, 

while the other models like ANN and hybrid ARIMA-ANN in part (b) and (d) have the 

upward straight line. One more thing can be noted that SVM model comparatively 
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remain good in capturing the real trend of return on exchange rate than other models 

that have lower loss errors as compared to SVM except hybrid ARIMA-SVM. 

The different models forecasts performance for stock return series is discussed as 

following. The Table 4.29 has the loss functions of all models for stock return are as: 

Table 4.29: Loss errors of all models for stock return series 

Models 
ARIMA ANN SVM ARIMA-ANN ARIMA-SVM 

RMSE 0.049153 0.051883 0.069622 0.059136 0.007787 

MAE 0.036776 0.374887 0.058995 0.046278 0.007502 

 

It can be seen from above Table 4.29 that ARIMA-SVM hybrid model has minimum 

loss errors which shows it performed better than others. The RMSE and MAE of 

ARIMA is lowest after hybrid ARIMA-SVM but from Figure 4.39, it can be seen that 

ARIMA performed worse in capturing the direction of return than any other models as 

in part (a) of the Figure 4.39 straight dashed line represent ARIMA model. While in 

case of SVM model, it has higher loss errors when compared to other models except it 

superseded ANN in case of MAE but perform better after ARIMA-SVM hybrid in 

capturing the direction of stock return. Graphical representation of actual versus 

forecast values of stock return for all models is given in Figure 4.40  
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Figure 4.40: Actual and forecast values of stock return for all models 

Figure 4.40 indicate that like other two series hybrid model of ARIMA-SVM also 

outperformed other models in this data series as the dashed line of ARIMA-SVM in 

part (e) overwhelming the actual values of the stock return. All other model has poor 

performance while capturing the direction of return except SVM model which 

performed better as compared to others but also has weak performance. After detailed 

forecast performance evaluation based on two loss errors and graphical representation, 

it was noted that hybrid ARIMA-SVM performed well and surpassed all other models 

either ARIMA has heteroskedasticity problem or not. However, ARIMA performed 

relatively better and improved its position if there is no problem of heteroskedasticity 

but did not made a significant impact over the hybrid   of ARIMA-SVM. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

Time series forecasting is an active area of interest in many applications for research 

and policy process. The nature of data from different applications is unknown and 

complex. The ARIMA model has been dominated in many time series applications with 

the efforts of Box-Jenkins (1976). Latterly, ANN and SVM shows their well 

applicability in forecasting the time series with their nonlinear modeling applications. 

All of three model has an effective flexibility in forecasting time series data but none 

of these individually give always satisfactory performance. A lot of existing theoretical 

and empirical literature suggests that integration of two dissimilar models would be an 

effective way of achieving high degree of accuracy. Therefore in this study an attempt 

is made to explore the joint models with their individuals, in which linear ARIMA is 

combined with the nonlinear models like ANN and SVM. The fundamental objective 

of hybrid model is to take the advantage of both linear and nonlinear strength and to 

capture the diverse forms of relationship in time series data. The forecast performance 

of two hybrid models with their three independent models is evaluated through RMSE, 

MAE and graphical representation. Also forecast accuracy measured through absolute 

error on different time horizon. Three types of real data sets, namely Inflation, 

Exchange rate and Stock return are used for empirical analysis. Empirical results clearly 

indicate that ARIMA-SVM hybrid model outperformed all other models used in 

isolation and the other hybrid model of ARIMA-ANN built in this study. This 

comparison is made in terms of RMSE, MAE and graphical representation which is 

used to validate the directional prediction. It can be noted from results that all other 

models has the mixed results in terms of said accuracy measures including the ARIMA-

ANN hybrid model. So our study contributes in some way as in one hand it validates 
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the existing literature that combination of different models having unique and dissimilar 

qualities perform better than model used in isolation. And reduces the model 

uncertainty by unstable and changing pattern in the data which normally occur in 

statistical interpretation and time series forecasting. On the other hand, it contradicts on 

existing findings that all hybrid models can perform better in all cases because 

performance of hybrid ARIMA-ANN model cannot make satisfactory impact than 

individual models. One should make careful consideration while making the hybrid 

model. In our findings one thing also can be noted that this may be due to high volatility 

in our data set. So removing the volatility in data set an appropriate filter could be 

applied in order to achieve required outcomes. The credibility of ARIMA-SVM hybrid 

model also validated on different data sets in many existing literature like (Kumar 2014, 

Chen an Wang 2007 and Pai and Lin 2007).  The outclass achievement of  ARIMA-

SVM above other models is due to SVM applies structural risk minimization principle 

which minimizes an upper bound of the generalization error rather than minimizing the 

training error. Which ultimately leads to superior generalization performance as 

compared to other nonlinear models. The hybrid ARIMA-SVM model superiority 

shows that it could may be utilized by policy makers and investors in forecasting 

economic and financial data.  

It is recommended that the performance of ANN may be improved by applying some 

different methods of preprocessing and input selection and also using the alternative 

available training algorithms instead of RPROP. By experimenting different algorithms 

and input selection methods it would be interesting way to remove the volatility in data 

due to our current model fail to capture real trend of data. On other hand GARCH 

modeling could be used to solve the volatility problem in hybrid modeling instead of 

ARIMA, because it has limitations in resolving the volatility and it would be our next 
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research purpose to explore the hybrid modeling with GARCH. The forecast 

performance of used models also be improved by adding the relevant significant 

regressor terms with the lagged variables. Autoregressive Moving Average with 

Exogenous Variables (ARIMAX) model could be used for this purpose. ARIMAX 

model is an expansion of ARIMA model which works like a multivariate regression 

that take the advantage of ARIMA terms with additional independent variables to 

improve the forecast accuracy. 
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