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Abstract 

There are a number of tests available for testing association between categorical data 

arranged in contingency table. However, there is no clear guidance on the relative 

merits of these tests and about the appropriate choice of test, except for 22

contingency table. We evaluate various tests of independence including Pearson chi-

square test of independence, Likelihood ratio chi-square test of independence, 

Goodman and Kruskal’s lambda test, Uncertainty coefficient, Generalized 

McNemar’s test (Stuart- Maxwell test), and Generalized fisher exact test (Fisher 

freeman-Halton test)  on the basis of their size distortion and power for various 

alternatives by extensive Monte Carlo Simulation. We observe that there is no 

significant size distortion for all of these tests, therefore these tests are equivalent with 

respect to their size. However, the power of tests for various alternatives changes 

dramatically. We found that Generalized McNemar’s test (Stuart- Maxwell test) 

outperforms other test in terms of power. Therefor we recommends the use of 

Generalized McNemar’s test (Stuart- Maxwell test) for testing association in 

contingency table. So, this is the most powerful and robust test of 

independence/measures of correlation for nominal data. 
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Chapter 1 

Introduction 

1.1 Background of Study 

Correlation is one of the most important statistical measure that is often used by 

economists and social scientists. There are many ways to calculate the correlation for 

different types of data sets and measurement scales. The economic data to which 

correlation is applied can be categorized into various types. The data may be 

continuous and discrete (qualitative) in nature. The categorical data can be further 

divided into two scales of measurement that are mentioned below. 

1. Nominal Scale  

2. Ordinal or Rank Order Scale  

The continuous data can be divided into ratio and interval scale. Qualitative data can 

be further divided into nominal, and ordinal or rank order scale. It is often said that 

researcher must be careful in the application of different tests of independence for 

different types of data. But however, no clear guidance is available that what kind of 

measure of correlation for a data. Many people argue that the use of Pearson product 

moment correlation co-efficient for continuous data is appropriate when our data 

possess the important assumption of normality. People apply Pearson correlation to 

categorical data as well. Whenever it is well known that this kind of data does not 

have normality. There is a huge amount of literature that exists about the 

interpretation, factors affecting the size of Person’s r , its assumptions, sampling 

distribution, properties of sampling distribution, special cases of Person’s r  ,and 

applications of Person’s for continuous data.  
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There are various tests of independence that can be applied to qualitative data. For 

example: Spearman rank correlation coefficient, Kendall tau co-efficient of rank 

correlation, Kendall’s partial rank-order correlation, and many others. However, 

which one of is more appropriate, that yet to be explored. 

The comparison of different measures of correlation for continuous and rank-

order type of data exists in the literature. For example Cornbleet and Shea (1978) has 

compared Pearson product-moment correlation coefficient and rank correlation 

coefficient. (Barnhart, Lokhnygina, Kosinski, & Haber, 2007), they analyzed the 

Concordance Correlation Co-efficient and Co-efficient of Individual Agreement. The 

two studies had been conducted about the comparison of different measures of 

association.        

There are many comparisons of correlation for continuous and rank order data 

but they are not sufficient to provide a complete guidance to the researcher about the 

uses and significance of the tests of independence because most of the tests of 

independence are being affected by table dimension, sample size, critical points of 

asymptotic, standard errors, and probability values. According to my knowledge, 

some researchers compared the different measures of association for nominal data on 

the basis of table dimension, sample size, critical points of asymptotic, and probability 

value but not on the size and power analysis. To fill this gap, we are conducting the 

study which compares six measures of correlation/independence for nominal data in 

terms of their size and power properties. Moreover, six tests of 

independence/measures of correlation are compared for two way )( CR contingency 

table.  
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1.2 Objectives of the Study  

The objective of this study is to explore size and power properties of various 

kinds of tests for correlation for nominal data and to find out optimal test for 

correlation for such data sets. Our first concern of this study is to set up a criterion to 

be used in comparing the performance of tests of independence. 

1.3 Significance of the Study 

The study enables the practitioner to distinguish between the best and the 

worst performance of a tests of independence for categorical data (nominal variables). 

It will also facilitate the researcher for the usage of a test of independence. This type 

of study also provides to some extent but not a complete guidance to a researcher that 

which of these tests of independence performs well when sample size, and categories 

or multiples of two nominal variables changes in different studies under different 

circumstances. 

1.4 Plan of the Study 

This study has following chapters: 

First chapter describes about the introduction, 2nd chapter is about 

empirically/hierarchal literature review, 3rd chapter deals with theoretical framework, 

4th chapter attempts to address data generating process, and comparing tests of 

independence for nominal data based on size and power analysis of the study. Chapter 

5th and 6th deals with the computation of empirical size and power comparison and the 

last chapter of this study is devoted to summary, conclusion, and recommendations. 
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Chapter 2 

Literature Review 

2.1   Literature Review 

The correct choice of statistical test for an experiment largely depends upon 

the nature of dependent and independent variables analyzed. Which statistical test is 

most appropriate? Should a parametric and non-parametric test be used? Parametric 

tests are appropriate when continuous variables follow a normal distribution and non-

parametric tests are appropriate when they do not. An extensive literature is available 

for the comparison of the tests of independence when the variables are categorized 

into ratio, ordinal and rank-order levels. In many studies Pearson chi-square and 

likelihood ratio chi-square tests are comparatively analyzed based on observed and 

expected frequencies in 2x2 contingency tables.  

In most of the studies it was observed that when non-normality of the 

distribution in any data set exists we cannot use Pearson product moment correlation 

co-efficient for continuous data. But in the study of Chok (2010), he concluded that, 

the permutation test, based on Pearson product moment correlation coefficient could 

offer a valuable advantage over Spearman’s and Kendall’s correlation co-efficient in 

non-normal distribution for continuous data. Hence, it is not a sole fact to disregard 

the use of Pearson co-efficient when non-normality of the distribution exists in a 

continuous data set but if when sample size guidelines are not met, these tests does 

not have sufficient power to provide meaningful results. We move toward other tests 

that are commonly used for categorical data. 

Agresti and Kateri (2011) Analyzed that when expected frequency is less than 

five in contingency table, we must use likelihood ratio chi-square test instead of 
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Pearson Chi-square test as well as smallest expected frequency was at least one, the 

problem of type one error rate and misleading p- values arises under different sample 

size and different sampling designs.  Some tests are comparatively analyzed based on 

type one error rate and p-values. 

Cangur and Ankarali (2013) had compared Pearson Chi-square and Log-

Likelihood Ratio test statistics in variety of conditions with respect to type I error rate 

which plays an important role in the selection of the tests. As a result of simulation, 

the Type I error rates of both tests are similar to each other at 5% when sample size is 

more than 100 and regardless of balance and unbalance of marginal row and column 

probabilities. When we regard balanced and unbalanced marginal row and column 

probabilities and sample size is less and 100 Type I error rate of Pearson Chi-square is 

at 5% and Type I error rate of Log-Likelihood Ratio is more 5%   as a result Log-

Likelihood Ratio test is more affected by the structure of the table, sample size and 

balanced and unbalanced marginal row or column probabilities than Pearson Chi-

square test. 

For example Lydersen and Laake (2003) had compared Exact Pearson’s Chi-

square, Likelihood ratio and Fisher’s tests and their three versions that are standard, 

mid p, and randomized tests on the basis of the power and significance level for 22  

contingency table using binomial and multinomial sampling. They concluded that for 

mid p type 1 error probabilities often exceed the nominal significance level. The mid 

p  and randomized test versions have approximately the same power and their power 

is higher than the standard test version. When power of the Exact Pearson’s Chi-

square, Likelihood ratio and Fisher’s tests differ then this difference of power occurs 

approximately in the same way for standard, mid p  and randomized test versions. In 

many cases, Pearson’s Chi-square and Fisher’s tests have almost equal power and 
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their power is higher than LR but when designs are poorly balanced, LR performs 

best. Fisher’s test seems to be slightly more robust if the design is poor. 

Özdemir and Eyduran (2005) Suggested that the values of chi-square and 

likelihood ratio chi-square statistic would be quite similar when observed frequencies 

in each cell would be more than five. However, it could be suggested that likelihood 

ratio (LR) chi-square statistics would be more effective than chi-square statistics 

when observed and expected frequencies would be less than five. Considering 

findings many authors suggested that to be made a very appropriate decision in 

selecting favorable statistics, their power values as well as probability values of two 

statistics should be examined. Consequently, to be making an exact decision on 

selecting favorable one of two statistics “power of test” for both statistics is more 

important concept than common concept on whether both observed and expected 

frequencies were less than five. 

 Lydersen, Fagerland, and Laake (2009) analyzed the critical points of 

asymptotic Pearson chi-square test for large samples and Fisher Irwin’s called fisher’s 

exact test for smaller samples. The asymptotic test may not preserve the test size that 

is, the actual significance level may be higher than the nominal significance level. 

Fisher’s exact test is conservative that is other tests generally have larger power yet 

still preserve test size. To overcome the two important problems that is power and test 

size they extended their analysis on other significance tests depending on variety of 

choices including 

 Level of conditioning in the sample space: should the p-value be computed 

conditionally or unconditionally on one or marginal sums in the observed 

table. 

 Choice of test statistic, such as Pearson’s of Fisher’s. 
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 Exact or asymptotic calculation of p-value. 

 Further adjustment such as the mid p-value. 

The significance tests depending on above choices are listed below. 

1. Pearson asymptotic chi-square test. 

2. Fisher –Boschloo unconditional test. 

3. Fisher exact conditional mid p-value test. 

4. Fisher exact conditional. 

Above four test are compared based on given choices and conclusion about the power 

and test size may be stated as follows. 

When significance level is obtained based on fixed row sums then fisher’s 

exact test is more conservative than Fisher’s-Boschloo’s unconditional test which also 

by definition preserves test size. Fisher conditional mid p-test and Fisher’s-

Boschloo’s unconditional test performs equally and in this case mid p-test preserve 

test size. Pearson asymptotic chi-square test is neither conservative nor preserves test 

size. When power is a function of sample size then conditional tests has lowest power 

and mid p-test and unconditional tests has the same power. Hence unconditional tests 

and mid-p test are used more and more because they preserve the significance levels 

and have more power than traditional fisher exact test. The traditional Fisher’s exact 

test practically can never be used. Behavior of nominal and ordinal variables is 

strongly influenced by sampling schemes and some other constraints. 

Olszak and Ritschard (1995) Analyzed that important finding of simulations 

has relatively high discrepancy of the estimates that are based on nominal    and 

ordinal   of Goodman and Kruskal. So, to test the significance of association other 

measures should be used. So, direct and indirect linkages between variables should 

equal their partial association. Ordinal measures adopt such a constraint of partial 
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association but nominal measures do not. So, the behavior of nominal and ordinal 

partial association measures should be interpreted with special care. 

Göktas and Içi (2011) Has compared the tests of independence like that 

Spearman and Pearson correlation coefficient, gamma coefficient, Kendall’s tau b, 

Kendall’s tau c and summer’s d for ordered contingency tables based on table 

dimension and sample size and determines which measure of association is more 

efficient. They found that as the number of table dimensions increases what the 

sample size is Pearson’s and spearman’s correlation coefficients increases on average 

but slightly they underestimate actual degree of ordinal measure of association. But 

Kendall’s tau b, Kendall’s tau c and summer’s d increases as the table dimension 

increases but they always underestimate the actual degree of association. Although 

Pearson correlation coefficient is slightly larger than spearman’ correlation coefficient 

in larger dimension table. But, at last they concluded that, Gamma co-efficient is good 

when table dimension and sample sizes are relatively small. It increases and over 

estimates as the sample size increases for any certain table dimension. In overall, 

Gamma co-efficient is best for square tables and preserves the actual degree of 

association in average.  

 Ferguson, Genest, and Hallin (2000) Showed that Kendall’s tau can be used to 

test for a serial dependence in a univariate time series. They gave formula for both 

mean and variance of circular and non-circular versions of the statistic and proved its 

asymptotic normality under the hypothesis of independence. They further presented a 

Monte Carlo study comparing size and power based on Kendall’s tau and related 

procedures that are based on alternative parametric and non-parametric measures of 

serial dependence. Their simulation results revealed that Kendall’s tau outperforms 
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Spearman’s rho in detecting first order auto regressive dependence, even though these 

two statistics are asymptotically equivalent under the null hypothesis.  

 Galla (1987) Non-parametric rank-order correlation tests such as Spearman’s 

rho and Kendall’s tau are often used as alternative to Pearson’s r and their counterpart 

when the assumptions underlying these tests cannot be met. Generalized Kendall’s tau 

is particularly used as alternative to a partial correlation coefficient. 

 Maturi and Elsayigh (2010) Has compared ten measures of correlation 

coefficients for rank-order data by using a three-step bootstrap procedure. These ten 

measures of correlation coefficient are listed below 

 (i) Pearson product moment “r” (ii) Spearman‟s rho “ρ” (iii) Kendall‟s tau “τ” (iv) 

Spearman‟s Foot rule “Ft” (v) Symmetric Foot rule “C” (vi) The Greatest deviation 

“Rg” (vii) The Top-Down “rT” (viii) Weighted Kendall‟s tau “τw” (ix) Blest “ν” (x) 

Symmetric Blest‟s coefficient “ν*”.  

They used the standard error criterion for their comparison. They concluded 

that “one should use the Pearson correlation coefficient if the data meets the normality 

assumption; otherwise, the greatest deviation performs well especially when the data 

has outliers. However, when we want emphasis on the initial (top) data, the 

Symmetric Blest‟s co-efficient has lowest standard error amongst other weighted 

correlation coefficients”. 

Newson (2002) Has reviewed the uses of Somers’D, Kendall’s Tau and the 

Hodges-Lehmann median differences. The author found that the confidence limits for 

these parameters and their differences were more informative than the traditional 

practice of reporting only p-values. 
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For example (Agbedeyi and Igweze ) has compared Tau-b, Tau-c and Gamma 

statistics and leads to the conclusion that gamma statistic is consistently better than 

tau-b and tau-c. 

Similarly Hauke and Kossowski (2011) has compared the coefficients and 

statistical significance of Pearson’s product- moment correlation and Spearman’s rank 

correlation over the same sets of data. 

Yang, Sun, and Hardin (2011) Argued that when data is matched pair with 

multiple categories, we commonly use Stuart -Maxwell and Bhapkar test for 

evaluating marginal homogeneity. But when data is collected in clustered matched- 

pair, two extended Obuchowski tests are proposed for this evaluating marginal 

homogeneity. A Monte Carlo simulation study illustrates that the extensions of Stuart 

–Maxwell and extended Obuchowski tests perform well with respect to power and 

nominal size. Although extended Bhapkar is asymptotically equivalent to the other 

three tests but it is not recommended due to its being liberal in the nominal size. 

Islam (2012) Has compared four measures of correlation coefficients in 22 

contingency table for categorical data (ordinal variables) based on size, power and 

stringency criterion. He concluded that the Fisher’s exact test of independence is the 

robust test in terms of both Size and Power and is also the Most Stringent test of all 

the four tests of independence. The clear distinction and contribution between these 

two studies is that I have compared different measures of correlation for nominal data 

and 33   contingency table. 

It has been suggested that Likelihood ratio, Wald and Lagrange Multiplier 

tests are asymptotically equivalent and choice among them depends up computational 

convenience. But these tests (Zaman, 1996) have been compared graphically on the 

basis of stringencies and maximum power analysis. Plots of stringency show that LM 
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test is extremely poor, Wald test comes in second, and LR test has small stringencies 

and maximum power of all alternatives. However, as a conclusion LR test is clearly 

winner. 

4.2 Gap in Literature 

The above literature revealed that there are no single criteria for the 

comparison of different measures of independence/association for nominal, and 

ordinal or rank-ordered data. The most important points of literature review of my 

study are summarized below. 

Comparison of Pearson chi-square and likelihood ratio chi-square tests exists 

in literature based on observed and expected frequencies for only 22  contingency 

table. Likelihood ratio chi-square test is superior to Pearson chi-square test when 

expected frequency is less than five and limiting form of Pearson chi-square test is 

likelihood ratio chi-square test. Most of the authors suggested that the appropriate 

decision in selection of most favorable statistics is that their power and probability 

values should be examined. Pearson chi-square test for large samples and Fisher’s 

exact test for small samples has been compared based on critical points of asymptotic. 

Most of the tests of independence for ordinal data have been compared based on table 

dimension, sample size and determines which measure of association is more 

efficient. Ten measures of correlation of rank-ordered data have been compared based 

on three step bootstrap procedure and standard error criterion. However, based on the 

literature review, it is concluded that there is lack of comparison of tests of 

independence for nominal data on the basis of size and power analysis. 

In often tests of econometrics and statistics we know the form of sampling 

distribution of our test statistic when the sample size is large. When we are applying 

these tests with a sample that is relatively small, we must be careful because the actual 
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sampling distribution of our statistic can be very different from its asymptotic 

distribution. If that case happens then the correct critical values for small samples can 

be quite different those ones if we choose them on the assumption that the asymptotic 

distribution is appropriate. We may conclude that we shall be using the significance 

level that is different from what we want that is called the size distortion of tests of 

independence for nominal data. This important point of size distortion is missing from 

the previous literature of the comparison of different measures of association for 

nominal, ordinal and rank- order data. So, in this study, I will analyze important point 

of size and power properties and few other basis of comparison for different measure 

of association for nominal data. 
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Chapter 3 

Theoretical Framework 

This chapter explains that what is the contingency table, how to interpret it, how to 

define association in this table and tests for association in contingency table?  

3.1 What is Contingency Table? 

The term contingency table was first introduced by Karl Pearson in 1900  and 

used in 1904  when he studied the mathematical statistics. A contingency table is a 

table of counts. A k dimensional contingency table is formed by classifying subjects 

by two variables. One variable determines the row categories, the other variable 

defines the column categories. The combination of row and column categorize are 

called cells. For the mathematician, a k dimensional contingency table with R  rows 

and C  column is the set cjrix ji ,.....,2,1,,.....,2,1,  . Let the data is obtained for 

two variables X andY  that have fix number of individuals. Moreover, the data is 

displayed as jin ,  in a table with R  rows and C  columns. Contingency table with cell 

frequencies, marginal totals with rows and column, joint probabilities with cell counts 

and marginal probabilities are depicted below. 

Variable Y  
                                  Variable X  

1x              cxx ......,..............................,.........2  

Row   total       
and marginal 
probabilities 
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3.2 How to Interpret Contingency Table? 

           Consider a CR  contingency table with both nominal categories with the 

explanatory variable X and response variableY . Let jin ,  denotes the cell frequencies 

and corresponding ji ,  joint probabilities that an observation will fall in the ith  

category of Y  and jth  category of X  that is CJRI ,....2,1,,......2,1  . We denote 

the sum of marginal totals of cell frequencies 

And sum of corresponding marginal probabilities of ith  category of Y   and jth  

category of X as 

ry

y

y





2

1
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Column total 

and marginal 

probabilities 
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
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Row or column sum of marginal totals is equal to grand total and row or column sum 

of marginal probabilities is equal to unity i.e. 

..

R

i
jii

C

j
jij nnnnn  

 1
,.

1
,.    

And  1
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

C

j
jij

R

i
jii   

3.3 How to Define Association in Contingency Table? 

The categorical (nominal) variables under two-way contingency table are statistically 

independent when their joint probabilities are equal to the marginal probabilities 

otherwise they are dependent i.e. 

                                   .., jiji   And .., jiji   . 

We formulate our null and alternative hypothesis for any test of independence in such 

a way that the two variables are independent and dependent. i.e. 

cjandriHorH jijiojijio ......,,2,1,,......2,10:: ..,..,    

cjandriHorH jijijiji ......,,2,1,,......2,10:: ..,1..,1    

3.4 Overview of Tests of Independence/Measures of Correlation 

A brief overview of each test of independence/measures of correlation is given as 

3.4.1 Pearson Chi- square Test of Independence  

Pearson chi-square test 
2  is a statistical test that was designed by Karl 

Pearson in 1900. It tests the null hypothesis that the joint probability ji ,
 that the 

outcome is in row i  and column j  is equal to the product of two marginal 

probabilities .. ji . i.e. 
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cjandriHorH jijiojijio ......,,2,1,......,2,10:: ..,..,    

The alternative hypothesis states that the two variables of classification are not 

independent. Which is the test for independence of the attributes of X  andY  that are 

categorized in CR contingency table. Then the value of test statistic is 


 




r

i

c

j ji

jiji

E

En

1 1 ,

2
,,2

)(
  

The expected frequencies can be calculated by using the formula 

..
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,
n

nn
E

ji

ji   

Or value of test statistic can also be calculated in terms of joint and marginal 

probabilities as  


 
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


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



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r
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j ji

ji

ji
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1 1 ..

2
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,

2  

 

If  0H  is true this distribution follows approximately a chi-square distribution with

)1()1(  crdf where r  and c  are number of rows and columns in contingency 

table. We reject 0H  at 0   if )1()1(
2

0

2
 crc 


 . 

The degree of freedom can be explained as follows: since the contingency 

table has kh  categories the )1(  rcdf . But we need to estimate only  .ip  and  jp.   

that of which satisfies constraint in )1,0( , thus we need to estimate )11(  cr  

parameters. Thus )1()1()11(1  crcrrcdf . 
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3.4.2 Likelihood ratio chi-square test of independence 

The likelihood ratio chi-square also known as G-test was first investigated by Robert 

R. Sokal and F. James Rohlf in1981. The asymptotic distribution of G-test that is chi-

square distribution with same degree of freedom as the Pearson 2  test. Suppose that 

we have CR  contingency table in which jin ,  individuals with row i and column j

are classified independently. Let ji ,  be the corresponding probability that an 

individual is classified in row i  and column  j  so that 0, ji  and 1
1 1

, 
 

r

i

c

j
ji . 

Then the variables jin ,  have a multinomial distribution with parameters N  and ji ,  

for ri ,......,2,1 and cj ,......,2,1 . 

Now we consider the generalized likelihood ratio test. The likelihood function is  


   

 


r

i

c

j

r
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j
r

i

c

j
ji

ji
n i,jAji

n i,j

n

n
nL

1 11 1

1 1
,

..

,,
!

!
)/(   

Now the log likelihood function is  

)(ln)(ln)/( ,,
1 1

, ji

r

i

c

j
jinAnl  

 

  

We must maximize this, subject to the constraint 1
1 1

, 
 

r

i

c

j
ji . We use the lagrangian 

multiplier theorem and differentiate the log likelihood function with respect to ji , , so 

that the maximum likelihood estimate of ji ,  is 
..

,

,
n

n ji

ji   for ri ,......,2,1 and

cj ,......,2,1 . 

Hence it follows that  
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  
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Maximum likelihood estimate under restricted model that is  

..,: jijioH    

With two constraints 1
1
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1
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Hence final form of likelihood ratio chi-square test statistic can be written as  

)(2)( RLLFURLLFy  = 








  ..

ln2
,

1 1
,

n

e
n

ji
r

i

c

j
ji which follows chi-square 

distribution with degree of freedom )1()1(  cr . 

Where  

URLLF = Un-restricted log likelihood function and  

RLLF = Restricted log likelihood function. 

The Pearson chi-square test statistic and likelihood ratio chi-square test statistic are 

approximately equivalent as n with same degree of freedom )1()1(  crv . If 

0H  is true this distribution follows approximately a chi-square distribution with

)1()1(  crdf . We reject 0H  at 0   if   11
2

0

2
 crc 


 . 

3.4.3 Goodman and Kruskal’s Lambda Test 

Goodman and kruskal’s lambda )(  is a measure of proportional reduction in error in 

contingency table analysis. This test was proposed by Goodman and Kruskal (1954 ). 

In probability theory and contingency table this measure is explained as follows. This 

measure describes the relative decrease in probability of making an error in predicting 

the values of Y when the values of X is known. This test measures the strength of 
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association between dependent and independent variable in two-way contingency 

table analysis when two variables are categorized with nominal levels. 

Consider  X  is explanatory variable and Y is response variable that are 

categorized in CR  contingency table with probability jip ,  that will fall in the thi  

category of X  and thj  category of Y ( ),,.........2,1;......,,2,1( cjri  . Goodman 

and kruskal defined the asymmetric and symmetric lambda (proportional reduction of 

error) measure as 

Asymmetric Lambda (directional lambda) 

i. Asymmetric lambda is calculated for columns jC  in contingency table 

that have X is explanatory variable and Y is response variable. It is 

denoted by )( C
R . 

ii. Asymmetric lambda is calculated for rows iR  in contingency table that 

haveY is explanatory variable and X is response variable. It is denoted 

by )( R
C . 

These two asymmetric lambdas symbolically expressed as: 

)(max1

)(max)(max

)(
.

.,
1

c
j

c
j

ji

R

i
j

C
R












  And 

Its general standard error may be given as follows: 

)(max1

)()(

.

1 1

2
,,

1
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j
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j
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R

jjjiji

ASE











 

  

Where   

                                          ASE = Asymptotic standard error 
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Its general standard error may be written as follows: 
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Where 
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Symmetric Lambda (non-directional Lambda) 

Now we consider the situation in which explanatory and response variables 

are not defined. PRE-measure is denoted by  and symbolically may be defined as 
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Its general standard error may be obtained as follows: 
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Where  
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And where 
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Under the null hypothesis of independence, the symmetric version of Lambda test 

statistic asymptotically has standard normal distribution  

1ASE
Z

symmetric

calculated


 . 

3.4.4 Uncertainty Coefficient 

The uncertainty coefficient is a measure of association for nominal variables. 

It was first introduced by Henri Theil in 1970  and is based on the concept of 

information entropy. We define the information function (uncertainty function) that 

quantify the information of any event. i.e. 

  )(ln
1

ln i

i

iI 


 







  

Uncertainty of an event is low when  is close to one and high if  is close to zero. 

Entropy: Entropy of a random variable X is defined as the expected value of its 

information function is called entropy and symbolically expressed as 

    )(ln)(
1

 



I

i
iIExH  
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Now we define the entropies for rows and columns respectively 

)(ln)( .. j
j

jxH   And )(ln)( .. i
i

iyH  . 

Entropy of two rows and columns together 

)(ln),( ,
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Entropy of y given x  and x  given  y  
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When  x  and y are independent then  

)()/( yHxyH   And )()()( yHxHxyH   

The uncertainty coefficient for )/( xyU , )/( yxU  and overall for both rows and 

columns is the proportion of entropy in the variable )(xy  explained by  )( yx  

)(

)()()(
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)/()(
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xyHyHxH
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xyHyH
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The standard error under the null hypothesis that )/( xyU  equals zero is computed as: 
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The variance under the null hypothesis that )/( yxU equals zero is computed as: 
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The symmetric version of uncertainty coefficient is defined as follows: 

 
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  

The asymptotic variance under the null hypothesis that U equals zero is computed as: 
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
  

This measure lies between 0 and1. Value  0  indicates that x  and y  have no 

association and 1 indicates that x  and y are completely associated. 

Under the null hypothesis of independence or no association, the asymptotic 

test statistics has standard normal distribution which is given as 

0ASE

U
Z

symmetric

calculated  . 

3.4.5 Generalized McNemar’s test (Stuart- Maxwell test) 

Generalized McNemar’s test was first proposed by Stuart (1955) and Maxwell 

(1970) and this test is used to test the marginal homogeneity of the outcomes when 

two nominal variables are classified into multiple categories. To test the marginal 

homogeneity of the outcomes of two nominal variables in a square contingency table, 

we assess the following hypothesis. i.e. 

iiH ..0 :               Ii ,......,2,1  

iiAH ..:    

The Stuart-Maxwell statistic is calculated as:  

dSdX 12  , With degree of freedom 1k  
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Where d is a column vector that contains any 1k  values of kk   contingency table 

i.e. kddd ,.......,, 21  

Where  

.. iiid          ki ,........,2,1  

 Let S  denotes the variance covariance matrix of the elements of d . The elements of 

S are equal to: 

ii
s iiii  2..   

)( jiijijs    

Where d  is the transpose of d  and 1S  is the inverse of S matrix? 

Stuart Maxwell test statistic 2X  is an asymptotically chi-square test statistic 2 with 

degree of freedom 1k as N . For 22   contingency table McNemar’s and 

generalized McNemar’s both are equal. 

3.4.6 Generalized Fisher Exact Test (Fisher Freeman-Halton Test) 

The generalization of the fisher exact test is known as the Fisher-Freeman-

Halton (F-F-H) test (Freeman and Halton 1951). When sample sizes and asymptotic 

approximation do not work properly, then to perform the exact inference the marginal 

totals are fixed by design. In general, for a CR  contingency table, we test following 

hypothesis for F-F-H test 

 

cjandriH jijio ,,2,1,,2,1: ..,     

..,: jijiAH    

The exact tests such as F-F-H tests are based on the multiple Hypergeometric 

distributions. The main objective of this test is that to remove the effect of all 
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nuisance parameters from the distribution of y to make exact inference for categorical 

data. Thus, for F-F-H test we define a reference set. i.e. 
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We will use X to denote CR  table constructed from the sample data and Y to 

denote CR  table constructed from . The probability of Y that belongs of  .i.e. 

Y under the null hypothesis that rows and columns are independent is given by 
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The probability value )( yp is compared with the value of the discrepancy measure 

(test statistic) )( yD  to perform the exact test of independence for null hypothesis. 

Large value of )( yD  provides evidence against null hypothesis and small value of  

)( yD  is consistent with null hypothesis. The test statistic for F-F-H test is denoted by 

)(0 xD  and is calculated as 

 )(log2)(0 xxD  , 

Where 
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The exact p value for testing the null hypothesis under F-F-H test is denoted by 2p  

and calculated by accumulating the null probabilities of all the  CR  tables in   that 

are at least as extreme as the observed table x  by using F-F-H test statistic. 
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Chapter 4 

Generation of Data and Comparing Test of Independence 

This chapter explains that how data is generated. The six tests of 

independence/measures of correlation (Pearson chi-square test of independence, 

Likelihood ratio chi-square test of independence, Goodman and Kruskal’s lambda 

test, Uncertainty coefficient, Generalized McNemar’s test (Stuart- Maxwell test), 

Generalized fisher exact test (Fisher freeman-Halton test)) are compared in this study 

based on size and power analysis. In this chapter, the stepwise procedure for Monte-

Carlo Simulation is explained and end of the chapter a brief conclusion is also stated. 

4.1 Data Generating Process (DGP) in 33  Contingency Table         

To generate the data of contingency table for nominal variables, there are lots 

of techniques in the literature of statistical simulation. The following method of data 

generating process is used for null hypothesis of independence  

0:: ..,..,  jijiojijio HorH   

We are dealing with categorical data following the above CR  contingency table, 

the data generating process is as follows. 

Row selection 

For each draw row will be selected in such a way that the probability of 

selection of each row follows the marginal probability of that row according to the 

contingency table. 

 Column Selection 

Once the selection of row is done, the column will be selected in such a way 

that conditional probability of each column as per contingency table is observed. 
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Program which computes the data generating process and simulation design is given 

in appendix of this thesis. 

4.2 Comparing Test of Independence 

4.2.1 Basis of comparison 

The comparison of various measures of association is based on the various 

assumptions. For example, Pearson chi-square test of independence is more sensitive 

to the sample size and dimension of the contingency table. So, when the sample sizes 

and table dimension differ the value of chi-square test statistic and its significance 

may lead to a researcher on wrong conclusion. To detect such type of effects a 

researcher must compute the size and power of a test. The power of a hypothesis test 

is the probability when a test correctly rejects the null hypothesis when alternative 

hypothesis is true and size of a test is vice versa. So, size and power properties are 

used to analyzed the performance of tests of independence.  

The comparison of the tests based on size and power do not provide a 

satisfactory conclusion at different alternatives. As one test is more powerful at some 

alternatives as compare to other tests and at some alternatives may be any other test is 

more powerful. To overcome this problem and to calculate the best point optimal test 

stringency criteria is used. Point optimal test can be perform only when a test having 

one dimensional parameter of interest with a one-sided alternative hypothesis. The 

class of tests that is included in our study have higher dimensions, or two sided 

alternatives, it is easily seen that point optimal test cannot perform reasonably. 

However, for practical it is more important that tests which maximizes power over 

suitably distant alternatives are also preferred. 

The test should have no size distortion when applied to data fulfilling the null 

hypothesis. If there are multiple designs of contingency table each fulfilling the null 
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of independence, the test should have same power for all such designs. This can be 

assumed if the simulated critical values for different designs are same. If we are 

having comparable size, the power would help in choice of optimal test. So, two 

characteristics, size and power, have essential importance in assessing a test. 

4.3 Simulation Design 

We use the Monte-Carlo Simulation design to obtain the most powerful test 

the stepwise procedure is adopted. The stepwise procedure that is used to estimate the 

size and power of statistical tests of independence/measure of correlation for nominal 

data is stated as follows. 

(i) Generation of data in 33  contingency table using those different designs of 

contingency table which satisfy the null hypothesis of independence and 

calculation of size of test for six tests of independence/measure of correlation 

i.e. Likelihood ratio chi-square test of independence, Goodman and Kruskal’s 

lambda test, Uncertainty coefficient, Generalized McNemar’s test (Stuart- 

Maxwell test), Generalized fisher exact test (Fisher freeman-Halton test). 

(ii)   Generation of data in 33  contingency table using those different designs of 

contingency table which satisfy the alternative hypothesis of non-

independence and calculation of power of these six tests of 

independence/measure of correlation at different alternatives. 

(iii) The above two steps will be repeated for each test of independence 20,000 

times with sample sizes of 25, 50 and 100 and levels of significance 1% and 

5%. 

(iv) Calculate the p value for different alternatives of no association. This value 

will be called the proportion of rejection and will serve as the power of each 

test of independence.  
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(v) The powers of each test of independence is plotted against the alternative 

hypothesis to get the power curves for these tests. 

4.4 Conclusion  

To compute the power of test statistic T which depends upon critical value 

)(CV  and alternative hypothesis )(  needs two counters n  and m . A new value of T  

is generated and update the total counter 1n . The success counter m  is updated 

1 mm only if CVT  . At the end, we calculate the probability of rejection to be

nm / . The scatter plot of probability of rejection and alternative hypothesis will 

generate the power curve. 
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Chapter 5 

Computation of Simulated Critical Values 

 And Empirical Size 

5.1 Introduction of Chapter  

This chapter explains that why the simulated critical values (finite sample 

critical values) are required for different test statistics? Simulated critical values are 

also calculated in this chapter for each test of independence/measure of correlation. 

We use a Monte-Carlo simulation approach which could be helpful in calculating the 

size and distortion of size of each test of independence and at the end of this chapter 

conclusion is stated.   

5.2 Why the simulated critical values are needed? 

In often cases we know the form of sampling distribution of our test statistic 

when the sample size is relatively large. So, we know the asymptotic sampling 

distribution. But if we are applying these tests with a sample that is relatively small, 

we have to be careful because the actual sampling distribution of our test statistic can 

be very different from its asymptotic distribution. If that case happens, then correct 

critical values for small samples can be quite different if we choose them on the 

assumption that the asymptotic distribution is appropriate. Thus, in turn, we are using 

the significance level that is different what we want. This creates the distortion in size 

of a test. Actual sampling distribution of our test statistic could be quite different what 

we want. It usually depends upon the testing problem, unknown values of the 

parameters and nature of the data that we are using. So, in order to keep the size of a 

test constant at nominal size of 5% and 1% the simulated critical values for each test 

of independence are generated at sample sizes 25, 50 and 100. 
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5.3 Computation of size of test based on simulated critical values 

After the generation of data under the null hypothesis, we generate the critical 

values for six tests of independence/measures of correlation. These critical values for 

each test of independence is calculated under sample size of 25, 50 and 100, levels of 

significance  = (5%, 1%) and 20,000 Monte-Carlo replications. 

Table 5. 1: Size of Tests of Independence with Sample Size 25 

 (Simulated Actual – Finite Sample Critical Values) 

   Sample size 25 and � = �. ��, �. �� 
List of Tests Levels of 

Significance D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 
�ℎ�(��)    
 ���� 

� = 0.05 9.25 9.25 9.27 9.17 9.17 9.20 9.39 9.14 9.22 9.23 
� = 0.01 12.27 12.62 12.80 12.87 12.87 12.51 12.69 12.62 12.58 12.60 

��. �ℎ� 
(��) ���� 

� = 0.05 6.14 5.98 5.87 5.65 5.65 6.05 5.88 5.81 6.09 6.06 

� = 0.01 8.26 7.89 8.05 7.80 7.80 8.12 7.92 7.79 8.16 8.14 

������  
(�) ���� 

� = 0.05 2.34 2.34 2.52 2.18 2.18 2.34 2.34 2.34 2.34 2.34 
� = 0.01 3.07 3.07 3.41 3.11 3.11 3.07 3.15 3.15 3.07 3.07 

 
�� ���� 

� = 0.05 1.12 1.09 1.10 1.09 1.09 1.10 1.09 1.08 1.11 1.11 
� = 0.01 1.50 1.46 1.51 1.53 1.53 1.50 1.47 1.50 1.50 1.49 

� − �  
���� 

� = 0.05 9.42 7.41 6.09 6.30 6.30 8.37 7.23 6.63 8.58 10.39 

� = 0.01 12.16 10.12 8.47 8.82 8.82 11.13 10.00 9.36 11.17 13.14 

�. �. � 
���� 

� = 0.05 
 

8.68 
 

8.63 
 

9.78 
 

12.73 
 

12.73 
 

8.58 
 

8.79 
 

8.83 
 

8.63 
 

8.61 
 

 

As we can see, the results depend to some degree on the form of contingency table. 

The above table shows that the size of each test of independence is less or equal to the 

nominal size of 5% and 1%, as we have used simulated critical values. For all    

levels considered, the empirical significance levels for each test of independence are 

consistent with the nominal significance levels, as the nominal significance levels are 

with in the corresponding 95% and 99% confidence intervals. 
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Table 5. 2: Size of Tests of Independence with Sample Size 50 

 (Simulated Actual – Finite Sample Critical Values) 

  Sample size 50 and � = �. ��, �. �� 
List of 
Tests 

Levels of 
Significa

nce D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 
�ℎ�(��) 
���� � = 0.05 

9.3
9 

9.3
0 

9.2
8 

9.6
4 

9.2
2 

9.3
8 

9.8
0 

9.3
9 

9.2
9 

9.3
5 

� = 0.01 
12.
63 

12.
89 

12.
72 

13.
07 

12.
95 

12.
85 

13.
48 

13.
15 

12.
95 

12.
59 

��. �ℎ� 
(��) ���� � = 0.05 

8.6
2 

8.4
6 

8.3
4 

8.6
4 

7.6
9 

8.5
2 

8.6
0 

8.2
1 

8.4
5 

8.5
9 

� = 0.01 
11.
82 

11.
68 

11.
29 

11.
95 

10.
80 

11.
88 

11.
77 

11.
39 

12.
05 

11.
92 

������ 
 (�) ���� � = 0.05 

1.5
8 

1.5
3 

1.4
1 

1.6
4 

1.2
1 

1.5
8 

1.5
3 

1.5
8 

1.5
8 

1.5
7 

� = 0.01 
2.0
5 

1.9
8 

1.9
8 

2.2
6 

1.8
9 

2.0
5 

2.1
1 

2.1
9 

2.0
5 

2.0
5 

�� ���� 
� = 0.05 

0.7
8 

0.7
7 

0.7
9 

0.8
4 

0.7
8 

0.7
7 

0.8
0 

0.7
8 

0.7
6 

0.7
8 

� = 0.01 
1.0
6 

1.0
7 

1.0
7 

1.1
6 

1.1
0 

1.0
7 

1.0
9 

1.0
9 

1.0
8 

1.0
7 

� − �  
���� � = 0.05 

13.
47 

9.4
7 

6.4
0 

6.5
4 

7.1
7 

11.
22 

9.0
6 

8.0
1 

11.
68 

15.
49 

� = 0.01 
17.
36 

13.
05 

9.5
2 

9.6
8 

10.
33 

14.
98 

12.
60 

11.
39 

15.
40 

19.
52 

�. �. � 
 ���� 

� = 0.05 
8.9
5 

8.9
1 

8.7
7 

9.1
7 

8.5
1 

8.9
7 

9.3
1 

8.7
9 

8.8
9 

8.9
4 

� = 0.01 
12.
18 

12.
26 

11.
94 

12.
32 

11.
86 

12.
47 

12.
83 

12.
18 

12.
33 

12.
19 

 

As we can see, the results depend to some degree on the form of contingency table. 

The above table shows that the size of each test of independence is less or equal to the 

nominal size of 5% and 1%, as we have used simulated critical values. For all    

levels considered, the empirical significance levels for each test of independence are 

consistent with the nominal significance levels, as the nominal significance levels are 

with in the corresponding 95% and 99% confidence intervals. 
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Table 5. 3: Size of Tests of Independence with Sample Size 100 

 (Simulated Actual – Finite Sample Critical Values) 

  Sample size 100 and � = �. ��, �. ��   
List of 
Tests 

Levels of 
Significance D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

�ℎ�(��) 
 ���� 

� = 0.05 9.45 9.38 9.46 10.43 9.37 9.41 10.49 9.48 9.37 9.46 

� = 0.01 13.00 12.80 13.17 14.21 12.99 13.07 14.26 13.08 13.14 13.02 
��. �ℎ� 
(��) ���� 

� = 0.05 9.67 9.55 9.41 10.39 9.08 9.62 10.71 9.27 9.58 9.63 

� = 0.01 13.46 13.22 13.24 14.32 12.57 13.38 14.50 13.09 13.43 13.41 

������  
(�) ���� 

� = 0.05 1.12 1.01 0.86 1.02 0.52 1.06 1.06 1.12 1.06 1.04 

� = 0.01 1.41 1.34 1.25 1.57 0.98 1.41 1.43 1.48 1.39 1.39 

�� ���� � = 0.05 0.43 0.43 0.44 0.51 0.47 0.43 0.49 0.44 0.43 0.43 

� = 0.01 0.60 0.60 0.63 0.71 0.65 0.60 0.67 0.62 0.60 0.60 
� − �  
���� 

� = 0.05 20.01 12.68 6.91 7.36 8.46 15.89 11.81 9.94 16.79 24.02 

� = 0.01 25.44 17.13 10.45 10.77 12.03 20.88 16.19 13.97 21.70 29.30 

�. �. � 
���� 

� = 0.05 9.30 9.22 9.26 10.21 9.05 9.27 10.36 9.26 9.24 9.32 

� = 0.01 12.94 12.75 12.87 14.02 12.47 12.85 14.18 12.77 12.96 12.90 
 

 As we can see, the results depend to some degree on the form of contingency table. 

The above table shows that the size of each test of independence is less or equal to the 

nominal size of 5% and 1%, as we have used simulated critical values. For all    

levels considered, the empirical significance levels for each test of independence are 

consistent with the nominal significance levels, as the nominal significance levels are 

with in the corresponding 95% and 99% confidence intervals. 
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5.3.1 Comparison on the basis of size of a test 

Table 5. 4: Distortion in size (using simulated critical values). 

  Mean Deviation 

  
Chi-Square 

Test LR Test 
Lambda 

test 
UC 
Test 

Stuart-
Maxwell Test 

Generalized 
Fisher Exact Test 

Sample Size 25 
0.05 0.15 0.06 0.01 1.21 1.29 
0.13 0.15 0.07 0.02 1.26 0.15 

Sample Size 50 
0.13 0.20 0.08 0.01 2.49 0.19 
0.19 0.30 0.08 0.02 2.75 0.33 

Sample Size 100 
0.33 0.34 0.12 0.02 4.63 0.41 
0.38 0.38 0.10 0.03 5.24 

 

We will be interested in whether our results are sensitive to the form of the data. As 

we can see, these results depend to some degree on the form of the contingency 

tables. If we were to use the asymptotic critical values as an approximation, we shall 

be using critical values that are too small. As a result, asymptotic critical values are 

too small, so significance level that we are using on simulated critical values would be 

larger from those one that we are using on asymptotic critical values. Significance 

level that we are using on simulated critical values is called nominal significance level 

of nominal size of the test. The difference between two quantities is the degree of size 

distortion. Hence asymptotic critical values would lead to very misleading results. 

This misleading result would be in terms of size distortion. 

5.4 Conclusion 

To test whether two nominal variables are independent or not, it is necessary 

to know the critical values at different sample sizes and significance levels. Initially 

we have critical values in the literature but these critical are not available in a wide 

range for us. So, we have generated extent tables of critical values for different 

sample sizes and significance levels using Monte-Carlo simulation for testing 

independence for two nominal variables. Based on those simulated critical values, we 
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conclude that the space of null hypothesis is not a single criterion, rather it contains 

many points. Stuart-Maxwell test is more sensitive to the form of the degree of 

contingency table. This test creates huge distortion in size if we use asymptotic 

critical values. 
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Chapter 6 

Results of Power Comparisons 

In this section, we present the results of empirical power comparisons for six tests of 

independence for nominal data. Asymptotic critical values do not work for small 

sample size, because these critical values only work when sample size is large. 

Therefore, we do not use asymptotic critical values. Since we are using simulated 

critical values, this ensures that there is no size distortion. 

6.1 Power of Tests 

We determine the empirical power of each test of independence by simulating 

the contingency tables under the dependence structure, and computing the proportion 

of times the independence hypothesis is rejected at a given significance levels  . We 

generate 20,000 ( 33 ) contingency tables with sample sizes 25, 50 and 100 based on 

a specified dependence structure. For each sample, we compute the test statistic for 

Pearson chi-square test of independence, Likelihood ratio chi-square test of 

independence, Goodman and Kruskal’s lambda test, Uncertainty coefficient, 

Generalized McNemar’s test (Stuart- Maxwell test), Generalized fisher exact test 

(Fisher freeman-Halton test). We reject the independence hypothesis at significance 

level  if the test statistic of each test exceeds the critical value at level . For several 

( 33 ) contingency tables under dependence structure, the critical values and 

proportion of times the independence hypothesis is rejected are given in appendix for 

5% and 1% significance levels. 

6.2 Comparison based ON Power Curves 

In this empirical study, we show the power curve for all tests for testing

..,: jijioH   , against ..,: jijioH   . To draw the power plots at different 
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alternatives or possible values of distance are taken along X-axis and power of each 

test of independence/measure of correlation are taken along Y-axis. Scatter plots are 

drawn at three different sample sizes of 25, 50 and 100 for different cut-off points of 

distance or alternative hypothesis. Significance levels have been chosen to be 5% and 

1%. 

Figure 6. 1: Power curves at sample size 25 and  =5%: 

 

Empirical study show the power plots of all six tests included in our study. In 

calculating the power of every possible value of distance or alternative hypothesis, we 

observe that when the distance is close to zero, the power of test is close to nominal 

size or type I error. As the distance increases, the power of test also increases. It is 
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also visible from the graph that the power curve of Stuart-Maxwell test seems to 

outperform all other tests as its power about null hypothesis is close to the nominal 

size and it attains highest power for larger alternatives. Moreover, we observed that 

LR test and UC were completely insensitive to this type of dependence, and power of 

these tests was as low as the size of the tests. Note that when the sample size is 25 the 

power of all tests is less than significance level ( ) or size of test. The tests are 

biased for the chosen values of the parameters. 

Similar examples, such as one of the two figures (6.1.2 & 6.1.3) depicted 

above exhibit that increasing the power of all tests as well as increase over the part of 

parameter space. The empirical study shows that the Stuart-Maxwell test is more 

powerful up to highest parameter space. This test is unbiased for the chosen values of 

the parameters. 

Figure 6. 2: Power curves at sample size 25 and  =1%: 
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Above graph shows the power curves of all six tests included in our study. In 

calculating the power of every possible value of distance or alternative hypothesis, we 

observe that when the distance is close to zero, the power of test is close to nominal 

size or type I error. As the distance increases, the power of test also increases. It is 

also visible from the graph that the power curve of Stuart-Maxwell test seems to 

outperform all other tests as its power about null hypothesis is close to the nominal 

size and it attains highest power for larger alternatives. Two tests LR and UC perform 

very poorly in terms of power and their power is not very different from nominal size. 

Note that when the sample size is 25 the power of all tests is less than significance 

level   .The tests are biased for the chosen values of the parameters. 
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Similar examples, such as one of the two figures (6. 2.2 & 6.2.3) depicted above 

exhibit that increasing the power of all tests as well as increase over the part of 

parameter space. The most powerful test is the Stuart-Maxwell test over increase in 

the part of parameter space. This test is unbiased for the chosen values of the 

parameters. But, in resulting as well as level of significance decreases, also decrease 

in power of all tests. 

                         

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 3: Power curves at sample size 50 and  = 5%: 



 

41 
 

       

Fig. (6.3.1) represents that when sample size is 50, the power of all tests is less than 

significance level )( . The tests are biased for the chosen values of the parameter 

space or distance. Fig. (6.3.2) has been prepared from the same sample size except 

that some tests like Pearson Chi-square, generalized Fisher exact test and Stuart-

Maxwell test have more power than significance level )( . These tests are unbiased 

for chosen values of the parameter space or distance. As a matter of fact,  test, LR 

and UC still have less power than significance level )( . These measures of 

association always underestimate and biased the actual degree of association of 

nominal variables for the chosen values of the parameter space or distance. In overall, 

Stuart-Maxwell test has fairly large power than all tests. Fig. (6.3.3) represents that all 
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tests have larger power than significance level )(  and are unbiased for the chosen 

values of the parameter space. In practice, Stuart-Maxwell test outperforms than all 

remaining tests for the chosen values of the parameter space. 

Figure 6. 4:   Power curves at sample size 50 and  = 1%: 

 

Fig. (6.4.1) shows that when sample size is 50, the power of all tests is less than 

significance level )( . The tests are biased for the chosen values of the parameter 

space or distance. Figs. (6.4.2 and (6.4.3) have been prepared from the same sample 

size although all tests have more power than significance level )( . All tests are 

unbiased for the chosen values of the parameter space or distance. We observe that 

the true power of all tests tends to increase as well as increase in parameter space or 
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distance and Stuart-Maxwell test has higher power than all other tests of nominal 

association. 

                  Figure 6. 5: Power curves at sample size 100 and  = 5%: 

 

Fig. (6.5.1) shows that when sample size is 100, the power of all tests is less than 

significance level )( . The tests are biased for the chosen values of the parameter 

space or distance. Figs. (6.5.2) and (6.5.3)   have been prepared from the same sample 

size although all tests have more power than significance level )( . All tests are 

unbiased for the chosen values of the parameter space or distance. We observe that 

the true power of all tests tends to increase as well as increase in parameter space or 
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distance and Stuart-Maxwell test has higher power than all other tests. We have 

confirmed that at higher sample size, level of significance and parameter space or 

distance levels power of all tests have been increased. 

           Figure 6. 6 : Power curves at sample size 100 and  = 1%:                                      

 

Fig. (6.6.1) shows that when sample size is 100, the power of all tests is less than 

significance level )( . These tests are biased for the chosen values of the parameter 

space or distance. Figs. (6.6.2) and (6.6.3) have been prepared from the same sample 

size although all tests have more power than significance level )( . All these tests are 

unbiased for the chosen values of the parameter space or distance. We observe that 
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the true power of all tests tends to increase as well as increase in parameter space or 

distance and Stuart-Maxwell test has higher power than all other tests. We have 

confirmed that at smaller level of significance, power of all tests has been decreased. 

6.3 Conclusion 

All the above figures depict that when sample size, significance level   , 

parameter space or level of distance increases power of all tests of independence also 

increases. Stuart-Maxwell test at a specific significance level  is most powerful 

against a specific alternative than all other tests of independence at same significance 

level. But this test is most powerful for some alternatives but less powerful for others. 

When a test at a specific significance level is more powerful against all alternatives 

than all other tests, we called this test uniformly most powerful. Comparing power 

curves for test of independence, we observe that for near alternatives with parameter 

space close to zero Pearson Chi-square test is the more powerful test. For far 

alternative with parameter space large Stuart-Maxwell test is the more powerful test. 

However, we may conclude that comparing tests of independence based on their 

power, Stuart-Maxwell test has substantially superior performance for larger 

alternatives than all other tests. 
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Chapter 7 

Summary, Conclusions, Recommendations and Direction for 

Future Research 

In this chapter, we stated the conclusion of our study and in the light of this 

conclusion recommendations are also given. 

7.1 Summary 

Pearson chi-square test of independence, Likelihood ratio chi-square test of 

independence, Goodman and Kruskal’s lambda test, Uncertainty coefficient, 

Generalized McNemar’s test (Stuart- Maxwell test), Generalized fisher exact test 

(Fisher freeman-Halton test) are used to test the association of unordered 33  

contingency table. Null and alternative hypothesis are used to compute the test power 

and significance level for these test statistics in 33  contingency table. After 

extensive simulations, in general we recommend that for small values of parameter 

space which near to zero Pearson Chi-square test is more powerful and for large 

values of parameter space far zero Stuart- Maxwell test is more powerful.  

7.2 Conclusion 

Most of the test of hypothesis for nominal association become invalid and give 

misleading conclusions about the statistical significant of those ones. So, to overcome 

this problem we introduce some concept of simulated critical values in this study.  

After the extensive simulation in chapter 5, it was observed that the size of all six tests 

of independence is less or equal to the nominal size of 5% and 1%, as we have used 

simulated critical values. Moreover, to overcome the problem of size distortion for a 

test of independence of nominal association, we recommend that a researcher must 

use simulated critical values instead of asymptotic ones when sample size is small. 
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Based on those simulated critical values, we conclude that the space of null 

hypothesis is not a single criterion, rather it contains many points. Stuart-Maxwell test 

is more sensitive to the form of the degree of contingency table. This test creates huge 

distortion in size if we use asymptotic critical values. In the previous studies, we 

found that asymptotic tests are less reliable and their significance may fluctuate 

substantially. Hence, asymptotic tests should never be used for small samples cr   

contingency tables. 

From simulation results of chapter 6, we confirmed that for near alternatives 

with parameter space close to zero Pearson Chi-square test is the more powerful test. 

For far alternative with parameter space large Stuart-Maxwell test is the more 

powerful test. Power plots for all tests of independence represent that when sample 

size, significance level ( ), parameter space or level of distance increases power of 

all tests of independence also increases. 

7.3 Recommendations 

The empirical study of Comparison of different measures of nominal 

correlation, a researcher must use the simulated critical values instead of asymptotic 

ones to overcome the problem of size distortion of test. From simulation results we 

confirmed that for near alternatives with parameter space close to zero Pearson Chi-

square test is the more powerful test. For large alternative with parameter space far to 

zero, Stuart-Maxwell test is the more powerful test. So, a researcher/practioner should 

use simulated critical values for statistical significance because Stuart-Maxwell test is 

more sensitive to the form of degree of contingency table and this test is the more 

powerful for large alternatives. 
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7.4 Direction for Future Research 

This study can be extended to the data categorized in multi-way contingency table. 

These six tests of independence for nominal variables can be compared based on 

asymptotic, exact conditional, or exact conditional with mid-p adjustment that are 

commonly used for computation the p-values. Comparison can be carried out based 

on marginal distributions, confidence intervals and standard errors of these tests.  
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Appendix –A 

Power of Tests 
   Power of tests at 5% critical values, Sample size 25 

Designs Distance 

Pearson 

�� LR λ test UC Stuart- Maxwell test 

Generalized fisher 

exact test 

D1.1 0 2.6% 0.1% 3.0% 0.1% 1.5% 0.0% 

D1.2 0 2.8% 0.1% 3.2% 0.1% 1.5% 2.7% 

D1.3 0.0034 4.5% 0.1% 3.6% 0.1% 1.6% 2.7% 

D1.4 0.0055 4.5% 0.1% 3.6% 0.1% 1.7% 2.8% 

D1.5 0.006 4.5% 0.2% 3.7% 0.2% 1.7% 2.9% 

D1.6 0.0569 4.7% 0.2% 3.8% 0.2% 1.7% 2.9% 

D1.7 0.1117 4.9% 0.4% 3.9% 0.2% 1.8% 3.0% 

D1.8 0.1479 4.9% 0.4% 4.0% 0.2% 1.8% 3.0% 

D1.9 0.1536 4.9% 0.4% 4.3% 0.2% 1.8% 3.1% 

D1.10 0.1813 5.0% 0.4% 4.3% 0.3% 1.8% 3.1% 

D2.1 0.1814 5.0% 0.5% 4.4% 0.3% 1.9% 3.1% 

D2.2 0.1883 5.1% 0.5% 4.6% 0.4% 2.1% 3.1% 

D2.3 0.2524 5.1% 0.5% 4.7% 0.4% 2.2% 3.2% 

D2.4 0.3009 5.3% 0.6% 4.9% 0.4% 2.3% 3.3% 

D2.5 0.3537 5.3% 0.6% 4.9% 0.4% 2.4% 3.3% 

D2.6 0.3925 5.3% 0.6% 5.0% 0.5% 2.4% 3.4% 

D2.7 0.3982 5.4% 0.6% 5.0% 0.5% 2.4% 3.4% 

D2.8 0.4114 5.4% 0.6% 5.0% 0.5% 2.5% 3.6% 

D2.9 0.4663 5.5% 0.7% 5.0% 0.5% 2.5% 3.7% 

D2.10 0.4861 5.6% 0.7% 5.2% 0.5% 2.8% 3.7% 

D3.1 0.4911 5.6% 0.7% 5.4% 0.6% 2.8% 3.7% 

D3.2 0.4952 5.7% 0.7% 5.4% 0.6% 2.8% 3.8% 

D3.3 0.5372 5.7% 0.8% 5.4% 0.6% 3.0% 3.8% 

D3.4 0.5381 5.7% 0.8% 5.4% 0.6% 3.1% 3.9% 

D3.5 0.5382 5.8% 0.8% 5.4% 0.6% 3.2% 3.9% 

D3.6 0.5495 5.9% 0.9% 5.5% 0.6% 3.3% 4.0% 

D3.7 0.5573 5.9% 0.9% 5.5% 0.6% 3.3% 4.0% 

D3.8 0.6205 6.0% 0.9% 5.5% 0.6% 3.4% 4.1% 

D3.9 0.6416 6.0% 0.9% 5.5% 0.6% 3.5% 4.2% 

D3.10 0.6845 6.1% 0.9% 5.6% 0.6% 3.6% 4.2% 

D4.1 0.6845 6.1% 1.0% 5.6% 0.7% 3.7% 4.2% 

D4.2 0.716 6.1% 1.0% 5.6% 0.7% 3.9% 4.2% 

D4.3 0.8137 6.2% 1.0% 5.6% 0.7% 4.0% 4.2% 
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   Power of tests at 5% critical values, Sample size 25 

Designs Distance 

Pearson 

�� LR λ test UC 

Stuart- 

Maxwell test 

Generalized 

fisher exact test 

D4.4 0.4667 6.2% 1.1% 5.6% 0.7% 4.6% 4.2% 

D4.5 0.4861 6.2% 1.1% 5.6% 0.7% 4.6% 4.4% 

D4.6 0.4911 6.3% 1.1% 5.7% 0.7% 5.2% 4.4% 

D4.7 0.4952 6.3% 1.2% 5.7% 0.7% 5.2% 4.5% 

D4.8 0.523 6.3% 1.2% 5.8% 0.8% 5.3% 4.5% 

D4.9 0.5372 6.4% 1.2% 5.8% 0.8% 5.4% 4.5% 

D4.10 0.5381 6.6% 1.2% 5.8% 0.8% 5.6% 4.6% 

D5.1 0.5382 6.6% 1.2% 5.8% 0.8% 6.4% 4.6% 

D5.2 0.5442 6.8% 1.2% 5.8% 0.8% 6.6% 4.8% 

D5.3 0.5495 6.8% 1.2% 5.9% 0.9% 6.6% 4.8% 

D5.4 0.5573 6.9% 1.2% 5.9% 0.9% 6.7% 4.9% 

D5.5 0.6205 7.0% 1.3% 6.0% 0.9% 7.7% 5.0% 

D5.6 0.6416 7.1% 1.3% 6.0% 0.9% 7.9% 5.1% 

D5.7 0.6615 7.2% 1.4% 6.0% 0.9% 7.9% 5.2% 

D5.8 0.6845 7.2% 1.4% 6.1% 1.0% 8.5% 5.2% 

D5.9 0.6845 7.2% 1.4% 6.1% 1.0% 8.9% 5.2% 

D5.10 0.716 7.3% 1.5% 6.2% 1.0% 9.0% 5.3% 

D6.1 0.8137 7.6% 1.7% 6.2% 1.0% 9.0% 5.4% 

D6.2 0.8648 7.6% 1.8% 6.2% 1.1% 9.0% 5.4% 

D6.3 0.8908 7.7% 1.8% 6.2% 1.1% 9.1% 5.4% 

D6.4 0.8944 7.9% 1.8% 6.3% 1.1% 9.4% 5.6% 

D6.5 0.8996 8.0% 1.8% 6.3% 1.1% 9.6% 5.7% 

D6.6 0.9267 8.2% 1.9% 6.3% 1.1% 10.5% 5.7% 

D6.7 0.9847 8.3% 1.9% 6.3% 1.1% 10.6% 5.8% 

D6.8 1.0093 8.4% 1.9% 6.3% 1.1% 11.0% 5.8% 

D6.9 1.03 8.8% 1.9% 6.3% 1.1% 11.6% 5.8% 

D6.10 1.0769 8.8% 2.0% 6.4% 1.1% 12.8% 5.9% 

D7.1 1.0879 9.3% 2.0% 6.4% 1.2% 13.0% 5.9% 

D7.2 1.2444 9.3% 2.1% 6.5% 1.2% 13.1% 5.9% 

D7.3 1.2545 9.7% 2.1% 6.5% 1.2% 13.3% 6.1% 

D7.4 1.2732 10.1% 2.1% 6.6% 1.2% 13.6% 6.3% 

D7.5 1.2775 10.3% 2.2% 6.6% 1.2% 13.6% 6.4% 

D7.6 1.3125 10.8% 2.3% 6.6% 1.3% 13.6% 6.7% 
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   Power of tests at 5% critical values, Sample size 25 

Design Distance 

Pearson 

�� LR λ test UC 

Stuart- 

Maxwell test 

Generalized fisher 

exact test 

D7.7 1.4631 11.1% 2.3% 6.6% 1.3% 13.6% 6.8% 

D7.8 1.5019 11.4% 2.4% 6.6% 1.3% 13.9% 6.8% 

D7.9 1.68 11.5% 2.7% 6.6% 1.4% 14.5% 6.8% 

D7.10 1.706 13.8% 2.9% 6.7% 1.4% 15.5% 7.0% 

D8.1 1.7308 16.0% 2.9% 6.7% 1.4% 15.8% 7.1% 

D8.2 1.7487 16.7% 3.8% 6.7% 1.5% 16.5% 7.2% 

D8.3 1.9545 4.8% 0.3% 6.8% 1.5% 16.8% 7.2% 

D8.4 1.9965 5.7% 0.8% 6.8% 1.6% 17.0% 7.3% 

D8.5 2.0367 7.8% 1.8% 6.8% 1.6% 18.5% 7.7% 

D8.6 2.2765 5.3% 0.6% 6.8% 1.6% 18.9% 7.8% 

D8.7 2.3256 5.4% 0.6% 6.8% 1.6% 19.1% 7.9% 

D8.8 2.3798 8.2% 1.8% 6.9% 1.7% 20.7% 7.9% 

D8.9 2.4609 6.6% 1.2% 7.3% 1.7% 20.9% 8.1% 

D8.10 2.5427 5.8% 0.9% 7.5% 1.7% 22.3% 8.3% 

D9.1 2.5714 5.2% 0.6% 7.5% 1.7% 22.3% 8.5% 

D9.2 2.6374 5.1% 0.5% 7.5% 1.7% 22.7% 8.7% 

D9.3 2.6413 6.0% 0.9% 7.5% 1.7% 23.0% 8.7% 

D9.4 2.6532 6.9% 1.2% 7.5% 1.8% 23.3% 8.9% 

D9.5 2.6729 7.4% 1.7% 7.6% 1.8% 23.7% 10.1% 

D9.6 2.6963 7.5% 1.7% 7.8% 1.8% 24.1% 10.1% 

D9.7 2.703 11.3% 2.4% 7.9% 1.9% 24.4% 10.1% 

D9.8 2.735 4.7% 0.2% 8.0% 1.9% 25.8% 10.6% 

D9.9 2.9786 5.3% 0.6% 8.2% 2.0% 27.2% 11.1% 

D9.10 3.1815 7.2% 1.3% 8.4% 2.0% 27.9% 11.9% 

D10.1 3.2076 5.1% 0.5% 8.5% 2.0% 29.9% 12.7% 

D10.2 3.4921 4.6% 0.2% 8.7% 2.1% 31.7% 13.6% 

D10.3 3.7118 5.0% 0.4% 8.8% 2.1% 32.3% 13.7% 

D10.4 4.0049 4.8% 0.3% 8.9% 2.1% 34.0% 14.1% 

D10.5 4.1481 4.8% 0.2% 9.2% 2.1% 38.8% 15.7% 

D10.6 4.2308 6.3% 1.1% 9.3% 2.5% 45.1% 20.5% 

D10.7 5.1166 5.5% 0.7% 9.4% 2.6% 49.3% 23.4% 

D10.8 5.5797 5.5% 0.7% 9.6% 2.6% 56.8% 30.6% 

D10.9 6.2799 4.7% 0.2% 9.9% 2.6% 60.6% 32.9% 

D10.10 6.303 11.7% 2.8% 13.5% 3.5% 61.0% 38.9% 
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   Power of tests at 1% critical values, Sample size 25 

Designs Distance 

Pearson 

�� LR λ test UC 

Stuart- Maxwell 

test 

D1.1 0 0.4% 0.0% 0.5% 0.0% 0.1% 

D1.2 0 0.4% 0.0% 0.5% 0.0% 0.2% 

D1.3 0.0034 0.5% 0.0% 0.5% 0.0% 0.2% 

D1.4 0.0055 0.8% 0.0% 0.5% 0.0% 0.2% 

D1.5 0.006 0.8% 0.0% 0.6% 0.0% 0.2% 

D1.6 0.0236 0.8% 0.0% 0.6% 0.0% 0.2% 

D1.7 0.0316 0.8% 0.0% 0.7% 0.0% 0.2% 

D1.8 0.0569 0.9% 0.0% 0.7% 0.0% 0.3% 

D1.9 0.0868 0.9% 0.0% 0.8% 0.0% 0.3% 

D1.10 0.0963 0.9% 0.0% 0.8% 0.0% 0.3% 

D2.1 0.0968 0.9% 0.0% 0.8% 0.0% 0.3% 

D2.2 0.0998 0.9% 0.0% 0.8% 0.0% 0.3% 

D2.3 0.1117 0.9% 0.1% 0.8% 0.0% 0.3% 

D2.4 0.1479 0.9% 0.1% 0.8% 0.1% 0.3% 

D2.5 0.1536 0.9% 0.1% 0.8% 0.1% 0.3% 

D2.6 0.1768 1.0% 0.1% 0.8% 0.1% 0.4% 

D2.7 0.1813 1.0% 0.1% 0.8% 0.1% 0.4% 

D2.8 0.1814 1.0% 0.1% 0.8% 0.1% 0.4% 

D2.9 0.1883 1.0% 0.1% 0.8% 0.1% 0.4% 

D2.10 0.2052 1.0% 0.1% 0.8% 0.1% 0.4% 

D3.1 0.234 1.0% 0.1% 0.8% 0.1% 0.4% 

D3.2 0.2524 1.0% 0.1% 0.8% 0.1% 0.4% 

D3.3 0.2524 1.0% 0.1% 0.9% 0.1% 0.5% 

D3.4 0.2808 1.0% 0.1% 0.9% 0.1% 0.5% 

D3.5 0.3009 1.0% 0.1% 0.9% 0.1% 0.5% 

D3.6 0.3373 1.0% 0.1% 0.9% 0.1% 0.5% 

D3.7 0.3537 1.0% 0.1% 0.9% 0.1% 0.5% 

D3.8 0.3925 1.0% 0.1% 0.9% 0.1% 0.5% 

D3.9 0.3982 1.0% 0.1% 0.9% 0.1% 0.6% 

D3.10 0.4114 1.1% 0.1% 0.9% 0.1% 0.6% 

D4.1 0.4444 1.1% 0.2% 0.9% 0.1% 0.7% 

D4.2 0.4635 1.1% 0.2% 0.9% 0.1% 0.8% 

D4.3 0.4663 1.1% 0.2% 0.9% 0.1% 0.8% 
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   Power of tests at 1% critical values, Sample size 25 

Designs Distance 

Pearson 

�� LR λ test UC 

Stuart- 

Maxwell test 

D4.4 0.4667 1.1% 0.2% 0.9% 0.1% 0.9% 

D4.5 0.4861 1.1% 0.2% 0.9% 0.1% 0.9% 

D4.6 0.4911 1.1% 0.2% 1.0% 0.1% 0.9% 

D4.7 0.4952 1.2% 0.2% 1.0% 0.1% 0.9% 

D4.8 0.523 1.2% 0.2% 1.0% 0.1% 1.0% 

D4.9 0.5372 1.2% 0.2% 1.0% 0.2% 1.1% 

D4.10 0.5381 1.2% 0.2% 1.0% 0.2% 1.2% 

D5.1 0.5382 1.2% 0.2% 1.0% 0.2% 1.2% 

D5.2 0.5442 1.2% 0.2% 1.0% 0.2% 1.3% 

D5.3 0.5495 1.2% 0.2% 1.0% 0.2% 1.4% 

D5.4 0.5573 1.2% 0.2% 1.0% 0.2% 1.4% 

D5.5 0.6205 1.2% 0.2% 1.0% 0.2% 1.7% 

D5.6 0.6416 1.2% 0.2% 1.0% 0.2% 1.9% 

D5.7 0.6615 1.3% 0.2% 1.1% 0.2% 2.0% 

D5.8 0.6845 1.3% 0.2% 1.1% 0.2% 2.0% 

D5.9 0.6845 1.3% 0.2% 1.1% 0.2% 2.1% 

D5.10 0.716 1.3% 0.2% 1.1% 0.2% 2.1% 

D6.1 0.8137 1.4% 0.2% 1.1% 0.2% 2.1% 

D6.2 0.8648 1.4% 0.2% 1.1% 0.2% 2.2% 

D6.3 0.8908 1.4% 0.2% 1.1% 0.2% 2.2% 

D6.4 0.8944 1.4% 0.2% 1.1% 0.2% 2.3% 

D6.5 0.8996 1.4% 0.2% 1.1% 0.2% 2.3% 

D6.6 0.9267 1.4% 0.2% 1.1% 0.2% 2.6% 

D6.7 0.9847 1.4% 0.3% 1.2% 0.2% 2.7% 

D6.8 1.0093 1.5% 0.3% 1.2% 0.2% 2.9% 

D6.9 1.03 1.5% 0.3% 1.2% 0.2% 3.1% 

D6.10 1.0769 1.5% 0.3% 1.2% 0.2% 3.6% 

D7.1 1.0879 1.5% 0.3% 1.2% 0.2% 3.8% 

D7.2 1.2444 1.5% 0.3% 1.2% 0.2% 3.9% 

D7.3 1.2545 1.6% 0.3% 1.2% 0.2% 3.9% 

D7.4 1.2732 1.6% 0.3% 1.3% 0.2% 4.0% 

D7.5 1.2775 1.6% 0.3% 1.3% 0.2% 4.0% 

D7.6 1.3125 1.7% 0.3% 1.3% 0.3% 4.1% 
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   Power of tests at 1% critical values, Sample size 25 

Designs Distance 

Pearson 

�� LR λ test UC 

Stuart- 

Maxwell test 

D7.7 1.4631 1.7% 0.3% 1.3% 0.3% 4.1% 

D7.8 1.5019 1.7% 0.3% 1.3% 0.3% 4.1% 

D7.9 1.68 1.8% 0.3% 1.4% 0.3% 4.1% 

D7.10 1.706 1.9% 0.3% 1.4% 0.3% 4.2% 

D8.1 1.7308 1.9% 0.4% 1.4% 0.3% 4.6% 

D8.2 1.7487 1.9% 0.4% 1.4% 0.3% 4.6% 

D8.3 1.9545 1.9% 0.4% 1.4% 0.3% 4.7% 

D8.4 1.9965 1.9% 0.4% 1.4% 0.3% 5.0% 

D8.5 2.0367 1.9% 0.4% 1.5% 0.3% 5.1% 

D8.6 2.2765 2.0% 0.4% 1.5% 0.3% 6.3% 

D8.7 2.3256 2.0% 0.4% 1.5% 0.3% 6.5% 

D8.8 2.3798 2.0% 0.4% 1.5% 0.3% 6.5% 

D8.9 2.4609 2.0% 0.4% 1.6% 0.3% 6.5% 

D8.10 2.5427 2.0% 0.4% 1.6% 0.3% 7.0% 

D9.1 2.5714 2.0% 0.4% 1.6% 0.4% 7.4% 

D9.2 2.6374 2.1% 0.4% 1.6% 0.4% 7.8% 

D9.3 2.6413 2.1% 0.5% 1.7% 0.4% 7.9% 

D9.4 2.6532 2.3% 0.5% 1.7% 0.4% 7.9% 

D9.5 2.6729 2.3% 0.5% 1.7% 0.4% 8.2% 

D9.6 2.6963 2.3% 0.5% 1.7% 0.4% 8.2% 

D9.7 2.703 2.5% 0.5% 1.7% 0.4% 8.7% 

D9.8 2.735 2.6% 0.5% 1.7% 0.4% 8.8% 

D9.9 2.9786 2.7% 0.5% 1.8% 0.4% 8.9% 

D9.10 3.1815 3.0% 0.5% 1.8% 0.4% 9.3% 

D10.1 3.2076 3.0% 0.5% 1.8% 0.4% 10.7% 

D10.2 3.4921 3.0% 0.5% 1.8% 0.4% 10.9% 

D10.3 3.7118 3.1% 0.6% 1.8% 0.5% 11.7% 

D10.4 4.0049 3.2% 0.6% 1.9% 0.5% 12.8% 

D10.5 4.1481 3.7% 0.6% 1.9% 0.5% 17.0% 

D10.6 4.2308 4.4% 0.6% 2.0% 0.5% 20.1% 

D10.7 5.1166 4.5% 0.7% 2.2% 0.5% 25.3% 

D10.8 5.5797 4.6% 0.7% 2.2% 0.5% 29.2% 

D10.9 6.2799 4.8% 0.8% 2.2% 0.6% 31.0% 

D10.10 6.303 5.4% 60.1% 2.2% 0.7% 31.0% 
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   Power of tests at 5% critical values, Sample size 50 

Designs Distance 

Pearson 

�� LR λ test UC 

Stuart- 

Maxwell test 

Generalized fisher 

exact test 

D1.1 0 3.1% 0.2% 1.6% 0.2% 0.5% 0.7% 

D1.2 0 3.7% 0.4% 1.7% 0.4% 0.5% 4.4% 

D1.3 0.0034 4.5% 0.5% 1.8% 0.4% 0.6% 4.7% 

D1.4 0.0055 4.7% 0.9% 1.8% 0.9% 0.6% 4.7% 

D1.5 0.006 4.7% 1.1% 2.0% 1.0% 0.7% 4.8% 

D1.6 0.0236 4.7% 1.1% 2.9% 1.1% 0.7% 5.0% 

D1.7 0.0316 4.9% 1.3% 3.3% 1.6% 0.7% 5.0% 

D1.8 0.0569 4.9% 1.7% 3.3% 1.7% 0.7% 5.1% 

D1.9 0.0963 5.0% 1.7% 4.2% 1.8% 0.8% 5.2% 

D1.10 0.0968 5.1% 1.8% 4.2% 1.8% 0.8% 5.3% 

D2.1 0.0998 5.2% 1.8% 4.4% 1.8% 1.0% 5.3% 

D2.2 0.1117 5.3% 1.9% 4.5% 1.9% 1.1% 5.6% 

D2.3 0.1479 5.5% 2.0% 4.5% 2.0% 1.1% 5.6% 

D2.4 0.1536 5.6% 2.0% 4.6% 2.2% 1.1% 5.6% 

D2.5 0.1768 5.7% 2.1% 4.6% 2.3% 1.3% 5.6% 

D2.6 0.1813 5.7% 2.1% 5.0% 2.4% 1.5% 5.7% 

D2.7 0.1814 5.8% 2.1% 5.1% 2.6% 1.5% 5.7% 

D2.8 0.1883 5.8% 2.2% 5.1% 2.6% 1.6% 5.7% 

D2.9 0.2052 5.8% 2.4% 5.3% 2.7% 1.9% 5.7% 

D2.10 0.234 5.8% 2.6% 5.4% 2.7% 2.0% 5.7% 

D3.1 0.2524 5.9% 2.7% 5.5% 2.8% 2.2% 5.8% 

D3.2 0.2524 5.9% 2.8% 5.6% 2.8% 2.5% 5.8% 

D3.3 0.2808 5.9% 2.8% 5.6% 2.9% 2.6% 5.8% 

D3.4 0.3009 6.0% 2.8% 5.6% 3.0% 2.8% 5.8% 

D3.5 0.3373 6.0% 2.9% 5.6% 3.1% 2.9% 5.9% 

D3.6 0.3537 6.1% 3.0% 5.7% 3.2% 3.1% 5.9% 

D3.7 0.3925 6.1% 3.0% 5.8% 3.2% 3.3% 6.0% 

D3.8 0.3982 6.1% 3.1% 5.9% 3.2% 3.7% 6.0% 

D3.9 0.4114 6.1% 3.2% 5.9% 3.3% 3.9% 6.0% 

D3.10 0.4444 6.1% 3.2% 6.0% 3.3% 4.2% 6.1% 

D4.1 0.4635 6.2% 3.3% 6.0% 3.5% 4.2% 6.1% 

D4.2 0.4663 6.2% 3.5% 6.0% 3.6% 4.7% 6.1% 

D4.3 0.4667 6.3% 3.5% 6.1% 3.6% 5.5% 6.1% 
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   Power of tests at 5% critical values, Sample size 50 

Designs Distance 

Pearson 

�� LR λ test UC 

Stuart- 

Maxwell 

test 

Generalized 

fisher exact test 

D4.4 0.4861 6.4% 3.7% 6.1% 3.6% 5.9% 6.2% 

D4.5 0.4911 6.5% 3.7% 6.2% 3.7% 6.3% 6.3% 

D4.6 0.4952 6.5% 3.8% 6.2% 3.7% 6.4% 6.6% 

D4.7 0.523 6.7% 3.8% 6.3% 3.8% 6.7% 6.6% 

D4.8 0.5372 6.8% 3.8% 6.4% 3.8% 6.9% 6.8% 

D4.9 0.5381 6.8% 3.8% 6.6% 3.8% 8.2% 6.8% 

D4.10 0.5382 6.9% 3.9% 6.6% 3.9% 8.4% 7.0% 

D5.1 0.5442 6.9% 3.9% 6.6% 3.9% 8.5% 7.1% 

D5.2 0.5495 7.1% 4.0% 6.6% 4.0% 9.4% 7.1% 

D5.3 0.5573 7.1% 4.0% 6.6% 4.0% 9.5% 7.2% 

D5.4 0.6205 7.1% 4.0% 6.6% 4.0% 9.7% 7.2% 

D5.5 0.6416 7.1% 4.1% 6.7% 4.1% 9.9% 7.4% 

D5.6 0.6615 7.2% 4.1% 6.7% 4.1% 11.2% 7.5% 

D5.7 0.6845 7.2% 4.1% 6.9% 4.1% 11.2% 7.6% 

D5.8 0.6845 7.3% 4.3% 6.9% 4.1% 11.9% 7.6% 

D5.9 0.716 7.3% 4.3% 7.0% 4.1% 12.7% 7.8% 

D5.10 0.8137 7.4% 4.3% 7.0% 4.1% 13.3% 7.9% 

D6.1 0.8648 7.6% 4.3% 7.0% 4.2% 13.6% 8.0% 

D6.2 0.8908 7.8% 4.3% 7.1% 4.3% 13.8% 8.0% 

D6.3 0.8944 8.0% 4.4% 7.1% 4.4% 15.7% 8.0% 

D6.4 0.8996 8.0% 4.5% 7.2% 4.4% 16.0% 8.1% 

D6.5 0.9267 8.1% 4.5% 7.2% 4.4% 16.6% 8.1% 

D6.6 0.9847 8.3% 4.5% 7.2% 4.5% 17.0% 8.2% 

D6.7 1.0093 8.6% 4.5% 7.2% 4.5% 18.0% 8.4% 

D6.8 1.03 9.0% 4.6% 7.2% 4.6% 19.2% 8.4% 

D6.9 1.0769 9.0% 4.6% 7.2% 4.6% 19.7% 9.4% 

D6.10 1.0879 9.0% 4.7% 7.3% 4.7% 20.7% 9.5% 

D7.1 1.2444 9.1% 4.7% 7.4% 4.9% 20.9% 9.5% 

D7.2 1.2545 9.6% 4.8% 7.6% 4.9% 20.9% 9.7% 

D7.3 1.2732 9.7% 4.8% 7.7% 4.9% 21.2% 9.9% 

D7.4 1.2775 9.7% 4.8% 7.7% 4.9% 23.8% 10.0% 

D7.5 1.3125 10.1% 4.9% 7.7% 5.1% 24.4% 10.3% 

D7.6 1.4631 10.1% 4.9% 7.7% 5.1% 25.3% 10.5% 
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   Power of tests at 5% critical values, Sample size 50 

Designs Distance 

Pearson 

�� LR λ test UC 

Stuart- 

Maxwell test 

Generalized 

fisher exact test 

D7.7 1.5019 10.3% 5.0% 7.8% 5.1% 26.1% 10.6% 

D7.8 1.68 10.4% 5.1% 7.8% 5.1% 28.1% 10.7% 

D7.9 1.706 10.8% 5.1% 7.8% 5.3% 28.7% 10.8% 

D7.10 1.7308 10.8% 5.2% 8.0% 5.4% 29.7% 10.8% 

D8.1 1.7487 10.9% 5.3% 8.1% 5.4% 30.2% 10.8% 

D8.2 1.9545 10.9% 5.4% 8.1% 5.4% 32.0% 10.8% 

D8.3 1.9965 11.2% 5.5% 8.2% 5.5% 33.0% 11.1% 

D8.4 2.0367 11.3% 5.8% 8.4% 5.5% 33.8% 11.2% 

D8.5 2.2765 11.4% 5.8% 8.4% 5.5% 34.2% 11.4% 

D8.6 2.3256 11.6% 5.9% 8.6% 5.5% 35.0% 11.7% 

D8.7 2.3798 11.8% 6.1% 9.2% 5.6% 37.9% 12.0% 

D8.8 2.4609 12.1% 6.2% 9.2% 6.4% 38.6% 12.0% 

D8.9 2.5427 12.1% 6.2% 9.4% 6.5% 39.0% 12.4% 

D8.10 2.5714 12.7% 6.6% 9.4% 6.8% 39.9% 12.6% 

D9.1 2.6374 13.0% 6.9% 9.4% 6.9% 41.6% 12.6% 

D9.2 2.6413 13.0% 7.3% 9.6% 7.0% 41.8% 12.9% 

D9.3 2.6532 13.1% 7.3% 9.8% 7.0% 42.1% 13.1% 

D9.4 2.6729 13.2% 7.3% 9.8% 7.5% 43.7% 13.2% 

D9.5 2.6963 13.2% 7.4% 9.9% 7.5% 43.8% 13.2% 

D9.6 2.703 13.4% 7.5% 10.0% 7.6% 45.6% 13.3% 

D9.7 2.735 13.9% 7.6% 10.1% 7.7% 47.4% 13.4% 

D9.8 2.9786 14.0% 7.6% 10.3% 7.8% 48.5% 13.4% 

D9.9 3.1815 14.1% 7.9% 10.7% 8.0% 48.7% 14.6% 

D9.10 3.2076 14.4% 8.0% 10.8% 8.1% 49.1% 14.8% 

D10.1 3.4921 14.5% 8.4% 11.0% 8.4% 54.2% 16.1% 

D10.2 3.4921 14.6% 8.8% 11.6% 8.7% 54.5% 16.4% 

D10.3 3.7118 15.0% 9.0% 12.0% 8.8% 55.4% 16.4% 

D10.4 4.0049 17.2% 9.6% 12.1% 8.9% 55.8% 16.5% 

D10.5 4.1481 17.5% 10.4% 12.4% 9.2% 66.9% 17.7% 

D10.6 4.2308 20.1% 11.4% 14.2% 9.2% 79.6% 18.9% 

D10.7 5.1166 24.9% 12.1% 15.0% 10.8% 82.7% 25.4% 

D10.8 5.5797 27.5% 13.6% 17.5% 12.2% 89.1% 26.9% 

D10.9 6.2799 32.7% 13.9% 21.7% 12.7% 90.3% 27.5% 

D10.10 6.303 34.7% 20.1% 27.0% 15.6% 91.5% 32.0% 
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   Power of tests at 1% critical values, Sample size 50 

Designs Distance 

Pearson 

�� LR λ test UC 

Stuart- 

Maxwell test 

Generalized 

fisher exact test 

D1.1 0 0.5% 0.1% 0.3% 0.1% 0.0% 0.8% 

D1.2 0 0.6% 0.1% 0.4% 0.1% 0.0% 1.0% 

D1.3 0.0034 0.8% 0.1% 0.4% 0.1% 0.0% 1.0% 

D1.4 0.0055 0.9% 0.1% 0.4% 0.2% 0.1% 1.0% 

D1.5 0.006 0.9% 0.2% 0.4% 0.2% 0.1% 1.0% 

D1.6 0.0236 1.0% 0.3% 0.5% 0.2% 0.1% 1.1% 

D1.7 0.0316 1.0% 0.3% 0.5% 0.3% 0.1% 1.1% 

D1.8 0.0569 1.0% 0.3% 0.5% 0.3% 0.1% 1.1% 

D1.9 0.0963 1.0% 0.3% 0.6% 0.3% 0.1% 1.1% 

D1.10 0.0968 1.1% 0.4% 0.7% 0.3% 0.1% 1.1% 

D2.1 0.0998 1.1% 0.4% 0.7% 0.3% 0.1% 1.1% 

D2.2 0.1117 1.1% 0.4% 0.7% 0.4% 0.1% 1.2% 

D2.3 0.1479 1.1% 0.4% 0.7% 0.4% 0.1% 1.2% 

D2.4 0.1536 1.1% 0.4% 0.7% 0.4% 0.2% 1.2% 

D2.5 0.1768 1.1% 0.5% 0.8% 0.5% 0.2% 1.2% 

D2.6 0.1813 1.1% 0.5% 0.8% 0.5% 0.2% 1.2% 

D2.7 0.1814 1.2% 0.5% 0.8% 0.5% 0.2% 1.2% 

D2.8 0.1883 1.2% 0.5% 0.9% 0.5% 0.3% 1.2% 

D2.9 0.2052 1.2% 0.5% 0.9% 0.5% 0.3% 1.2% 

D2.10 0.234 1.2% 0.5% 0.9% 0.5% 0.3% 1.2% 

D3.1 0.2524 1.2% 0.5% 0.9% 0.5% 0.4% 1.3% 

D3.2 0.2524 1.3% 0.6% 0.9% 0.5% 0.4% 1.3% 

D3.3 0.2808 1.3% 0.6% 0.9% 0.5% 0.4% 1.3% 

D3.4 0.3009 1.3% 0.6% 0.9% 0.5% 0.5% 1.3% 

D3.5 0.3373 1.3% 0.6% 1.0% 0.6% 0.5% 1.3% 

D3.6 0.3537 1.3% 0.6% 1.0% 0.6% 0.5% 1.3% 

D3.7 0.3925 1.4% 0.6% 1.0% 0.7% 0.6% 1.3% 

D3.8 0.3982 1.4% 0.6% 1.0% 0.7% 0.7% 1.3% 

D3.9 0.4114 1.4% 0.6% 1.0% 0.7% 0.8% 1.3% 

D3.10 0.4444 1.4% 0.7% 1.0% 0.7% 0.8% 1.3% 

D4.1 0.4635 1.4% 0.7% 1.0% 0.7% 0.8% 1.3% 

D4.2 0.4663 1.4% 0.7% 1.0% 0.7% 1.0% 1.4% 

D4.3 0.4667 1.5% 0.7% 1.0% 0.7% 1.1% 1.4% 
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   Power of tests at 1% critical values, Sample size 50 

Designs Distance 

Pearson 

�� LR λ test UC 

Stuart- 

Maxwell test 

Generalized 

fisher exact test 

D4.4 0.4861 1.5% 0.7% 1.0% 0.7% 1.1% 1.5% 

D4.5 0.4911 1.5% 0.7% 1.1% 0.7% 1.3% 1.5% 

D4.6 0.4952 1.6% 0.7% 1.1% 0.8% 1.3% 1.6% 

D4.7 0.523 1.6% 0.8% 1.1% 0.8% 1.4% 1.7% 

D4.8 0.5372 1.6% 0.8% 1.1% 0.8% 1.5% 1.7% 

D4.9 0.5381 1.7% 0.8% 1.1% 0.8% 2.1% 1.7% 

D4.10 0.5382 1.7% 0.8% 1.1% 0.8% 2.1% 1.7% 

D5.1 0.5442 1.7% 0.8% 1.1% 0.8% 2.1% 1.8% 

D5.2 0.5495 1.7% 0.8% 1.1% 0.8% 2.4% 1.8% 

D5.3 0.5573 1.7% 0.8% 1.2% 0.8% 2.5% 1.8% 

D5.4 0.6205 1.7% 0.9% 1.2% 0.8% 2.6% 1.8% 

D5.5 0.6416 1.7% 0.9% 1.2% 0.8% 2.7% 1.8% 

D5.6 0.6615 1.8% 0.9% 1.3% 0.8% 2.8% 1.8% 

D5.7 0.6845 1.8% 0.9% 1.3% 0.8% 3.0% 1.9% 

D5.8 0.6845 1.8% 0.9% 1.3% 0.8% 3.3% 1.9% 

D5.9 0.716 1.8% 0.9% 1.3% 0.8% 3.4% 1.9% 

D5.10 0.8137 1.9% 0.9% 1.4% 0.8% 3.6% 1.9% 

D6.1 0.8648 1.9% 0.9% 1.4% 0.9% 3.8% 2.0% 

D6.2 0.8908 2.0% 1.0% 1.4% 0.9% 4.0% 2.0% 

D6.3 0.8944 2.0% 1.0% 1.4% 0.9% 4.3% 2.0% 

D6.4 0.8996 2.0% 1.0% 1.4% 0.9% 4.7% 2.0% 

D6.5 0.9267 2.0% 1.0% 1.4% 0.9% 4.8% 2.0% 

D6.6 0.9847 2.1% 1.0% 1.4% 0.9% 5.1% 2.0% 

D6.7 1.0093 2.1% 1.0% 1.5% 0.9% 5.2% 2.0% 

D6.8 1.03 2.2% 1.0% 1.5% 0.9% 6.4% 2.0% 

D6.9 1.0769 2.2% 1.0% 1.5% 0.9% 6.9% 2.2% 

D6.10 1.0879 2.3% 1.0% 1.5% 0.9% 6.9% 2.2% 

D7.1 1.2444 2.3% 1.0% 1.5% 1.0% 7.0% 2.3% 

D7.2 1.2545 2.4% 1.0% 1.5% 1.1% 7.3% 2.4% 

D7.3 1.2732 2.4% 1.0% 1.6% 1.1% 7.4% 2.5% 

D7.4 1.2775 2.5% 1.0% 1.6% 1.1% 8.1% 2.5% 

D7.5 1.3125 2.5% 1.0% 1.6% 1.1% 8.8% 2.5% 

D7.6 1.4631 2.5% 1.1% 1.6% 1.1% 9.8% 2.7% 
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   Power of tests at 1% critical values, Sample size 50 

Designs Distance 

Pearson 

�� LR λ test UC 

Stuart- 

Maxwell test 

Generalized fisher 

exact test 

D7.7 1.5019 2.6% 1.1% 1.6% 1.1% 10.0% 2.7% 

D7.8 1.68 2.6% 1.1% 1.6% 1.1% 10.5% 2.8% 

D7.9 1.706 2.7% 1.1% 1.6% 1.1% 10.8% 2.8% 

D7.10 1.7308 2.7% 1.2% 1.6% 1.2% 11.0% 2.9% 

D8.1 1.7487 2.9% 1.2% 1.6% 1.2% 11.2% 2.9% 

D8.2 1.9545 2.9% 1.3% 1.6% 1.2% 11.5% 3.0% 

D8.3 1.9965 3.1% 1.3% 1.6% 1.2% 13.0% 3.1% 

D8.4 2.0367 3.2% 1.4% 1.6% 1.3% 13.6% 3.1% 

D8.5 2.2765 3.3% 1.4% 1.6% 1.3% 14.2% 3.2% 

D8.6 2.3256 3.5% 1.4% 1.7% 1.3% 14.4% 3.3% 

D8.7 2.3798 3.5% 1.4% 1.7% 1.4% 15.2% 3.3% 

D8.8 2.4609 3.5% 1.5% 1.8% 1.4% 16.3% 3.3% 

D8.9 2.5427 3.6% 1.5% 1.8% 1.5% 16.8% 3.3% 

D8.10 2.5714 3.8% 1.5% 1.8% 1.5% 17.0% 3.4% 

D9.1 2.6374 4.0% 1.6% 1.9% 1.6% 17.3% 3.5% 

D9.2 2.6413 4.2% 1.6% 1.9% 1.6% 17.6% 3.7% 

D9.3 2.6532 4.3% 1.7% 2.0% 1.6% 18.3% 3.8% 

D9.4 2.6729 4.3% 1.8% 2.1% 1.6% 18.6% 3.8% 

D9.5 2.6963 4.4% 1.9% 2.1% 1.6% 20.3% 3.9% 

D9.6 2.703 4.4% 1.9% 2.1% 1.7% 22.0% 4.0% 

D9.7 2.735 4.5% 1.9% 2.2% 1.7% 22.5% 4.0% 

D9.8 2.9786 4.5% 1.9% 2.2% 1.8% 22.9% 4.7% 

D9.9 3.1815 4.5% 2.0% 2.3% 1.8% 23.8% 4.8% 

D9.10 3.2076 4.5% 2.0% 2.3% 1.9% 25.0% 4.9% 

D10.1 3.4921 4.6% 2.1% 2.5% 1.9% 26.5% 5.0% 

D10.2 3.4921 4.8% 2.1% 2.9% 2.1% 27.8% 5.8% 

D10.3 3.7118 5.1% 2.3% 3.0% 2.2% 28.9% 7.5% 

D10.4 4.0049 5.6% 2.3% 3.1% 2.2% 29.6% 9.2% 

D10.5 4.1481 6.1% 2.5% 3.2% 2.4% 39.6% 9.2% 

D10.6 4.2308 8.3% 3.0% 3.3% 2.5% 51.6% 9.7% 

D10.7 5.1166 9.0% 3.1% 3.6% 2.7% 56.5% 9.8% 

D10.8 5.5797 9.4% 3.2% 4.1% 3.3% 66.9% 10.5% 

D10.9 6.2799 15.1% 4.2% 5.0% 3.6% 71.6% 14.2% 

D10.10 6.303 15.7% 5.2% 7.5% 4.3% 71.8% 25.0% 
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   Power of tests at 5% critical values, Sample size 100 

Designs Distance 

Pearson 

�� LR λ test UC 

Stuart- 

Maxwell test 

Generalized fisher 

exact test 

D1.1 0 1.2% 0.4% 0.6% 0.4% 0.1% 0.9% 

D1.2 0 1.5% 0.6% 0.7% 0.5% 0.1% 1.4% 

D1.3 0.0034 1.5% 0.9% 0.8% 0.7% 0.1% 1.4% 

D1.4 0.0055 1.7% 0.9% 1.0% 0.7% 0.1% 1.5% 

D1.5 0.006 2.4% 1.2% 1.0% 1.2% 0.2% 2.3% 

D1.6 0.0236 3.2% 1.3% 1.1% 1.3% 0.2% 3.0% 

D1.7 0.0316 3.6% 1.3% 1.6% 1.4% 0.2% 4.1% 

D1.8 0.05435 4.5% 2.0% 1.8% 2.0% 0.3% 4.3% 

D1.9 0.0668 4.5% 2.6% 1.9% 2.5% 0.3% 4.4% 

D1.10 0.0668 4.5% 2.6% 1.9% 2.6% 0.3% 4.5% 

D2.1 0.0684 4.5% 2.8% 2.0% 2.6% 0.3% 4.6% 

D2.2 0.0831 4.6% 3.0% 2.1% 2.6% 0.4% 4.6% 

D2.3 0.0963 4.6% 3.6% 2.1% 3.0% 0.4% 4.7% 

D2.4 0.0968 4.7% 3.8% 2.1% 3.5% 0.4% 4.8% 

D2.5 0.0998 4.7% 4.1% 2.2% 3.7% 0.4% 4.8% 

D2.6 0.10565 4.9% 4.2% 2.5% 4.1% 0.5% 5.1% 

D2.7 0.1479 5.4% 4.4% 2.5% 4.2% 0.5% 5.5% 

D2.8 0.14995 5.6% 4.7% 2.7% 4.2% 0.7% 5.6% 

D2.9 0.1536 5.7% 4.9% 3.7% 4.5% 1.0% 5.8% 

D2.10 0.1768 6.0% 5.1% 3.7% 4.9% 1.1% 5.8% 

D3.1 0.1787 6.2% 5.2% 4.3% 5.0% 1.3% 5.9% 

D3.2 0.1813 6.4% 5.3% 4.9% 5.1% 1.4% 6.0% 

D3.3 0.1814 6.6% 5.4% 4.9% 5.3% 1.6% 6.3% 

D3.4 0.1883 6.8% 5.7% 5.5% 5.4% 1.6% 6.3% 

D3.5 0.2052 6.8% 5.7% 5.6% 5.4% 1.7% 6.5% 

D3.6 0.21765 6.8% 5.9% 5.6% 5.5% 1.9% 6.6% 

D3.7 0.234 6.9% 5.9% 5.6% 5.5% 2.7% 6.8% 

D3.8 0.2524 7.0% 5.9% 5.7% 5.5% 2.8% 6.8% 

D3.9 0.2524 7.0% 6.1% 5.7% 5.6% 3.3% 7.0% 

D3.10 0.2808 7.1% 6.3% 5.8% 5.8% 3.3% 7.1% 

D4.1 0.3373 7.1% 6.3% 6.0% 5.9% 3.6% 7.2% 

D4.2 0.38065 7.1% 6.3% 6.1% 5.9% 3.6% 7.2% 

D4.3 0.3925 7.2% 6.4% 6.5% 5.9% 4.0% 7.2% 
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   Power of tests at 5% critical values, Sample size 100 

Designs Distance 

Pearson 

�� LR λ test UC 

Stuart- 

Maxwell test 

Generalized 

fisher exact test 

D4.4 0.3982 7.2% 6.4% 6.7% 5.9% 4.2% 7.2% 

D4.5 0.4114 7.3% 6.5% 6.9% 6.0% 4.4% 7.3% 

D4.6 0.4444 7.6% 6.6% 7.0% 6.0% 5.7% 7.4% 

D4.7 0.4635 7.6% 6.6% 7.1% 6.1% 6.3% 7.4% 

D4.8 0.4663 7.8% 6.6% 7.1% 6.1% 7.3% 7.4% 

D4.9 0.4861 7.9% 6.7% 7.2% 6.5% 7.6% 7.4% 

D4.10 0.4911 8.2% 6.8% 7.3% 6.6% 10.2% 7.5% 

D5.1 0.523 8.4% 6.8% 7.3% 6.8% 10.5% 7.5% 

D5.2 0.5372 8.4% 6.9% 7.4% 6.9% 11.0% 7.8% 

D5.3 0.5381 8.4% 6.9% 7.5% 6.9% 11.3% 7.8% 

D5.4 0.5382 8.5% 6.9% 7.5% 7.0% 12.3% 8.1% 

D5.5 0.5442 8.5% 6.9% 7.5% 7.0% 13.0% 8.2% 

D5.6 0.5495 8.6% 6.9% 7.7% 7.4% 18.1% 8.3% 

D5.7 0.5573 8.7% 6.9% 7.8% 7.4% 18.7% 8.3% 

D5.8 0.6205 8.8% 7.0% 7.9% 7.5% 20.1% 8.4% 

D5.9 0.6416 8.9% 7.3% 8.2% 7.8% 20.4% 8.5% 

D5.10 0.6615 8.9% 7.4% 8.4% 7.8% 20.5% 8.6% 

D6.1 0.6845 8.9% 7.5% 8.7% 8.1% 22.1% 8.8% 

D6.2 0.6845 9.3% 7.8% 8.9% 8.1% 24.8% 9.1% 

D6.3 0.716 9.6% 8.0% 8.9% 8.2% 26.3% 9.3% 

D6.4 0.8137 9.9% 8.5% 8.9% 8.3% 26.9% 9.6% 

D6.5 0.8648 10.2% 8.5% 9.0% 8.5% 27.0% 10.1% 

D6.6 0.8908 10.2% 8.6% 9.1% 8.6% 27.5% 10.5% 

D6.7 0.8944 10.7% 9.1% 9.3% 8.8% 31.2% 10.5% 

D6.8 0.8996 10.9% 9.2% 9.5% 9.1% 31.4% 11.1% 

D6.9 0.9267 10.9% 9.5% 9.5% 9.1% 32.2% 11.2% 

D6.10 0.9847 11.2% 9.5% 9.7% 9.2% 32.8% 11.3% 

D7.1 1.0093 12.0% 9.5% 9.8% 9.3% 33.8% 11.7% 

D7.2 1.03 12.1% 10.0% 9.9% 9.3% 34.0% 12.4% 

D7.3 1.0769 13.7% 10.1% 10.0% 9.5% 35.2% 12.9% 

D7.4 1.0879 14.2% 10.1% 10.3% 9.5% 39.9% 15.5% 

D7.5 1.2545 15.0% 10.2% 10.4% 9.6% 43.3% 15.5% 

D7.6 1.2732 15.1% 10.4% 10.5% 9.8% 47.7% 15.9% 
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   Power of tests at 5% critical values, Sample size 100 

Designs Distance 

Pearson 

�� LR λ test UC 

Stuart- 

Maxwell test 

Generalized fisher 

exact test 

D7.7 1.2775 15.6% 10.5% 10.6% 9.8% 49.8% 16.3% 

D7.8 1.3125 16.3% 10.8% 10.6% 10.1% 51.8% 16.3% 

D7.9 1.5019 16.6% 10.8% 10.7% 10.3% 52.2% 16.7% 

D7.10 1.68 17.1% 11.0% 10.9% 10.5% 52.9% 16.7% 

D8.1 1.706 17.2% 11.1% 11.0% 11.3% 53.6% 17.0% 

D8.2 1.7308 17.2% 11.6% 11.3% 11.4% 54.1% 17.1% 

D8.3 1.7487 17.6% 11.7% 11.7% 11.7% 55.7% 18.1% 

D8.4 1.9545 17.7% 11.8% 12.2% 12.0% 58.8% 18.3% 

D8.5 1.9965 19.7% 11.9% 12.3% 12.3% 61.0% 20.7% 

D8.6 2.0367 19.7% 11.9% 12.4% 12.4% 63.2% 21.7% 

D8.7 2.3256 21.9% 13.0% 13.0% 13.8% 64.7% 22.1% 

D8.8 2.3798 22.6% 13.7% 13.5% 14.1% 65.1% 22.4% 

D8.9 2.4609 24.9% 15.1% 14.0% 15.6% 69.1% 22.9% 

D8.10 2.5427 26.7% 15.5% 14.3% 15.7% 69.9% 23.6% 

D9.1 2.5714 26.8% 15.8% 14.5% 16.4% 70.8% 25.0% 

D9.2 2.6374 27.1% 16.5% 14.6% 17.2% 71.2% 25.3% 

D9.3 2.6413 28.7% 16.5% 14.6% 18.1% 71.2% 26.0% 

D9.4 2.6532 28.7% 17.2% 14.7% 18.3% 71.8% 27.5% 

D9.5 2.6729 28.8% 17.8% 14.8% 19.7% 71.9% 27.6% 

D9.6 2.6963 28.8% 20.6% 15.0% 19.9% 75.2% 27.8% 

D9.7 2.703 31.8% 20.7% 15.4% 20.2% 75.9% 28.8% 

D9.8 2.735 32.2% 21.8% 17.0% 20.6% 76.9% 30.7% 

D9.9 2.9786 32.3% 22.1% 17.2% 22.9% 79.2% 31.3% 

D9.10 3.1815 32.6% 25.3% 17.7% 24.1% 80.8% 32.1% 

D10.1 3.2076 33.1% 26.4% 17.9% 28.0% 83.2% 33.4% 

D10.2 3.4921 33.6% 28.7% 19.3% 28.7% 85.0% 34.0% 

D10.3 3.4921 34.4% 30.5% 19.9% 29.2% 89.0% 36.0% 

D10.4 3.7118 35.9% 31.0% 23.1% 29.9% 91.5% 36.8% 

D10.5 4.0049 37.3% 33.3% 24.9% 31.7% 92.5% 38.6% 

D10.6 4.2308 40.0% 34.4% 28.7% 35.3% 97.5% 39.2% 

D10.7 5.1166 41.4% 35.8% 31.0% 35.6% 98.1% 44.8% 

D10.8 5.5797 60.4% 40.0% 35.5% 38.0% 98.8% 54.0% 

D10.9 6.2799 61.4% 55.4% 41.7% 52.9% 99.7% 62.5% 

D10.10 6.303 65.0% 59.1% 50.8% 56.8% 99.8% 65.8% 
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   Power of tests at 1% critical values, Sample size 100 

Designs Distance 

Pearson 

�� LR λ test UC 

Stuart- 

Maxwell test 

Generalized 

fisher exact 

test 

D1.1 0 0.6% 0.1% 0.0% 0.0% 0.0% 0.8% 

D1.2 0 0.7% 0.1% 0.0% 0.1% 0.0% 0.8% 

D1.3 0.0034 0.8% 0.1% 0.0% 0.1% 0.0% 0.9% 

D1.4 0.0055 0.8% 0.5% 0.0% 0.3% 0.0% 0.9% 

D1.5 0.006 0.9% 0.5% 0.0% 0.4% 0.0% 0.9% 

D1.6 0.0236 0.9% 0.6% 0.0% 0.5% 0.0% 1.1% 

D1.7 0.0316 0.9% 0.7% 0.0% 0.5% 0.0% 1.1% 

D1.8 0.05435 0.9% 0.8% 0.2% 0.6% 0.0% 1.2% 

D1.9 0.0668 1.0% 0.9% 0.2% 0.6% 0.0% 1.2% 

D1.10 0.0668 1.2% 0.9% 0.4% 0.7% 0.1% 1.3% 

D2.1 0.0684 1.3% 0.9% 0.4% 0.7% 0.1% 1.3% 

D2.2 0.0831 1.3% 1.1% 0.4% 0.8% 0.1% 1.3% 

D2.3 0.0963 1.4% 1.2% 0.4% 0.8% 0.1% 1.4% 

D2.4 0.0968 1.4% 1.2% 0.5% 0.9% 0.1% 1.4% 

D2.5 0.0998 1.5% 1.3% 0.5% 1.0% 0.2% 1.5% 

D2.6 0.10565 1.5% 1.3% 0.5% 1.0% 0.2% 1.5% 

D2.7 0.1479 1.5% 1.3% 0.7% 1.1% 0.3% 1.5% 

D2.8 0.14995 1.5% 1.3% 0.8% 1.1% 0.3% 1.6% 

D2.9 0.1536 1.6% 1.3% 0.8% 1.1% 0.5% 1.6% 

D2.10 0.1768 1.6% 1.4% 0.8% 1.1% 0.5% 1.6% 

D3.1 0.1787 1.6% 1.4% 0.9% 1.1% 0.6% 1.7% 

D3.2 0.1813 1.6% 1.4% 1.0% 1.1% 0.7% 1.7% 

D3.3 0.1814 1.7% 1.4% 1.1% 1.2% 0.7% 1.7% 

D3.4 0.1883 1.7% 1.4% 1.1% 1.2% 0.7% 1.7% 

D3.5 0.2052 1.8% 1.4% 1.1% 1.2% 0.9% 1.7% 

D3.6 0.21765 1.9% 1.4% 1.2% 1.2% 1.0% 1.7% 

D3.7 0.234 1.9% 1.5% 1.3% 1.3% 1.4% 1.8% 

D3.8 0.2524 2.0% 1.5% 1.3% 1.4% 1.5% 1.8% 

D3.9 0.2524 2.0% 1.5% 1.3% 1.5% 1.8% 1.8% 

D3.10 0.2808 2.0% 1.5% 1.4% 1.5% 2.9% 1.8% 

D4.1 0.3373 2.1% 1.5% 1.4% 1.5% 2.9% 1.8% 

D4.2 0.38065 2.2% 1.6% 1.4% 1.5% 3.1% 1.9% 

D4.3 0.3925 2.2% 1.6% 1.4% 1.6% 3.2% 2.0% 
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   Power of tests at 1% critical values, Sample size 100 

Designs Distance 

Pearson 

�� LR λ test UC 

Stuart- 

Maxwell test 

Generalized 

fisher exact test 

D4.4 0.3982 2.2% 1.7% 1.4% 1.7% 3.5% 2.1% 

D4.5 0.4114 2.3% 1.7% 1.4% 1.8% 3.9% 2.1% 

D4.6 0.4444 2.3% 1.7% 1.6% 1.8% 4.4% 2.3% 

D4.7 0.4635 2.4% 1.7% 1.6% 1.8% 6.0% 2.3% 

D4.8 0.4663 2.5% 1.8% 1.6% 1.8% 6.4% 2.3% 

D4.9 0.4861 2.5% 1.9% 1.6% 1.8% 6.5% 2.4% 

D4.10 0.4911 2.6% 2.0% 1.7% 1.9% 6.6% 2.4% 

D5.1 0.523 2.6% 2.0% 1.7% 1.9% 6.7% 2.5% 

D5.2 0.5372 2.6% 2.0% 1.7% 2.0% 7.6% 2.6% 

D5.3 0.5381 2.7% 2.2% 1.8% 2.0% 8.9% 2.8% 

D5.4 0.5382 2.9% 2.2% 1.8% 2.0% 9.3% 2.9% 

D5.5 0.5442 2.9% 2.3% 1.8% 2.1% 10.1% 2.9% 

D5.6 0.5495 2.9% 2.4% 1.8% 2.2% 10.4% 3.1% 

D5.7 0.5573 3.1% 2.4% 1.8% 2.2% 11.6% 3.2% 

D5.8 0.6205 3.2% 2.5% 1.9% 2.4% 12.6% 3.2% 

D5.9 0.6416 3.2% 2.5% 1.9% 2.4% 13.2% 3.2% 

D5.10 0.6615 3.3% 2.8% 1.9% 2.4% 13.3% 3.2% 

D6.1 0.6845 3.3% 2.8% 1.9% 2.4% 13.7% 3.4% 

D6.2 0.6845 3.4% 2.8% 2.0% 2.5% 14.4% 3.7% 

D6.3 0.716 4.1% 2.8% 2.1% 2.5% 15.1% 4.7% 

D6.4 0.8137 4.2% 2.8% 2.1% 2.5% 17.7% 4.7% 

D6.5 0.8648 4.6% 2.9% 2.1% 2.6% 20.6% 5.0% 

D6.6 0.8908 4.7% 3.0% 2.1% 2.6% 23.0% 5.0% 

D6.7 0.8944 4.8% 3.0% 2.2% 2.7% 24.4% 5.1% 

D6.8 0.8996 4.9% 3.0% 2.3% 2.7% 25.9% 5.3% 

D6.9 0.9267 5.2% 3.1% 2.4% 2.7% 27.6% 5.4% 

D6.10 0.9847 5.3% 3.1% 2.4% 2.8% 28.3% 5.5% 

D7.1 1.0093 5.5% 3.2% 2.4% 2.9% 28.6% 5.6% 

D7.2 1.03 5.7% 3.3% 2.5% 2.9% 30.9% 5.7% 

D7.3 1.0769 5.9% 3.3% 2.5% 2.9% 31.8% 5.9% 

D7.4 1.0879 5.9% 3.4% 2.6% 2.9% 32.9% 6.2% 

D7.5 1.2545 6.2% 3.5% 2.7% 3.0% 35.1% 6.8% 

D7.6 1.2732 6.4% 3.6% 2.8% 3.1% 37.0% 7.5% 
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   Power of tests at 1% critical values, Sample size 100 

Designs Distance 

Pearson 

�� LR λ test UC 

Stuart- 

Maxwell test 

Generalized fisher 

exact test 

D7.7 1.2775 6.4% 4.1% 2.8% 3.1% 38.6% 7.6% 

D7.8 1.3125 6.5% 4.5% 2.8% 3.4% 39.4% 7.8% 

D7.9 1.5019 8.0% 4.8% 2.8% 3.4% 42.8% 8.1% 

D7.10 1.68 9.2% 5.0% 2.9% 3.8% 42.9% 8.8% 

D8.1 1.706 10.0% 5.0% 2.9% 4.0% 43.2% 9.3% 

D8.2 1.7308 11.0% 5.1% 2.9% 4.2% 45.3% 9.4% 

D8.3 1.7487 11.0% 5.5% 3.0% 4.3% 45.3% 10.1% 

D8.4 1.9545 11.1% 5.6% 3.2% 4.7% 45.4% 10.3% 

D8.5 1.9965 11.1% 5.7% 3.2% 4.9% 45.5% 10.6% 

D8.6 2.0367 11.1% 5.7% 3.2% 5.3% 46.0% 11.0% 

D8.7 2.3256 11.2% 6.4% 3.4% 5.3% 48.8% 11.2% 

D8.8 2.3798 11.5% 6.8% 3.6% 5.8% 52.2% 12.6% 

D8.9 2.4609 12.5% 7.5% 3.7% 5.8% 53.0% 12.6% 

D8.10 2.5427 12.9% 8.7% 3.7% 5.8% 58.6% 13.6% 

D9.1 2.5714 13.0% 9.1% 3.7% 6.1% 59.5% 13.6% 

D9.2 2.6374 13.2% 10.9% 4.1% 6.5% 60.7% 14.7% 

D9.3 2.6413 14.4% 11.2% 4.3% 6.5% 63.5% 15.9% 

D9.4 2.6532 15.2% 12.5% 4.4% 6.9% 64.3% 17.1% 

D9.5 2.6729 15.2% 12.5% 4.7% 7.8% 70.2% 18.5% 

D9.6 2.6963 15.7% 13.6% 4.7% 8.2% 74.4% 20.8% 

D9.7 2.703 15.8% 14.8% 4.8% 8.2% 77.1% 20.8% 

D9.8 2.735 17.7% 15.5% 5.4% 9.4% 89.3% 27.9% 

D9.9 2.9786 21.4% 16.3% 6.1% 10.7% 90.5% 30.6% 

D9.10 3.1815 30.1% 17.3% 6.9% 10.7% 93.6% 35.8% 

D10.1 3.2076 32.6% 30.4% 9.0% 12.1% 97.2% 38.5% 

D10.2 3.4921 35.4% 33.3% 9.0% 12.3% 98.3% 40.0% 

D10.3 3.4921 39.5% 34.1% 9.6% 13.0% 113.8% 48.4% 

D10.4 3.7118 42.2% 34.8% 10.7% 14.0% 119.9% 51.8% 

D10.5 4.0049 46.7% 49.9% 12.4% 15.1% 210.0% 56.4% 

D10.6 4.2308 49.5% 51.3% 18.4% 15.4% 214.6% 65.5% 

D10.7 5.1166 124.4% 126.5% 23.7% 15.9% 214.6% 139.2% 

D10.8 5.5797 146.3% 152.6% 34.1% 26.2% 245.3% 169.7% 

D10.9 6.2799 227.7% 214.8% 34.1% 30.4% 450.6% 218.5% 

D10.10 6.303 414.8% 481.1% 68.2% 31.6% 636.9% 453.9% 
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Appendix-B 

Programming for Data Generating Process and Simulation Design 

function [CTsimulated]=CT(X,n) 
a=sum(sum(X)); 
Y=X/a; 
b=sum(Y')'; 
c=sum(Y); 
d=sum(sum(Y)); 
CTsimulated=zeros(3,3); 
for i=1:n 
    x=rand; 
    if x<b(1,1); 
        RN=1; 
    else if x< (b(1,1)+b(2,1)); 
        RN=2; 
        else 
            RN=3; 
        end 
    end  
    y=rand; 
    if y< Y(RN,1)/b(RN,1); 
        CN=1; 
    else if y<Y(RN,1)/b(RN,1)+ Y(RN,2)/b(RN,1); 
            CN=2; 
        else 
            CN=3; 
        end 
    end 
     CTsimulated(RN,CN)=CTsimulated(RN,CN)+1; 
end 

 Simulated critical values       
         
X=[6 5 5;12 10 10;18 15 15]; 
tic 
resAT=zeros(20000,7); 
for i=1:20000 
    X2=CT(X,100); 
    a=chi1(X2); 
    b=LR1(X2); 
    c=PR(X2); 
    ASE2=SPC(X2); 
    Z1=c/ASE2; 
    c1=PR1(X2); 
    ASE1=SPR(X2); 
     Z2=c1/ASE1; 
    c2=PR2(X2); 
    d=UC1(X2); 
    ASE3=UR(X2); 
    Z3=d/ASE3; 
    d1=UC2(X2); 
    ASE4=UC(X2); 
    Z4=d1/ASE4; 
    d2=UC3(X2); 
    e=SM(X2); 
    f=Exact(X2); 
     
    resAT(i,1)=a; 
    resAT(i,2)=b; 



 

70 
 

    resAT(i,3)=Z1; 
    resAT(i,4)=Z3; 
    resAT(i,5)=e; 
    resAT(i,6)=f; 
end 
cv=prctile(resAT,95) 
save D:\resATcvqfile290.txt resAT cv -ascii 
toc 
 

Computation of Power 

X=[5 5 1;10 10 10;15 15 15]; 
tic 
Pr=zeros(1,6); 
for i=1:100 
    X2=CT(X,25); 
    a=chi1(X2); 
    b=LR1(X2); 
    c=PR(X2); 
    ASE2=SPC(X2); 
    Z1=c/ASE2; 
    c2=PR2(X2); 
    d=UC1(X2); 
    ASE3=UR(X2); 
    Z3=d/ASE3; 
    e=SM(X2); 
    f=Exact(X2);   
  teststat=[a b Z1 Z3 e f]; 
  cv=[9.22783   5.91621 2.32551 1.09965 7.6716  9.59985]; 
   pr2=teststat>cv; 
   Pr=Pr+pr2; 
end 
Pr 
toc 
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