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Abstract 

Kernel density estimation has number of applications in different fields such as Econometrics, 

Economics, Engineering, Agriculture, Signal processing and identifying accident hot spots etc. 

Kernel density estimation procedures need a number of decision such as choice between variable 

kernel density estimation (VKDE) and fixed kernel density estimation (FKDE). It has been 

proven that VKDE performs better than FKDE. However among the VKDE, one has to make 

choice of bandwidths selection algorithm and kernel functions. There are four general classes of 

bandwidth selection algorithm i.e. rule of thumb, Classical, Plug in and Bootstrap. The most 

popular algorithm one from each of these classes are Silverman rule of thumb (SRT), Least 

square cross validation (LSCV), Improve plug in (IPI), Exact bootstrap (EB) and one cannot find 

appropriate guideline for choice between these algorithms. In addition to bandwidth selection 

algorithm the VKDE also depend on kernel function. There are nine different type of kernel 

functions i.e. Epanechnikov, Bi-weight, Tri-weight, Gaussian, uniform, Triangular, Tri-cube, 

Cosine and Sigmoid. This study is aimed to help in the choice of kernel function and bandwidth 

selection algorithm. We compare four kernel function and four bandwidth selection algorithm 

via Monte Carlo simulation for ten different types of normal mixture distribution. Our results 

show that IPI bandwidth and epanechnikov kernel function is the best choice for Gaussian, 

kurtotic unimodal, tri-modal and double claw distribution. For the remaining six distributions the 

EB bandwidth performed well. 

 

 

Keywords: Kernel density estimation, Bandwidth selection algorithms, kernel function, SiZer, 

SiCon 



vii 
 

Contents  

Chapter 1 ....................................................................................................................................................... 1 

Introduction ............................................................................................................................................... 1 

1.2 Objective of the study ......................................................................................................................... 4 

1.3 Significance of the study ..................................................................................................................... 4 

1.4 Organization of the study .................................................................................................................... 4 

Chapter 2 ....................................................................................................................................................... 5 

Literature Review ...................................................................................................................................... 5 

2.1 Fixed Kernel density estimation ......................................................................................................... 6 

2.1.1 Problems with fixed kernel density estimators ............................................................................ 7 

2.2 Variable kernel density estimators ...................................................................................................... 7 

2.2.1 Balloon estimators/ VKDE .......................................................................................................... 8 

2.2.2 Sample point estimator/ VKDE ................................................................................................... 9 

2.3 Bandwidth selection methods ........................................................................................................... 11 

2.3.1 Rule of thumb algorithm ............................................................................................................ 11 

2.3.2 Classical bandwidth selection algorithm .................................................................................... 11 

2.3.3 Plug in algorithms ...................................................................................................................... 12 

2.3.4 Bootstrap bandwidth selection methods..................................................................................... 13 

2.4 Drawback of kernel function density estimators ............................................................................... 13 

2.5 Comparison of KDE’s using different bandwidth selection algorithms ........................................... 14 

2.5.1 Comparison of fixed kernel density estimators .......................................................................... 14 

2.5.2 Comparison of fixed vs Balloon/KNN kernel density estimators .............................................. 15 

2.5.3 Comparison of Fixed vs variable kernel density estimators ...................................................... 15 

2.6 Literature Gap ................................................................................................................................... 17 

Chapter 3 ..................................................................................................................................................... 18 

Methodology ........................................................................................................................................... 18 

3.1 Algorithm of variable kernel density estimator and AMISE ............................................................ 18 

3.2 Data generating process .................................................................................................................... 21 

3.2.1 Optimal bandwidth ..................................................................................................................... 22 



viii 
 

3.2.2 Pilot density estimation .............................................................................................................. 29 

3.2.3 Local bandwidth for variable kernel density estimation ............................................................ 30 

3.2.4 Variable bandwidth vector for kernel density estimator ............................................................ 30 

3.2.5 Variable kernel density estimation ............................................................................................. 30 

3.2.6 Mean integrated square error of variable kernel density estimation .......................................... 30 

Chapter 4 ..................................................................................................................................................... 31 

Significant zero crossing of derivative (SiZer) ....................................................................................... 31 

4.1 Testing hypothesis in SiZer............................................................................................................... 32 

4.1.1 Decision rule on the basis of confidence interval ...................................................................... 35 

4.2 Significant convexity (SiCon) ........................................................................................................... 36 

Chapter 5 ..................................................................................................................................................... 37 

Results and discussion ............................................................................................................................ 37 

5.1 Simulation results for Gaussian distribution ..................................................................................... 37 

5.2 Simulation results for kurtotic unimodal distribution ....................................................................... 38 

5.3 Simulation results for outlier distribution ......................................................................................... 39 

5.4 Simulation results for bi-modal distribution ..................................................................................... 40 

5.5 Simulation results of skewed unimodal distribution ......................................................................... 41 

5.6 Simulation results for strongly skewed distribution.......................................................................... 42 

5.7 Simulation results for tri-modal distribution ..................................................................................... 43 

5.8 Simulation results for double claw distribution ................................................................................ 44 

5.9 Simulation results for asymmetric claw ............................................................................................ 45 

5.10 Simulation results for smooth comb distribution ............................................................................ 47 

5.11 Real data analysis ............................................................................................................................ 48 

5.12 Checking significant modes and curvatures using SiZer and SiCon .............................................. 51 

5.12.1 SiZer and SiCon  maps using SRT bandwidth .................................................................... 51 

5.12.2 SiZer and SiCon using IPI bandwidth ...................................................................................... 53 

5.12.3 SiZer and SiCon for LSCV bandwidth .................................................................................... 54 

5.12.4 SiZer and SiCon for EB bandwidth ......................................................................................... 55 



ix 
 

Chapter 6 ..................................................................................................................................................... 57 

Summary, Conclusion and Recommendation ......................................................................................... 57 

6.1 Summary ........................................................................................................................................... 57 

6.2 Conclusion ........................................................................................................................................ 57 

6.3 Recommendation .............................................................................................................................. 58 

References ................................................................................................................................................... 60 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Chapter 1                                

Introduction 

Density estimation is a process employed to construct an estimate of probability density 

functions based on observed data. It frequently used for identification and description of the 

structure of data set on the basis of the random sample. There are two general classes for density 

estimation; namely parametric class and non-parametric. Like many other econometric 

procedures the parametric estimators depends on strict distributional assumptions which are 

usually not compatible with data. In parametric approach to density estimation the parameters are 

identified by applying the Maximum likelihood or Bayesian Methods. Then these parameters 

determine uniquely the distribution and density function of data set. Provided that the underlying 

assumptions are correct, the main advantage of parametric approach is ease of inference, 

efficiency and the absence of bias problems. However, the disadvantage of parametric approach 

is that it depends on more rigid distributional assumptions. If the distribution is not exactly 

known then it provides inconsistent estimates and the associated asymptotic bias provides invalid 

inference.    

Non-parametric density estimation methods are used to model the data without making any 

assumption about the distribution of data. This approach is more flexible and depends only on 

smoothness assumption of density function. Therefore, this approach “let the data speak for 

themselves” impose without imposing any distribution assumptions. The non-parametric 

approach is well suited for exploratory data analysis and for analysis where density function 

cannot be clearly specified. A variety of non-parametric methods are used to estimate density 

such as histogram, data clustering techniques and kernel density estimation. This study 
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concerned with kernel density estimation (KDE) which is a non-parametric density estimation 

method.   

Kernel density estimator (KDE) introduced by Hodges (1951) and developed by Rozenblatt 

(1956) and Parzen (1962) as an alternative and improved non-parametric approach for density 

estimation. KDE has a wide scope. It has been applied in many fields, including Economics 

(DiNardo,et.al. 1995), Archaeology (Baxter,et.al. 2000), Banking (Tortosa, 2002), Genetics 

(Segal and Wiemels, 2002), Hydrology (Kim and Heo, 2002) and identifying Accident hot spots 

(Toran.et.al. 2015), etc. to investigate the features of data.  

There are two types of KDE; fixed kernel density estimation (FKDE) and variable (adaptive) 

kernel estimation (VKDE). In FKDE the bandwidth is fixed for all data points while in VKDE 

the bandwidth varies at each data point. It is generally known that VKDE is superior to FKDE 

(Lemke D et al. 2015), however, with the VKDE, one has to make a variety of other 

specification decision for estimation of density: these include choice of bandwidth selection 

algorithm and choice of kernel function. 

Bandwidth is the most crucial parameter for kernel density estimation. It controls the overall 

smoothness of the density. If we choose a large value of bandwidth then it over-smooth the data 

and local modes might be missed in the center of density estimate. Similarly, choosing a small 

bandwidth under-smooth the data and spiky estimator appears. So it is important to choose 

appropriate bandwidth to get the real structure and more information about data. There are four 

general classes of data driven bandwidth selection methods i.e. Rule of thumb, Classical, Plug In 

and bootstrap that are needed for KDE. The popular algorithms of these classes are Silverman 

rule of thumb (SRT), Least square cross validation (LSCV), Improve plug in (IPI) and Exact 

Bootstrap (EB) respectively. There is no appropriate guideline to decide between these 
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algorithms for VKDE. So, one aim of this study is to compare these four selection algorithms for 

VKDE.  

Given any method of choice of bandwidth, one has to choose the appropriate kernel function. 

Kernel function determines the shape of the mass assigned to each data point and the 

contribution of each data point to the estimated density. In KDE a Kernel function is placed on 

each data point and then averaging these kernel functions, which are placed on each data point, 

gives a resulted KD estimate. There are more than ten different kinds of kernel function used of 

which we take four kernel functions. The second goal of the study is the comparison of kernel 

functions. 

If we chose optimal bandwidth algorithm and kernel function it gives a single density estimate 

with a number of peaks and trough. Mostly for noisy data a single density curve provides 

misleading information about the peaks and troughs. In order to know that which peaks are really 

there and which are spurious we have to move towards SiZer and SiCon. The significance of 

zero crossings of the derivative (SiZer) and significant convexity (SiCon) approach introduced 

by Chaudhry and Marron (1999) which is based on family of smooth approach provides a clear 

and direct answer to the problem of which peaks or modes are really there in the data and which 

are spurious. Both SiZer and SiCon depends on bandwidth selection algorithm and kernel 

function. Therefore the third purpose of this study is to compare the performance of bandwidth 

selection algorithms using SiZer and SiCon for significance of modes and curvatures of real data 

set. 
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1.2 Objective of the study 

 To compare the performance of selected bandwidth algorithms for VKDE using Monte 

Carlo simulation and real data sets 

 To find the best kernel function for VKDE 

 To check the significance of peaks, troughs and curvatures in estimated density curve for 

real data set 

1.3 Significance of the study 

The KD estimators have the appropriate qualities of directly producing a density estimate, and 

the effects of grid size and placement cannot influence it (Silverman1986). Furthermore, it has 

the capability to accurately estimate densities of any shape provided that the bandwidth is 

selected appropriately. VKDE had shown its superiority over the FKDE procedure but still has 

the problems of choosing optimal bandwidth for pilot KDE. In literature very little is known 

about performance of the choices of bandwidth and kernel function for VKDE. Our study will 

help researchers to make the choices which optimize performance of VKDE. It would also be 

helpful for the practitioner to dig out the true structure of data through SiZer and SiCon.   

1.4 Organization of the study 

The remaining of the study organized as, chapter 2 review of literature in which we review 

different types of KDE, their drawbacks, bandwidth selection methods, and comparison of KDE. 

Chapter 3, methodology comprises step by step derivation and explanation of different 

bandwidth selection algorithms, VKDE and AMISE. Chapter 4 discusses background, 

implementation and explanation of SiZer and SiCon. Chapter 5 contains our finding and 

discussion. And finally we concluded our study with conclusion in chapter 6.    
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Chapter 2 

Literature Review 

Density estimate usually used to informally investigate the properties (such as skewness, uni-

modality, multimodality etc.) of a given data set. The two general methods to estimate density 

are parametric and non-parametric methods. The parametric methods assume that the data are 

drawn from a particular parametric family of distributions such as Weibull, Gamma and 

Gaussian distribution etc. In this approach the parameters are identified by Maximum likelihood 

or Bayesian method which in turn used to estimate distribution function and also the density 

function. The parametric approach fit exactly if prior assumptions about the distribution are true. 

However, there are many situations, particularly in the social science, where these assumptions 

are in fact not met. In such situation it is better to used non-parametric density estimation. The 

oldest and widely used nonparametric density estimator is the histogram but because of scale, 

origin and non-continuity problems this is not good technique for density estimation (Silverman, 

1986). The second method for density estimation is the naive method which is constructed by 

placing a box of width 2h and height (     ) on each observation. Summing these boxes a 

density estimate is obtained. But this method also has a lot of problems so its usage is not 

satisfactory for density estimation.  

Fix and Hodge (1951) used the difference quotient of sample distribution function method (also 

called the naive method) for density estimation. The fundamental idea was that the proportion of 

data points fall in the neighborhood of any fixed value of grid point
1
 may be used to estimate the 

probability of data points in that region. Taking ratio of the estimated probability and the 

                                                           
1
 Grid point is a point at which we want to estimate density 

2
 K-NNE/ balloon estimator can be used as a point wise estimator as well as global estimator. Point wise balloon 
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measure of neighborhood the density estimate is obtained. But this method has the problem of 

selecting regions in which the data points fall. If these regions are small then the number of data 

points fall in these regions is too small. So this will not be an accurate estimate of the probability 

of data points fall in these regions while taking the regions too large this is still not a good 

approximation of probability density. The next method for density estimation is the kernel 

function method which is an improved form of the naïve method. There are two types of kernel 

function density estimator. We will discuss these types shortly in the coming section. 

2.1 Fixed Kernel density estimation 

KD estimation is also known as the Parzen-Rosenblatt window method introduced by Rosenblatt 

(1956) and Parzen (1961). Parzen-Rozenblatt density estimation is an alternative and most 

prominent approach for density estimation. It has a faster convergence rate than all other non-

parametric approaches for density estimation. The fundamental idea is to estimate the density 

function at grid point x using neighboring observations. For estimating density function two 

parameters i.e. kernel function and bandwidth is required. Kernel function is required to smooth 

out the contribution of each data point to density estimate in the neighborhood grid point, at 

which we want to estimate density, while bandwidth control the overall smoothness of density. 

Parzen and Rozenblatt obtained FKD estimate by selecting suitable bandwidth, through 

optimization of mean integrated square error (MISE), and averaging all kernel functions placed 

on each data point. Woodroof (1968) and Nadaraya(1972) introduced and used a two stage 

method to estimate density given the kernel function. In this FKDE methods two initial gauss for 

bandwidth is made in order to obtain rough estimates of density and first non-vanishing moment 

of density on the bases of which a new bandwidth is computed. This new bandwidth is then used 
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to estimate density in the usual fashion. Both the method of Woodroof (1968) and 

Nadaraya(1972) are same but was bases on different optimality criterion. 

Several authors Rosenblatt (1956), whittle (1958) and Parzen (1961) used FKDE for univariate 

density estimation. The next problem was how to estimate multivariate density. The first steps 

for multivariate FKDE was taken by Cacoullos in 1966 and after that Epanichnikov in 1969.  

2.1.1 Problems with fixed kernel density estimators 

Kernel density estimation is the most widely used technique for density estimation. However, the 

main problem concerned with it is the fixed bandwidth. By selecting smaller window size every 

data point gets its own density and spurious noise appear in the tail of the distribution, while 

selecting large window size the density become smooth and much of the detail of the data 

masked in the center. Minnotte (1998), showed that FKDE have trouble with multimodal data. 

According to him, fixing a single window size that adequately differentiates between distinct 

peaks and troughs is very difficult. Selecting a large window size over smooth the density and 

much of the significant modes disappear. While small window size leads to spurious modes by 

under smoothing. The solution for this problem is the variable kernel density estimation. 

2.2 Variable kernel density estimators 

Variable window KDE can be divided into two groups: balloon estimators and sample point 

estimators. In both cases the window size varies. In case of balloon estimators’ window size vary 

only at each estimation point. In contrast to balloon estimator the sample point estimator use 

different bandwidth for each data point.  
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2.2.1 Balloon estimators/ VKDE 

Loftsgaarden and Quesenberry (1965) introduced balloon estimator, known as K-nearest 

neighbor estimator (K-NNE), for density estimation. The balloon estimators adopt the bandwidth 

to the local density of data. The NNE of Loftgarrden and Quessenbarry is given by  

  
  ( )  {.

 ( )   

 
/} {

 

   ( )  

} 

In this estimator,  ( ) is a specific number of data points chosen from   observations. Similarly 

   ( )  
 is the volume of hyper sphere and   the radius of hyper sphere.   ( )  

 is the distance 

from z to  ( )   nearest    to z which is determine by the Euclidian distance function from 

estimation point to the kth nearest point.  The main difference of NN-estimators and kernel 

estimators is that in NN-estimator case a specific number of observations are selected and its 

distance from estimation points is calculated. On other hand in kernel estimator, such is defined 

by Perzen (1962), the distance is specified from estimation point and the number of observations 

falling in that specified region is count. The benefit of NN-estimator is that it is always positive 

in data sparse area and performed elegantly for high dimensional data.  

2.2.1.1 Problem with balloon estimators 
The problems associated with balloon estimators are the larger bias in the tail of distribution as 

well as it is not a proper density function. Secondly it is a worse method for univariate and bi-

variate density estimation (Terrell and scot 1992). The first problem was investigated by Mack 

and Rosenblatt (1979). They noticed that in the tail of distribution in spite of self-adjusting 

characteristic the NN-E has larger bias. Hall (1983) disentangled the problem of high bias of 
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NN-E in the tail of distribution by utilizing a generalized NN-E. But the problem of non-density 

function, when consider as a global estimate
2
, still remained unsolved (Jones, 1990). 

2.2.2 Sample point estimator/ VKDE 

To improve the resulting density estimate Breiman et al. (1977) introduced sample point 

estimator, for which bandwidth changed at each data point. Their estimator is given by 

 ( )
  

 

 
∑

 

   
  (

    

  
)

 

   

 

Where    denote the Euclidian distance from one sample point to the other nearest sample point 

and     is the dimension. They were interested in entire density estimation. Their simulation 

study showed that such an estimator performed well in bi-dimensional case for bivariate normal 

and normal mixture densities but not quite well for univariate case. 

For any dimension size Abramson in 1982 used square root law. The Abramson VKDE at target 

argument,     , is given by 

  ( )     ∑   

 

   

 (  )
        (  )  ) 

The window sizes      depend on both   and scalar function  . Where   determined by the local 

behavior of density   only and is given by    ( )    ( )

 

  
 
      ( )    ).  

Abramson chooses bandwidth as the function of negative square root of density     ( )    .                        

                                                           
2
 K-NNE/ balloon estimator can be used as a point wise estimator as well as global estimator. Point wise balloon 

estimator worked as a fixed kernel estimator.  
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In practice, a pilot estimate of density is required to estimate local bandwidth for each sample 

point. Abramson was interested in point wise estimation but latterly Hall and Marron (1988) 

used this method for global density estimation. Silverman in 1986 introduced a three steps 

adoptive VKDE. The first step is for pilot density estimator construction using global 

bandwidth  . In second step he define local variable bandwidth factors,     as  

    (
       (  ( ))

  ( )
)

 
 

 

Where,         is the geometric mean of the pilot density estimate   ( ) and   is the 

sensitivity parameter. The final step is the VKDE which is define below 

                                                       ( )  
 

 
∑

 

 ( )

 
    (

    

 ( )

)  

 ( )        is the variable bandwidth vector at each data point   . The local bandwidth 

    used to adjust the global bandwidth   for each data point in VKDE. The intuitive appealing 

of sample point VKDE is that it is a probability density function and have resolved the problems 

of fixed KDE by allowing the bandwidth to vary at each data point. It increase bandwidth in 

areas of low data densities and decrease in region of high data points and thus eliminate noise 

where data is sparse and recover detail in data enrich region. The simulation study of Silverman 

(1986) showed that sample point estimator performed well especially for small and moderate 

sample sizes in both one and two dimension case. It is because for small sample size the bias 

contribution from tail is negligible. 
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2.2.2.1 Problems with sample point estimator 

Terrell and Scott (1992) identify the non-locality problem associated with sample point density 

estimator. The non-locality problem means that the sample point estimator is affected by the data 

point very far away and not just by nearby. 

2.3 Bandwidth selection methods   

KDE rely on optimal bandwidth and kernel function. Some studies argue that kernel function has 

not significant influence on density estimates while the bandwidth is the most crucial parameter 

for density estimation (Baszczynska.A 2005). There are four general classes of bandwidth 

selection algorithm i.e. Rule of thumb, Plug in, Classical and Bootstrap available in the literature 

to estimate the optimal bandwidth.  

2.3.1 Rule of thumb algorithm 

Silverman (1986) used rule of thumb approach for choosing optimal bandwidth. In this method 

he replaced the unknown roughness of density by its value for a normal distribution. For 

Gaussian kernel function and normally distributed dataset the robust Silverman rule of thumb 

bandwidth is given by  

             (  (    )    (    )     ) 

2.3.2 Classical bandwidth selection algorithm 

 The first well known class of automatic (data driven) bandwidth selection algorithm is the 

classical algorithms. It comprises a number of algorithms such as biased cross validation (BCV) 

of Terrell and Scott (1985) and Terrell (1990), likelihood cross validation (LCV) of Habbema et 

al. (1974), Cao, R. & Manteiga, W. G. (1994), indirect cross validation (ICV) of Savchuk et al. 

(2010) and least square cross validation (LSCV) of Rudemo (1982) and Bowman (1984) etc. The 
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detail review of classical bandwidth selection algorithms is available in Zambom A.Z and Dias 

(2012). According to Zambom A.Z and Dias (2012) LSCV is the most popular and readily 

implemented classical bandwidth selection algorithm for KDE. Sain et.al (1994) showed that 

LSCV algorithm has certain appeal for VKDE as an unbiased estimate of integrated square error 

(ISE). The LSCV algorithm used “leaves one out”
3
 estimators for the cross term of ISE to 

construct an unbiased estimate of optimal bandwidth. ISE is the distance between the true 

density and estimated density. Minimizing the estimated ISE with respect to   we obtain optimal 

bandwidth. The minimized LSCV score function often have a common local minima and 

empirically show better performance for local minimizer than that of global (Hall and Marron, 

1991a)  

2.3.3 Plug in algorithms  

The plug in approach proposed by Woodroof (1970) is used to estimate the roughness of density 

in first step, and then plug in this estimate in the optimal formula of bandwidth.  In this method 

the optimal bandwidth for estimation of roughness of density is different from optimal 

bandwidth used for density estimation. There is a lot of plug in bandwidth selection algorithms 

such is Scott et al (1977), Hall and Marron (1987), Park and Marron (1990), Sheather and Jones 

(1991), Hall et al (1991) and improve plug in (IPI) of Botev et al (2010). Park and Marron (1990) 

compared the data driven bandwidth selecting algorithms in term of their asymptotic convergent 

rate. It has been realized that the plug in method is the robust method when the underlying 

density is sufficiently smooth. 

The weaknesses of plug in algorithms is discuss in detail by Loader, C.R. (1999). According to 

him, plug in algorithms dependent on arbitrary specification of pilot bandwidth and fail when 

                                                           
3
 an estimator define by using data set except the data point at which we want to estimate density 
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this specification is wrong. Secondly the plug in approach over-smooths the density and missing 

important features of the data. The IPI bandwidth algorithm introduced by Botev (2010) solved 

these problems. It is independent of pilot bandwidth and worked well even when the actual 

density is not smooth. 

2.3.4 Bootstrap bandwidth selection methods  

Bootstrap is a statistical methodology introduced by Efron (1992) for estimating standard errors 

and confidence interval of statistics/estimates. Bootstrap bandwidth selection algorithm devised 

and proposed by Taylor (1989) for density estimation. In this method the MISE is estimate and 

then minimize for obtaining optimal bandwidth. The Taylor algorithm does not capture the bias 

component of MISE and thus flops to direct estimate MISE. To solve the problem of Taylor 

algorithm, Faraway and Jhun (1990) introduced a Smooth bootstrap bandwidth algorithm which 

is based on initial/ pilot density estimate. But this method is also not free from problems. The 

main issue with their algorithm is the production of error due to Monte Carlo resampling. J C. 

Miecznikovski et.al. (2010) derived the Exact bootstrap estimator of MISE for kernel density 

estimation by using the work of Huston and Erust (2000).
4
  Minimizing the Exact bootstrap 

estimated AMISE with respect to bandwidth; they obtained Exact bootstrap (EB) optimal 

bandwidth for KDE. The Miecznikovski EB bandwidth algorithm solves all the problems 

associated with Taylor and Faraway algorithms.  

2.4 Drawback of kernel function density estimators 

The traditional methods of KDE have some major drawbacks in showing the complete structure 

of the data. The most crucial among these drawbacks is the non-consensus of researchers in 

finding the optimal bandwidth. The second drawback is that which features are really there in 

                                                           
4
 Huston and Erust (2000) derived the exact bootstrap estimator of mean and variance of L-estimator.   
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data set and which are sampling artifacts. A new approach named significance of zero crossing 

of derivative (SiZer) and significant convexity (SiCon) introduced by Marron and Chung (1999) 

provided prodigious solution to these problems. The detail of this topic is given in chapter 4. 

2.5 Comparison of KDE’s using different bandwidth selection algorithms 

In this section we are reviewing the comparison of different KDE’s available in literature.   

2.5.1 Comparison of fixed kernel density estimators 

Sheather (2004) compare FKDE’s with least square cross validation (LSCV) and Sheather-Jone 

(S-J) plug in bandwidth algorithms using Gaussian kernel function for Gaussian distribution and 

PGA Gulf tour real dataset. He concluded that for densities having widely varying curvature or 

roughness of density,    ( )  the FKDE with LSCV bandwidth perform well while in the same 

case S-J plugs in bandwidth over smooth the density. Rodchuen and Suwattee (2010) compared 

FKDE’s in term of AMISE for different simulated datasets by using solve the equation (STE), 

direct plug in (DPI) and Silverman rule of thumb (SRT) bandwidth selection algorithms. They 

showed that FKDE with DPI bandwidth algorithm perform better than FKDE with STE and SRT 

bandwidths for Gaussian distributed data set. For skewed unimodal and asymmetric claw 

distributions the FKDE with SRT bandwidth comparatively does well. The FKDE with STE 

bandwidth for kurtotic unimodal, separated bimodal or multimodal distribution have the lower 

AMISE as compare with AMISE of FKDE with SRT and DPI bandwidths. They also show that 

as the sample size increase the AMISE become close to zero and give an accurate estimate of 

density. 
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2.5.2 Comparison of fixed vs Balloon/KNN kernel density estimators 

Mack and Rosenblatt (1979) compared theoretically the performance of FKDE and K-nearest 

neighbor estimator (KNN-E) for densities having a simple exponential form or inverse 

polynomial decay in the tail of distribution. They showed that both methods have the same 

variances but KNN-E has much larger bias than FKDE. They have concluded that for the 

aforementioned types of densities the KNN-E performs much worse than FKDE. 

Terrell and Scott (1992) compared fixed and balloon kernel density estimators in term of 

asymptotic mean integrated square error (AMISE). Their simulation studies suggest that for 

small sample size and univariate and bivariate cases the balloon estimator performed poorly than 

FKDE. However, for multivariate case the balloon estimator become competitive. Giovanna 

Menardi (2014) carried out a simulation study for comparison of balloon, fixed (with Scheater & 

Jones bandwidth) and sample point /VKDE (with Silverman square root law bandwidth) 

estimators using multimodal normal distribution. He noted that the balloon estimator outperform 

the fixed and sample point estimators and that balloon estimator do not over smooth the density 

around the modes.    

2.5.3 Comparison of Fixed vs variable kernel density estimators 

Abramson (1982) developed VKDE and investigate that the convergence rate is marginally 

improved from  ( 
  

(   ))  to ( 
  

(   )) . Hall and Marron (1988) achieved comparatively faster 

convergence rate of   ( 
  

(   ) ) for VKDE than FKDE. 

Terrell and Scott (1992) carried out a simulation study for comparison of VKDE and FKDE in 

term of AMISE. Their simulation study showed that VKDE perform better than FKDE for small 
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and moderate sample size. Katkovnik, and Shmulevich (2002) proposed and developed a new 

technique for VKDE which is based on intersection of confidence interval (ICI) rule. The ICI 

rule require only the knowledge of density estimate and its variance. However, the variance 

depends on the unknown density. So a pilot estimate of the density is required in order to 

estimate variance. They have used the Sheather- Jone plug in bandwidth for pilot KDE. 

Simulation studies were carried out for symmetric, left skewed and right skewed Gaussian 

kernel. The results exposed that VKDE outperformed the fixed bandwidth method. Hazelton 

(2003) used the VKDE method of Sain and Scott but instead of zero order spline log-bandwidth 

function he used cubic spline log-bandwidth function. He made a comparison of his own VKDE 

with Sain & Scott and FKDE (using Sheather - Jones plug in bandwidth) by taking five targeted 

densities, unimodal normal, skewed unimodal, kurtotic unimodal, symmetric tri-modal and 

Asymmetric bimodal. The simulation study disclosed that both VKDE’s outperform the FKDE 

for kurtotic unimodal, asymmetric bimodal and symmetric tri-modal. However, FKDE worked 

well than both VKDE’s for skewed unimodal and normal densities. The study also indicated that 

his VKDE with cubic spline bandwidth function outperform the Sian & Scott kernel with zero 

order spline. Shimazaki & Shinomoto (2010) compared the performance of fixed and variable 

KDE for real biological data set. The methods were applied to the spike data of MT neuron. 

They observed that fixed kernel method choose a small bandwidth while the variable kernel 

method select a wider bandwidth in the period in which spike are not abundant. Ferdosi et al. 

(2011) studied the performance of four kernel density estimation techniques, the KNN-E, 

adoptive Gaussian KDE, adoptive Epanichnikov KDE, and modified Breman KDE. These 

density estimators were applied on six simulated and three astronomical real datasets. The 

comparisons were made in term of MISE and Kullback-Liebler divergence. The modified 
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Breman estimator which is the variable kernel density estimator performed better than other 

methods. 

2.6 Literature Gap 

In this study we will compare the performance of VKDE with most widely used traditional and 

newly introduced data driven bandwidth selection algorithms and kernel functions. VKDE used 

in different fields of knowledge to estimate the realistic structure of data and provide more 

information. Researchers made comparison of FKDE vs FKDE, FKDE vs VKDE and FKDE vs 

Balloon kernel density estimators. But in literature no one compared VKDE vs VKDE using the 

most recent and traditional bandwidth selection algorithms and kernel functions. In literature 

researchers used SiZer and SiCon for checking significance of modes and curvatures. We have 

used SiZer and SiCon for the same purpose as well as for confirmation of our simulation results. 

So that is the contribution of our study to literature. 
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Chapter 3 

Methodology 

This study is carried out in order to compare the performance of VKDE’s by using SRT, IPI, 

LSCV and EB bandwidth selection algorithms. The following four types of kernel function will 

be used as weight function for VKDE’s which is  

 Epanechnikov kernel:          (    )      Tri-weight kernel:          (    )  

 Bi-weight kernel:           (    )           Gaussian kernel         
 

√  
    (

   

 
) 

The grid point    is a point at which we want to estimate density. In this study ten different kinds 

of Gaussian mixture models introduced by Marron and Wand (1992) used for Monte Carlo 

simulation. The accuracy of VKDE is measured by asymptotic mean integrated square error 

(AMISE) criteria. The estimator with small AMISE value is considered as the best estimator of 

density. 

3.1 Algorithm of variable kernel density estimator and AMISE 

Step 1: Calculate optimal bandwidth    by using SRT, LSCV, IPI and EB bandwidth selection      

algorithms 

Step 2: Calculate the pilot kernel density estimate by using optimal bandwidth   obtained 

through step 1. 

Step 3: The local variable bandwidth vector can be calculated by utilizing the pilot KDE and its 

geometric mean.                                     .
       (  ( ))

  ( )
/
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Step 4: The variable bandwidth vector is obtained by multiplying the optimal bandwidth   with 

local variable bandwidth vector                    ( )   .
       (  ( ))

  ( )
/

 

 

  

Step 5: Variable kernel density estimate is obtained by putting  ( ) in VKDE formula 

                                                                      ( )  
 

 
∑

 

 ( )

 
    (

    

 ( )
) 

Step 6: In final step the estimate of AMISE can be obtain by utilizing the above information. 

        (
 

  
 ( ( )) ( ) 

   ( ))
 

 
 ( )

  ( ) 
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                                  Flow chart of VKDE and AMISE 
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3.2 Data generating process 

We are generating artificial data from the following known normal mixture distributions 

introduced by Marron and Wand (1992) for Monte Carlo simulation. The concept behind using 

these distributions is that, these distributions can closely approximate any kind of density. 

Secondly we believe that any real data situation can be effectively modeled by these 

distributions.  

1.   Gaussian   (   ),  

2. Skewed unimodal    
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)
 

)  
 

 
  (
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3.2.1 Optimal bandwidth  

Optimal bandwidth is obtained by minimizing AMISE with respect to   . The AMISE is given 

below 

      ∫     
 

  

(  ( ))   

It is a global measure of precision and can be decompose into two parts, integrated square bias 

and Variance. 

Bias 

Bias of density estimator is the difference between the estimated density and actual density as 

given by                              (  ( ))          (  ( )   ( )) 

The asymptotic integrated bias of kernel density estimator,   ( )  is given by P
th

 order Taylor 

approximation as 

               ( )  
 

  
      ( )   ( ) 

                                               
 

  
      ( )                                                            

Variance 

Variance is the square of deviation of an estimate from its mean value. It is given by the 

following formula          

                                           (  ( ))   (  ( )    ̅̅ ̅( ))
 
 

For variance of kernel density estimate the 1
st
 order Taylor approximation is used

5
. 

                   (  ( ))    
 

 
   (    )  

 

 
(   (    ))                                                                          

                                                           
5
 The remained of first order Taylor approximation is very small so that’s why we used first order Taylor 

approximation 
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 ( ) ∫  ( )   

 
  

  
 

                                                          
 ( )

  
                                                                                               

The term  ( ) ∫  ( )     ( )
 

  
 is the roughness of kernel. 

Asymptotic mean integrated square error 

The asymptotic mean integrated square error (AMISE) is the sum of square bias (3.1) and 

variance (3.2) so 

                           (
 

  
 ( ( ))  

   ( ))
 

 
 ( )

   
                                                                    

The   ( ) is the variance of kernel,  ( ) the roughness of kernel,  ( ( )) the p
th 

order 

derivative or roughness of unknown density  ( ( )) and    is the bandwidth. Minimizing the 

AMISE with respect to   the optimal bandwidth is obtained 

                                                
 

  
(
   ( (  ))     

 ( )

(  ) 
 

 ( )

  
)   

                                               ( (  ))
  

(    )  .
(  )  ( )

    
 ( )

/

 
 

(    )

( )
  

(    )
                          

     

Equation 3.4 shows optimal bandwidth for KDE. We see that the optimal bandwidth depend on 

the roughness of kernel  ( ), variance of kernel   
 ( ) and roughness of density  ( (  )). The 

first two can be easily determine by kernel function. But the last one is the fly in ointment in way 

of determining the optimal bandwidth. To estimate the roughness of density and calculate the 
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optimal bandwidth a lot of bandwidth selection procedures have been proposed. We are using the 

most popular of them. 

Silverman rule of thumb bandwidth algorithm 

Silverman introduced the rule of thumb approach to replace the unknown quantity  ( (  ))  in 

(3.4) by reference density    ( 
  
( )

). The reference density (  ) used is a normal density 

with   (        
). The Silverman bandwidth selection algorithm gives optimal bandwidth in case 

when the true density is normal. We are using normal mixture distributions in our simulation 

study so it would be the best choice to select for comparison. 

For normal density and Gaussian kernel the optimal global bandwidth is given by  

                          (
 

 
 (  )  ( )

  (  )   
 ( )

)

 
(    )

( )
  

    
                                                                              

        

Here   is the order of kernel,    sample standard deviation and the value in parenthesis is 

constant but different for different kernel function. The optimal bandwidths for different kernel 

function by using SRT algorithm has given by Hansen (2016) in his book  

Gaussian                    
  

                  Epanechnikov              
  

  

 Bi-weight                 
  

                      Tri-weight                 
  

  

Improve plug in algorithm 

The improved plug in bin size introduced by Botev (2010) is completely non-parametric and 

independent of normal rule of thumb approach. The selected method does not require numerical 

optimization and approximately as fast method as the normal reference rule method. As we know 
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from the above equation (3.5) that the optimal bandwidth depend on the curvature of the true 

density which is unknown. So it is necessary to estimate the curvature before the estimate of 

density. Botev derived the improved plug in scale function from solve the equation (STE) 

bandwidth selection function. The STE bandwidth assumes the true density as a Gaussian density 

in order to compute the estimate of curvature. This assumption leads to not a good estimate of 

bandwidth when in reality the true density is not Gaussian. Botev found a solution to the non-

linear equation of the STE bandwidth derived by Jone, et.al. (1996), as given below, 

                                                                              ( )                                                                       

for some stage   using either fixed point repetition or the method of Newton’s with     

intially. In the above equation   (
 √    

 
)

 

 
    and    is the plug in stages. 

The algorithm of fixed point repetitions are given by  

Step1:   execute with       where    is the machine precision and     

Step 2:   set           (  ) 

Step 3:   if |        |   , then stop and set optimal bandwidth         ; otherwise set  

      and repeat from second step again.  

Step 4:   used the optimal bandwidth    in third step to estimate KDE and   
           as the 

optimal bin size for the curvature estimation.  

The fixed point repetition algorithm is a succeeded algorithm for finding the root of equation                 

                                                                              ( )     
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Secondly it gives a unique root. The third advantage of this algorithm is that solution to the 

equation      ( ) and          ( ), for any     do not differ practically. Alternatively we 

can say that by increasing the stage of bandwidth selection rule beyond     no gain is 

achieved. Using the discrete cosine transform this procedure provides us a fast computational 

estimate of bandwidth but here we do not go to the theoretical derivation and linkage of cosine 

transform. 

Least square cross validation bandwidth selection algorithm 

LSCV method is an automatic data driven method of choosing the optimal smoothing parameter. 

Sain et.al (1994) showed that LSCV method has certain appeal for variable kernel density 

estimation as an unbiased estimate of L-2 error (ISE). The ISE for this method is given by  

   ( )  ∫ ( ( )   ( ) 
 )

 
   

                                ∫ ( )     ∫ ( ) ( )   ∫  ( )                                                  
 

 
  

ISE is unknown so cross validation used to replace it with an unbiased estimate. As we know that 

the third term of above expression (3.7) does not depend on   so we ignore it. The first term can 

be calculated directly from estimated density by using pilot bin size. The second cross term of 

3.7 can be calculated by “leave one out” estimator as 

   
 (  )  

 

(   ) 
∑ 

 

   

(
     

 
) 

“Leave one out” estimate is an estimate of density at      , computed without observation    . 

So the unbiased estimator of ∫ ( ) ( )    
 is 
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By combining the estimators of first and second cross terms of 3.7 we get the LSCV criteria, the 

unbiased estimator of ISE, given below 
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In order to estimate the first term of (3.8) we have need of pilot bandwidth. Most often in 

literature normal reference method used to construct pilot bandwidth so we also used this 

technique. The first term than become as  
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/ 

Put in (3.8) the required estimate of LSCV score function obtained. 
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Optimizing the above function with respect to h we will get LSCV classical optimal data driven 

bandwidth. 

Further solving the LSCV expression we get 

                                  ( )  (
  

 

 
) [∫ ( ( )  )  ]   

 

  
                                                                    

Where    ∫    ( )   is the variance of kernel function and   ∫   ( )   is the roughness 

of kernel function. Minimizing 3.10 with respect to  , we get the optimal bandwidth empirically 

as below  
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Exact Bootstrap bandwidth selection algorithm 

There are a lot of bootstrap bandwidth selection algorithms in literature. We are using the 

Miecznikovski, et al (2010) newly derived bootstrap bandwidth procedure. For derivation of 

bootstrap bandwidth they have expressed the kernel density estimator as L-estimator. An L-

estimator is an estimator that is equal to a linear combination of order statistics of the 

measurements. 

The L-estimator form of kernel density function is given 

  (   )  ∑      

 

   

 

Where    is equal to 
 

  
 and     (

    

 
). 

The order statistics of sample    is                      where         

With this L-estimator framework of kernel density estimator they obtained exact mean and 

variance of kernel density estimator. 

The exact bootstrap mean of KDE is given by 

  
 ̅̅ ̅(   )  
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Where the weights   ( ) are   ( )          (
 

 
)                (

   

 
) 

The exact bootstrap estimator for the variance of kernel density estimator is given by 
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Where the variance is equal to     
   ∑   ( )(         
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The covariance is given by  
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The weight    (  ) and   (  ) are given by 

  (  )  ∫ ∫    (     )       
  

(   ) 

   

(   )  

 

   (  )  ∫ ∫    (     )       
   

(   ) 

   

(   )  

 

The bootstrap exact estimator of asymptotic mean integrate square error is given below 
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Minimizing the     ̂ with respect to   we obtain the bootstrap bandwidth for kernel density 

estimation.  

3.2.2 Pilot density estimation 

Pilot density estimate is a fixed bandwidth density estimate obtain by putting the value of 

optimal global bandwidth in kernel density estimator 
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3.2.3 Local bandwidth for variable kernel density estimation 

The optimal local bandwidth vector for variable kernel density estimation is inversely related to 

the pilot estimate of density as define by Abramson (1982) 

                                                                         (
 

  ( )
)

 
 
                                                            

  ( ) is the Pilot estimate of density function with fixed bandwidth and   the geometric mean of 

pilot density. 

3.2.4 Variable bandwidth vector for kernel density estimator 

The variable bandwidth vector can be calculate by scaling the global optimal bandwidth   by 

local bandwidth which is given below 

  (  )   (
 

  ( )
)

 
 

 

3.2.5 Variable kernel density estimation 

Putting the value of variable bandwidth in variable kernel density estimator we obtain variable 

kernel density estimate.                 ( )  
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) 

3.2.6 Mean integrated square error of variable kernel density estimation 

Substituting variable bandwidth in AMISE as given below 

                                                         (
 

  
 ( 

( )
)  (  ) 

   ( ))
 
 

 ( )

   (  ) 

  

We get the estimated AMISE of SRT, LSCV, IPI and EB methods for comparison of variable 

kernel density estimators.  
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Chapter 4 

Significant zero crossing of derivative (SiZer) 

As we know the problem associated with histogram that is the problem of origin has been solved 

by kernel density estimation. But the issue of bandwidth is still under discussion in kernel 

density estimation. The various optimal data driven bandwidth methods provide a single 

bandwidth which lead to estimation of single true density curve. Even the optimal bandwidth 

vector, one value for each data point, in variable kernel density estimator also gives an estimated 

line. But this single curve does not show the complete structure of data set. So for that reason a 

new approach which is the family of smooth approach has been introduce by Marron and Chung 

in 2001
6
. In this, family of smooth approach, a vector of bandwidth instead of one is used and 

gives a family of smooth KDE curves. The bandwidth vector used in this approach contains both 

small and large bandwidth values which give more information about the structure of data. The 

problem of family approach is that it does not show which features in data are signals and which 

sampling artifacts. As well as it cannot be applied evocatively in case where the data change with 

change in time (Skrovseth.et al 2012). To solve these problems Choudhry and Marron (1999) 

introduced SiZer exploratory data analysis. In SiZer technique each location affects both past and 

future value of estimated density curve (Skrovseth.et al 2012). SiZer is based on family of 

smooth approach and originated from the scale space theory of Lindeberge (1994) in computer 

science. It uses a color scheme to analyze the visible features in data over location and scale. The 

blue color used to show the significantly increasing of the curve and red significantly decreasing. 

The purple color indicates a region where the curve is neither increasing nor decreasing. Finally 

                                                           
6
 The family of smooth approach was introduced by Marron and Chung in 1997 and published in 2001 in journal of 

computational statistic.   
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the gray color in map shows the region where the data is too sparse. The peak in density 

estimation is shown by the density curve going up on left side and coming down on right side. 

SiZer map shows this up going portion of curves by blue color and downward portion by red and 

provide statistical significance to these ups and down.  When a bump observed, on the right side 

of the bump the derivative is negative on the left it is positive and on top derivative is equal to 

zero. When a trough is observed, to the lift of trough the derivative is significantly negative to 

the right it is positive and at the minimum it is zero. So top and trough both are indicated by zero 

crossing of the derivative/slope.  

4.1 Testing hypothesis in SiZer  

SiZer is totally dependent on family of smooth curves. Statistically the smooth curves are given 

below  

{  
 ( )               } 

In this approach we estimate a number of curves depend on a vector of bandwidth    . Each 

bandwidth in     is responsible for a single density curve. So if we have   bandwidths in vector 

then a family of   curves will estimate. The selected bandwidths in    is from minimum to 

maximum. The minimum bandwidth is equal to       , while the maximum bandwidth is the 

range of data  .
7
 

                                                                                     

                                                           
7 Where B is the optimal bandwidth calculated with any of bandwidth selection procedure, i.e. IPI, LSCV, etc. 
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A small bandwidth gives a wiggly curve while a large bandwidth provides a smooth line. The 

density curves based on    shows different structure in data. So we are indifferent to decide that 

which peaks are really there and which are due to sampling variability. 

Hypothesis                                             
          

    (  
 ( ))

      

                                                                 
          

    (  
 ( ))

      

If the null hypothesis is rejected then the derivative is either positive or negative depending upon 

the sign of  
    (  

 ( ))

   
  and showing significant increasing or decreasing in curve. The 

hypothesis is tested independently at each location in scale space.
8
 The   

  
( ) is an unbiased 

estimate of the density derivative at each point/location in scale space. We assume that   
  ( ) 

follow normal distribution and performed hypothesis testing with a proper estimate of standard 

deviation 

   √
 

 
∑[   (    )    

  
( ) ]

 
 

   

 

As we assumed that the estimated density derivative is normally distributed so for this reason 

enough data points is required within the kernel window.  

Making confident interval for hypothesis testing quantile of the data is necessary to calculate. 

There are four different choices available to calculate the quantile.  

1) Point wise Gaussian quantile    ( )     *  
 

 
+  

                                                           
8
 Location is the data point and scale is the bandwidth in scale space theory of Lindeberge (1994). 
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2) Simultaneous over   Gaussian quantile 

3) Bootstrap simultaneous over    quantile       

4) Bootstrap simultaneous over          quantile 

The first one is not good choice because sometime it incorrectly shows spurious clusters as 

significant. This problem is solved by adjusting the length of confidence interval to do 

simultaneous inference. The second choice of quantile for simultaneous confidence band is based 

on the fact that when the locations are far from each other than the estimated density at these 

location are independent which implies that the derivative is also independent at the given 

locations. So in this case the problem associated with simultaneous confidence interval is 

approximated by the   independent confidence limits problem. The   independent confidence 

interval is calculated through effective sample size for each scale space 

   (   )  

 
 

∑   
   (

    
 )

 
  ( )

 

  is the kernel function, most often Gaussian kernel function is used in SiZer map building. So 

we will also take this mass function in our analysis. The   independent confidence interval, 

denoted by  ( ) in the following equation, is the number of independent blocks of average size 

from a set of   observation. 

 ( )  
 

       (   )
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The effective sample size    (   ) can also be used to show where the smooth is based on 

shatter data by highlighting the region by gray color in SiZer map where       .
9
 Chaudhuri 

and Marron (1999) suggested     . Therefore to avoid the problem of small effective sample 

size    (   ) they also modify  ( ) to   ( )   where  ( ) is given by    

                                                          ( )  
 

       
    (   )

 

Where    is the location with large data points. Assuming that  ( ) blocks of data are 

independent the simultaneous quantile for 95% confidence band is given by 

                                                        ( )     *
  (   )   ( )

 
+  

The     term in above expression is the inverse of standard Gaussian distribution
10

. The third 

and fourth choice can be obtained by bootstrapping over either   or        . But these choices 

are time costly, computer intensive and less informative as compare to the independent blocks 

approach (skrovseth.S.O.et al. 2012). The confidence interval for estimated derivative is given in 

the following equation 

    ,  
 ( )      (  

 ( ))  (  
 ( ))      (  

 ( ))- 

4.1.1 Decision rule on the basis of confidence interval 

When zero lies below or above the confidence limits then we reject the null hypothesis and 

conclude that the smooth is either increasing or decreeing depending on the sign of derivative. In 

                                                           
9
 Gray color show sparse of data  

10
 In hypothesis testing we have assumed that density derivative follow normal distribution so for this reason while 

calculating quantile we used,   , inverse of standard normal distribution. 
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case if zero lies within the confidence limits then we cannot reject the null hypothesis and there 

is either peak or trough.  

4.2 Significant convexity (SiCon) 

SiCon used to check the significance of curvatures in estimated curve. Not like SiZer, SiCon 

map is based on second derivative of smooth curve. In SiCon, color map, the area of significant 

curvature are depicted by cyan and orange color. Cyan color show significant concavity while 

orange color indicates convexity. The green color in SiCon map shows no significant curvature.  
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Chapter 5 

Results and discussion 

Monte Carlo simulation study is carried out to compare the performance of VKDE using 

different kernel functions and bandwidths. The AMISE is taken as the performance criteria. The 

effects of various kernel functions and bandwidths on the performance of VKDE are considered 

for different sample sizes. Random samples of size 50, 100 and 200 are drawn from each 

distribution with 1,000 time replication. For normal mixture distributions of Marron and Wand 

(1992) using kernel functions and bandwidths the       ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( ) ̂ values of VKDE are depicted in 

Tables 5.1 to 5.10. In each table for VKDE the best kernel function and bandwidth is shown by 

bold number and lowest value of      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( ) ̂respectively. Simulation is performed with the help 

of Matlab programming language.  

5.1 Simulation results for Gaussian distribution 

The      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( ) ̂of VKDE for Gaussian distribution with 50,100 and 200 sample sizes have 

indicated that epanechnikov kernel function is the best choice among the other kernel functions 

as shown by bold numbers in Table 5.1. Thus our results of comparing kernel functions for 

Gaussian distribution support the result of Rodchuen M et al (2010).  Similarly for the same 

distribution the IPI bandwidth is comparatively the best bandwidth with lowest 

     ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( ) ̂values. Therefore, we conclude that VKDE with IPI bandwidth and epanechnikov 

kernel function perform better than VKDE with the remaining methods. 
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Table.5.1      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ( )̂ for Gaussian distribution   

 

5.2 Simulation results for kurtotic unimodal distribution 

For kurtotic unimodal distribution the      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( ) ̂ of VKDE with IPI bandwidth is 

comparatively lower than VKDE with SRT, LSCV and EB bandwidths. So IPI is the best 

bandwidth selection method for VKDE in kurtotic unimodal case. Similarly for the same 

distribution the epanechnikov kernel function perform well as shown by bold number in Table 

5.2. These results also have similarities with the results of Rodchuen M et al (2010) for kernel 

function.    

N Kernel function 
                                        

     ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ 

50 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

0.16 

0.1908 

0.2762 

0.5774 

0.199 

0.1626 

0.2629 

0.3054 

0.1088 

0.1342 

0.4515 

0.5942 

0.0797 

0.107 

0.2307 

0.3023 

100 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

0.1494 

0.1889 

0.2749 

0.5317 

0.0988 

0.1074 

0.2283 

0.3049 

0.1793 

0.215 

0.2425 

0.6283 

0.0958 

0.0962 

0.2202 

0.2931 

200 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

0.1293 

0.1607 

0.3048 

0.4581 

0.0976 

0.1062 

0.2203 

0.3005 

0.1148 

0.159 

0.2303 

0.6205 

0.0937 

0.103 

0.2135 

0.3131 
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Table 5.2      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ( )
  for Kurtotic unimodal Distribution 

 

5.3 Simulation results for outlier distribution 

For sample generated from outlier distribution the VKDE with EB bandwidths have lower 

     ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( ) ̂ than VKDE with SRT, IPI and LSCV bandwidth. The results in Table 5.3 also show 

that the epanichnikov kernel function is the best of all other selected kernel functions. 

 

 

N Kernel function 

                                        

     ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ 

50 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

0.144 

1.6113 

0.2391 

0.4212 

0.1029 

0.3579 

0.2084 

0.3165 

0.2896 

0.3827 

0.3054 

0.6748 

0.0994 

0.3568 

0.2271 

0.3085 

100 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

0.1115 

0.6308 

0.2152 

0.3165 

0.0959 

0.3416 

0.2072 

0.3108 

0.2886 

0.3602 

0.3017 

0.338 

0.0958 

0.2901 

0.2091 

0.3026 

200 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

0.0984 

0.4418 

0.2148 

0.314 

0.0956 

2.9647 

0.2101 

0.3104 

0.2878 

0.3408 

0.3009 

0.3351 

0.0942 

0.2687 

0.2017 

0.3014 
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Table 5.3      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ( )
   for Outlier distribution 

 

5.4 Simulation results for bi-modal distribution 

For data sampled from bi-modal distributed population the VKDE using EB bandwidth perform 

well with the lowest       ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( ) ̂ as compared to VKDE with LSCV, SRT and IPI bandwidth 

algorithms. Epanechnikov kernel function with IPI, LSCV and EB bandwidth algorithms 

perform better than Gaussian, bi-weight and tri-weight. For SRT bandwidth the Gaussian kernel 

function outperforms the other. 

N Kernel function 
                                        

     ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ 

50 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

1.1843 

5.5265 

1.2274 

1.803 

0.6069 

4.6176 

1.227 

1.8029 

0.3011 

0.3223 

0.3724 

0.4331 

0.6026 

4.3998 

1.2269 

1.8031 

100 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

1.1756 

4.9351 

1.2447 

1.8207 

0.6194 

4.801 

1.2448 

1.8199 

0.2925 

0.3221 

0.3585 

0.4156 

0.618 

4.7227 

1.2444 

1.8167 

200 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

1.1748 

5.0761 

2.1345 

1.8297 

0.6273 

4.9412 

1.2538 

1.8298 

0.2536 

0.2681 

0.3396 

0.3989 

0.6266 

4.9183 

1.2537 

1.8298 
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Table 5.4.      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ( )
  For Bi-Modal distribution 

 

 

5.5 Simulation results of skewed unimodal distribution 

Table 5.5, shows that VKDE with Gaussian kernel function and EB bandwidth give the lowest 

L2-error as compared to the SRT, LSCV and IPI bandwidth methods for all sample of sizes 50, 

100 and 200. For the SRT, LSCV and IPI bandwidths the epanichnikov kernel function is the 

best among the others. These results are also according to the results of Rodchuen M et al 

(2010). We also observed from table that as the sample size increase the      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ decrease.  

N Kernel function 
                                        

     ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ 

50 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

0.7796 

0.7212 

2.2138 

2.2131 

0.7795 

1.3507 

1.5481 

2.213 

0.704 

0.7197 

0.893 

0.9637 

0.7676 

1.1128 

1.5436 

1.2896 

100 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

0.8046 

0.7525 

1.3188 

2.2565 

0.8045 

1.261 

1.0836 

2.2566 

0.7039 

0.7426 

0.7839 

0.9757 

0.7995 

1.2397 

1.0835 

1.3188 

200 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

0.8171 

0.7213 

1.3332 

2.2777 

0.8173 

1.2901 

1.0975 

2.2782 

0.7025 

0.6869 

0.6921 

0.9813 

0.8168 

1.3059 

1.6046 

1.3332 
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Table 5.5      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ( )
  for Skewed unimodal distribution 

 

 

5.6 Simulation results for strongly skewed distribution 

For data generated from strongly skewed distribution the EB bandwidth outperformed the IPI, 

LSCV and SRT bandwidth. VKDE with EB bandwidth and bi-weight kernel function appears 

comparatively with the lowest      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ as shown in Table 5.6. For the remaining three 

bandwidths Gaussian kernel worked well. 

 

N Kernel function 
                                        

     ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ 

50 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

0.7663 

1.0715 

1.1769 

1.6103 

0.7639 

0.9817 

1.2159 

1.6639 

0.6711 

0.3659 

0.8436 

0.981 

0.7518 

0.93 

1.1766 

1.6092 

100 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

0.7658 

1.0736 

1.203 

1.646 

0.7632 

1.0324 

1.2045 

1.6459 

0.3807 

0.3651 

0.4396 

0.4978 

0.7509 

1.002 

1.2023 

1.6445 

200 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

0.7619 

1.0699 

1.2001 

1.633 

0.7617 

1.0299 

1.2017 

1.6371 

0.3801 

0.3624 

0.4216 

0.45 

0.7504 

1.0013 

1.2003 

1.6328 
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Table 5.6      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ( )
  for Strongly Skewed distribution 

 

 

5.7 Simulation results for tri-modal distribution                           

Table 5.7, for data generated from tri-modal distribution shows that VKDE using IPI bandwidth 

and epanichnikov and Gaussian kernel functions have smaller      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ than VKDE with 

LSCV, SRT and EB bandwidth. But by using the bi-weight and tri-weight kernel functions the 

situation become different. If bi-weight and tri-weight kernel functions is used then VKDE with 

EB bandwidth perform well. 

N Kernel function 
                                        

     ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ 

50 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

60.1175 

18.3199 

60.4568 

61.1112 

60.1264 

18.363 

60.4532 

61.112 

2.6062 

2.6048 

2.6045 

2.6066 

60.125 

18.319 

60.4518 

61.1059 

100 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

324.0054 

34.87 

326.0062 

327.3548 

324.0159 

34.8766 

326.0188 

327.355 

2.6105 

2.6130 

2.6085 

2.6101 

323.9981 

34.01 

326.0013 

327.3419 

200 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

281.9892 

175.1921 

283.7447 

284.9709 

281.9895 

175.1845 

283.7592 

284.9629 

2.6123 

2.6105 

2.6083 

2.612 

281.9873 

174.483 

283.7441 

284.9611 
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Table 5.7      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ( )
  for Tri-modal distribution 

 

 

5.8 Simulation results for double claw distribution 

For double claw distributed sample of any size, the       ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( ) ̂ of VKDE using IPI bandwidth 

and epanechnikov kernel function is lower than the      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ of the remaining three 

algorithms. All bandwidth selection algorithms worked well with epanechnikov kernel function. 

 

 

N Kernel function 
                      (  )      

     ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ 

50 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

1.1264 

1.6939 

1.8166 

2.3836 

1.1068 

0.8437 

1.7873 

2.3846 

1.5409 

2.4124 

1.575 

1.6282 

1.1065 

0.8376 

1.7872 

2.3834 

100 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

1.1323 

1.6904 

1.8113 

2.3125 

1.1237 

2.0204 

1.8114 

2.4131 

1.5408 

2.4505 

1.5805 

1.4195 

1.1236 

1.3818 

1.8112 

2.2924 

200 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

1.1335 

1.68055 

1.8043 

2.2691 

1.1333 

2.5751 

1.8242 

2.4273 

1.5487 

2.3456 

1.5834 

1.6393 

1.1331 

1.2175 

1.8242 

2.2661 
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Table 5.8       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ( )
  Double claw distribution 

 

 

5.9 Simulation results for asymmetric claw 

For asymmetric claw distribution, the VKDE with EB bandwidth and Gaussian kernel function 

have the smallest       ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ as compared to VKDE with IPI, LSCV and SRT bandwidths as 

shown in Table 5.9. The SRT and LSCV bandwidths worked well with epanechnikov kernel 

function while for EB and IPI bandwidths the Gaussian kernel function is the best choice. The 

     ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ for VKDE continuously fall with increasing sample size. 

N Kernel function 

                                        

     ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ 

50 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

1.0534 

1.404 

1.7807 

2.4198 

1.0528 

1.8397 

1.7941 

2.4202 

1.7972 

1.45 

1.8198 

2.496 

1.0527 

1.2345 

1.7806 

2.4109 

100 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

1.0653 

6.5675 

1.7941 

2.4337 

1.0634 

6.0868 

1.7812 

2.4337 

1.8123 

2.1629 

1.4366 

2.5096 

1.0623 

1.2959 

1.3942 

2.4332 

200 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

1.0735 

36.5256 

1.8068 

2.447 

1.0739 

35.2181 

1.8071 

2.4474 

1.8004 

12.1537 

1.831 

2.5041 

1.0733 

3.6771 

1.5069 

2.4469 
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Table 5.9       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ( )
  Asymmetric Claw distribution 

 

 

 

 

 

 

 

 

 

 

N Kernel function 

                                        

     ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ 

50 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

1.3857 

7.585 

2.0695 

2.7302 

1.385 

17.2398 

2.0693 

2.7309 

0.9697 

0.0969 

0.5352 

1.3889 

1.3758 

1.2555 

2.0687 

2.73 

100 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

1.353 

4.5833 

2.0246 

2.672 

1.3531 

2.5628 

2.025 

2.6725 

0.5833 

0.0968 

0.4585 

0.7203 

1.3511 

0.9199 

2.0244 

2.6716 

200 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

1.3466 

4.4576 

2.0021 

2.6253 

1.3465 

0.9455 

2.0018 

2.5554 

0.5536 

0.0833 

0.4255 

0.7152 

1.3345 

0.8452 

2.0017 

2.4734 
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5.10 Simulation results for smooth comb distribution 

For smooth comb distributed sample data, VKDE using EB bandwidth and tri-weight kernel 

function perform well than VKDE with IPI, SRT and LSCV bandwidths methods as shown in 

Table 5.10. The      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ for VKDE goes on diminishing with increasing sample size. 

Table 5.10      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ( )
  For Smooth Comb distribution 

 

 

 

 

 

N Kernel function 

                                        

     ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ 

50 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

1.2685 

0.3791 

1.6074 

1.8922 

1.2703 

0.3617 

1.6388 

1.9395 

0.3108 

0.2968 

0.2973 

0.2959 

1.271 

0.3579 

1.6128 

1.88 

100 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

1.2615 

0.4069 

1.8958 

2.3072 

1.4288 

0.4853 

1.9294 

2.3213 

0.3044 

0.2946 

0.2822 

0.2817 

1.4347 

0.4197 

1.917 

2.3138 

200 

Epanechnikov 

Gaussian 

B-weight 

T-weight 

1.5367 

0.4262 

2.1067 

2.5888 

1.5266 

0.4833 

2.1116 

2.6068 

0.2918 

0.2923 

0.2695 

0.2639 

1.5326 

0.4864 

2.1084 

2.605 



48 
 

5.11 Real data analysis  

Our objective here is to compare the VKDE’s of real data set using different bandwidth selection 

algorithms and to check the significance of modes. Therefore we take a real data set. For real 

data analysis, to see realistic structure of data, we have taken daily opening data of Karachi stock 

exchange 100 index from 2010 to 2017 with log transform. The reason behind log transformation 

is to reduce the scale of data. As we know the stock market data has a number of modes so it 

would be really helpful for us to compare the VKDE, SiZer and SiCon for modes significances 

with different selected bandwidth methods. For simplicity and necessary for SiZer and SiCon we 

have taken only Gaussian kernel function.    

Figure 5.1 shows the VKDE of KSE-100 opening data using SRT bandwidth and Gaussian 

kernel function. Usually SRT select large bandwidth and lead to over smooth fit. So, that’s why 

figure 5.1 shows over smooth density of KSE-100 opening data with two long modes. From this 

figure we infer that the KSE-100 comes from bimodal population.  

 

         FIG. 5.1     VKDE with Silverman rule of thumb bandwidth algorithm for KSE-100 index opening data 
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Similarly by contrast to SRT the LSCV algorithm select a small bandwidth and under smooth 

density curve is obtained. Figure 5.2 depict the VKDE with LSCV bandwidth. This figure is 

under smooth and indicates that KSE-100 has two large modes, at 9.6 and 10.3, and five small 

modes.  

 

                       FIG. 5.2      figure 5.2 shows VKDE with LSCV algorithm for KSE-100 index opening data.   

Figure 5.3 shows VKDE with IPI (improved plug in) bandwidth selection algorithm. The IPI 

bandwidth algorithm provides a little bit smaller bandwidth for KSE-100 opening data which 

lead to under smooth density curve. The density curve shows a large number of big and small 

modes. We will confirm through SiZer and SiCon, whether these modes are really there or 

spurious. 
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                    FIG. 5.3    indicate VKDE using IPI bandwidth algorithm for KSE-100 index opening data 

VKDE using EB bandwidth for KSE-100 data is given below in figure 5.4. The EB algorithm 

selected the smallest of all bandwidths for KSE-100 opening data. The variable density fit with 

EB bandwidth is very under smooth and shows approximately a density on each data point, as 

given below

 

                     Fig. 5.4     depict VKDE of KSE-100 index opening data using EB bandwidth selection algorithm  

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 10.8 11
0

0.5

1

1.5

2

2.5

grid points

de
ns

ity

VKDE with IPI bandwidth for opening data of KSE-100

9 9.5 10 10.5 11 11.5
0

0.5

1

1.5

2

2.5

3

3.5

grid points

de
ns

ity

VKDE with EB bandwidth for KSE-100 opening data



51 
 

Now, in order to check that which bandwidth algorithms does well for VKDE of  KSE-100 

opening data i.e. which one of the above figures show the realistic structure of KSE-100. It is 

very arduous to conclude because we cannot use AMISE or empirical distribution as a 

performance criterion
11

. So to identify that, we move toward the color comparison. Actually the 

color comparisons are SiZer and SiCon, which provide information about the significance of 

modes and curvature respectively.  SiZer and SiCon maps will clearly show that which of these 

modes and curvatures are really there and which are noise/ spurious.  

5.12 Checking significant modes and curvatures using SiZer and SiCon 

In this section of the study we will show which of the bandwidth selection algorithms perform 

better using SiZer and SiCon maps for real data set of KSE-100 index. The bandwidth used in 

SiZer and SiCon map will be consider the best one if it shows more information/ significant 

modes and curvatures. 

5.12.1 SiZer and SiCon  maps using SRT bandwidth 

The family of smooth figure at the top of map 5.1 showed a number of kernel density curves 

obtained using a range of bandwidth selected through SRT algorithm. At very small bandwidths 

there are very large numbers of modes in KSE-100 opening data. At medium size bandwidths it 

shows five strong modes at 9.2, 9.4, 10.4, 10.6 and 10.8 while at large scales/bandwidth it show 

only two peaks and one trough i.e. at 9.4, 10.4 and 9.9 respectively. Looking at the results of 

family of smooth we are completely flummox that which structure of the KSE-100 is the realistic 

structure, whether the data really has two, five or more than five modes. So to avoid this 

confusion we move toward SiZer map of map 5.1 using SRT bandwidth. The highlighted white 

                                                           
11

 For real data set it is impossible to estimate AMISE because we don’t know the true density of data. We can also not use the 

empirical distribution the reason is that our data set consist of distinct observations. So for this purpose we compare the 
performance of selected bandwidths for VKDE using SiZer and SiCon maps. 
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line in SiZer map pass through blue and red colors over points 9.4 and 10.4. The blue color on 

left and red on right of these points indicate that the peaks are really there. Similarly the same 

line cross the border of red color and inter into blue over 9.9, means that this trough is also 

significant. The SiCon, an alternate to SiZer which give more information than SiZer, shows the 

significant curvature which depend on second derivative. In SiCon map white line pass through 

cyan-orange- orange-orange-cyan-cyan colors, indicating concavity-convexity-convexity-

convexity-concavity-concavity. So SiCon indicate that the structure at 9.4, 9.9 and 10.4 are really 

there with additional convexity at 10.2 and concavity at 10.8.   In net shell we conclude that 

KSE-100 index opening data with SRT bandwidths range have two significant peaks and one 

trough.  

 

Maps 5.1    Map 5.1 reflect the family of smooth, SiZer and SiCon maps for KSE-100 index opening data using SRT 

bandwidth algorithm 

9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 10.8
0

1

2

Family of smooth

SiZer

lo
g1

0(
h)

9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 10.8
-2

-1

0

SiCon Map

lo
g1

0(
h)

9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 10.8
-2

-1

0



53 
 

5.12.2 SiZer and SiCon using IPI bandwidth 

This map 5.2 shows the family of smooth, SiZer and SiCon for KSE-100 opening data by 

utilizing IPI bandwidth range. Here the smooth family with small resolution/ bandwidths show a 

wide range of small and high modes while moderate size bandwidth depict seven modes i.e. at 

9.2,9.4, 10.1, 10.3, 10.4, 10.6 and at 10.8. The large bandwidths indicate only two peaks at points 

9.3 and 10.4 respectively. For confirmation of these feature we jumped to SiZer map. The IPI 

bandwidth SiZer showed that the peaks at 9.4, 10.1, 10.4 and 10.6 are really there while the 

remaining are just sampling artifact. The SiZer also show a significant trough at point 9.9. The 

SiCon map highlighted Orange-cyan-orange-cyan-orange-orange-cyan-orange-cyan-orange-

cyan-orange-cyan-orange Pattern, which indicate convexity-concavity-convexity-concavity-

convexity-convexity-concavity-convexity-concavity-convexity-concavityconvexity-concavity-

convexity. SiCon give us more information about data than SiZer. 
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Map 5.2.    SiZer and SiCon of KSE-100 index opening data with application of IPI bandwidth algorithm 

5.12.3 SiZer and SiCon for LSCV bandwidth 

The map 5.3 given below shows the SiZer and SiCon map of KSE-100 opening data using 

bandwidths range selected through LSCV algorithm. Like IPI SiZer, the SiZer using LSCV 

bandwidth showed that the modes at 9.4, 10.4, 10.6 and 10.8 are significant but contrary to IPI 

method the mode at 10.1 and trough at 9.9 is insignificant. The SiCon map showed convexity at 

9.3, 9.48, 9.61, 10.1, 10.21, 10.47, 10.83 and concavity at 9.39 and 10.43.  
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Map 5.3.  Color scheme analysis of KSE-100 index opening data using LSCV algorithm 

5.12.4 SiZer and SiCon for EB bandwidth  

The SiZer and SiCon maps for KSE-100 with EB scales method are given below in map 5.4. 

SiZer depict three modes over 9.4, 10.4 and 10.6 with a small trough over 10.2. Similarly the 

more informative SiCon showed upward curvature (convexity) over 9.3, 10.22, 10.43, 10.82 and 

downward curvature over 9.39 and 10.45. 
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Map 5.4.   Color scheme analysis of KSE-100 index opening data utilizing EB algorithm 

Among the SiZer and SiCon maps the one having a large number of significant modes and 

curvatures is the best one because it gives more information about the structure of data. 

Analyzing all of the above maps we came to know that the SiZer and SiCon with IPI bandwidth 

is more informative about the structure of KSE-100 data because it gives more significant modes 

and curvature as compare to SRT, LSCV and EB algorithms. The KSE-100 data is multimodal 

data for which the IPI bandwidth worked well as shown by the SiZer and SiCon map. In our 

simulation study for tri-modal and double claw/ multimodal distribution the IPI bandwidth 

performed well than other selected bandwidth methods. So these results support our simulation 

as well as the result of Botve et al (2010). On the basis of these results, we can conclude that IPI 

algorithm is the best one for multimodal data density estimation. 
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Chapter 6 

Summary, Conclusion and Recommendation 

6.1 Summary 

Kernel density estimation (KDE) is a well-known and frequently used method for density 

estimation. Density estimation is used for finding the structure of data. As we mentioned earlier 

that KDE has two types FKDE and VKDE. VKDE outperform the FKDE and Balloon estimator 

but still it needs a variety of decisions about the choice of bandwidth and kernel function. There 

are a large number of bandwidth selection algorithms and kernel functions but the researchers 

have no general consent over which one bandwidth and kernel function is the best for VKDE. 

This study focus on the comparison of VKDE using SRT, LSCV, IPI and EB bandwidth 

selection algorithms for Gaussian mixture models of Marron and Wand (1992). This study also 

focuses on the performance of tri-weight, bi-weight, Gaussian and epanechnikov kernel 

functions for VKDE. AMISE is taken as base of comparison. The VKDE with smallest value of 

AMISE is considered as the best. VKDE is the most attractive way for density estimation but it is 

a little bit misers in showing which modes and trough are really there in the data set and which 

are spurious. Therefore, this study too focuses on SiZer and SiCon to find out the significance of 

modes, trough and curvatures in our real data set. 

6.2 Conclusion 

From the simulation results of our study we conclude that for Gaussian and kurtotic unimodal 

distribution the IPI algorithm with epanichnikov kernel function is the best of all selected 

algorithms. In case of outlier distribution the performance of all methods are not satisfactory but 



58 
 

relatively the performance of EB bandwidth with epanechnikov kernel function is appealing. The 

EB bandwidth does comparatively better than others for bi-modal, skewed and strongly skewed 

distribution with epanechnikov, Gaussian and Bi-weight kernel function respectively. For sample 

from tri-modal distribution with different sample sizes the IPI bandwidth using epanechnikov 

kernel function does batter. While in the same case using bi-weight kernel function the EB 

bandwidth give better result. The performance of IPI bandwidth for double claw distribution with 

epanechnikov kernel function is very well compared to others selected bandwidths and thus 

confirmed the results of Botev et.al (2010).
12

  For sample from asymmetric claw and smooth 

comp distribution the EB bandwidth with Gaussian and bi-weight kernel function performed well 

than that of other bandwidths respectively. For Gaussian, kurtotic unimodal, skewed unimodal 

and asymmetric claw distribution the      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂ decrease as the sample sizes increase. 

Generally for small sample size the variability in      ̅̅ ̅̅ ̅̅ ̅̅ ̅ ( )̂  is very high. The IPI bandwidth 

work well for multimodal data as studied by Botev (2010) is confirmed by our simulation and 

real data results.  Our real data set, KSE-100 opening data, has a number of modes which is 

confirmed by VKDE, SiZer and SiCon with IPI bandwidth. With the reamaing selected 

bandwidths (SRT, LSCV and EB) VKDE’s, SiZer and SiCon provided us less information about 

the structure of real data set.  

6.3 Recommendation 

As we found that the IPI bandwidth work comparatively well for multimodal data therefore, we 

recommend this algorithms for multimodal variable kernel density estimation and modes 

significance. Like other studies in literature our study also showed that epanecnikov kernel 

function is the most efficient and appealing mass function for kernel density estimation. 

                                                           
12 Kroese et.at (2011) showed that IPI bandwidth selection algorithm is the best one for multimodal data. 
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Therefore, the researchers have to use it as a weight function in their analysis of density 

estimation.  

As we have mentioned earlier in literature and found empirically that there is no one bandwidth 

section algorithms which outperformed in each and every case. So, further study should be done 

in order to find such a bandwidth algorithm which worked well in all situations. Moreover, the 

sample size can affect the performance of SiZer and SiCon so future research could also be made 

to analyze the impact of sample size on SiZer and SiCon maps. 
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